Skip to main content

Assessing the Interior Structure of Terrestrial Exoplanets with Implications for Habitability

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Astrophysical observations reveal a large diversity of radii and masses of exoplanets. It is important to characterize the interiors of exoplanets to understand planetary diversity and further determine how unique, or not, Earth is. Assessing interior structure is challenging because there are few data and large uncertainties. Thus, for a given exoplanet, a range of interior structure models can satisfy available data. Typically, interior models aim to constrain the radial structure and composition of the core and mantle and additionally ice, ocean, and gas layer if appropriate. Constraining the parameters of these layers may also inform us about interior dynamics. However, it remains challenging to constrain interior dynamics using interior structure models because structure models are relatively insensitive to the thermal state of a planet. Nevertheless, elucidating interior dynamics remains a key goal in exoplanetology due to its role in determining surface conditions and hence habitability. Thus far, Earth-like habitability can be excluded for super-Earths that are in close proximity to their stars and therefore have high surface temperatures that promote local magma oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams E, Seager S, Elkins-Tanton L (2008) Ocean planet or thick atmosphere: on the mass-radius relationship for solid exoplanets with massive atmospheres. Astrophys J 673(2):1160

    Google Scholar 

  • Alibert Y (2014) On the radius of habitable planets. Astron Astrophys 561:A41

    Google Scholar 

  • Badro J, Côté AS, Brodholt JP (2014) A seismologically consistent compositional model of Earth’s core. Proc Natl Acad Sci 111(21):7542–7545

    Google Scholar 

  • Baraffe I, Chabrier G, Barman T (2008) Structure and evolution of super-Earth to super-Jupiter exoplanets-i. Heavy element enrichment in the interior. Astron Astrophys 482(1):315–332

    Google Scholar 

  • Batygin K, Bodenheimer P, Laughlin G (2009) Determination of the interior structure of transiting planets in multiple-planet systems. Astrophy J Lett 704(1):L49

    Google Scholar 

  • Benz W, Slattery WL, Cameron A (1988) Collisional stripping of Mercury’s mantle. Icarus 74(3):516–528

    Google Scholar 

  • Bourrier V, Ehrenreich D, King G et al (2016) No hydrogen exosphere detected around the super-Earth HD97658 b. Astron Astrophys. https://arxiv.org/abs/1609.04416

  • Bower DJ, Sanan P, Wolf AS (2017, in press) Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets. Phys Earth Planet Inter. https://doi.org/10.1016/j.pepi.2017.11.004

  • Buchhave LA, Dressing CD, Dumusque X et al (2016) A 1.9 Earth radius rocky planet and the discovery of a non-transiting planet in the Kepler-20 system. Astron J. https://arxiv.org/abs/1608.06836

  • Carter JA, Agol E, Chaplin WJ et al (2012) Kepler-36: a pair of planets with neighboring orbits and dissimilar densities. Science 337(6094):556–559

    Google Scholar 

  • Chen J, Kipping DM (2016) Probabilistic forecasting of the masses and radii of other worlds. arXiv preprint: 160308614

    Google Scholar 

  • Christensen UR, Hofmann AW (1994) Segregation of subducted oceanic crust in the convecting mantle. J Geophys Res 99(B10):19867–19884

    Google Scholar 

  • Connolly J (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236(1):524–541

    Google Scholar 

  • Cowan NB, Abbot DS (2014) Water cycling between ocean and mantle: super-Earths need not be waterworlds. Astrophys J 781(1):27

    Google Scholar 

  • Dai L, Karato Si (2009) Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet Sci Lett 287(1):277–283

    Google Scholar 

  • Daviau K, Lee KK (2017) Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell. Phys Rev B 95(13):134108

    Google Scholar 

  • Dorn C, Heng K (2017, accepted) Secondary atmospheres on HD219134 b and c. Astrophy J. arxiv preprint, arXiv:1711.07745

    Google Scholar 

  • Dorn C, Khan A, Heng K et al (2015) Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron Astrophys 577:A83

    Google Scholar 

  • Dorn C, Hinkel NR, Venturini J (2017a) Bayesian analysis of interiors of HD 219134b, Kepler-10b, Kepler-93b, CoRoT-7b, 55 Cnc e, and HD 97658b using stellar abundance proxies. Astron Astrophys 597:A38

    Google Scholar 

  • Dorn C, Venturini J, Khan A et al (2017b) A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astron Astrophys 597:A37

    Google Scholar 

  • Draine B (2009) Interstellar dust models and evolutionary implications. arXiv preprint: 09031658

    Google Scholar 

  • Dressing CD, Charbonneau D (2015) The occurrence of potentially habitable planets orbiting m dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys J. https://arxiv.org/abs/1501.01623

  • Dressing CD, Charbonneau D, Dumusque X et al (2014) The mass of Kepler-93b and the composition of terrestrial planets. Astrophys J. https://arxiv.org/abs/1412.8687

  • Ehrenreich D, Bourrier V, Wheatley PJ et al (2015) A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522(459). https://arxiv.org/abs/1506.07541

  • Elkins-Tanton L (2008) Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet Sci Lett 271(1–4):181–191. http://www.sciencedirect.com/science/article/pii/S0012821X08002306

  • exoplanet.eu (1995) The extrasolar planets encyclopaedia. http://exoplanets.eu/. Accessed 1 Feb 2017

  • Fabrycky DC (2008) What to expect from transiting multiplanet systems. Proc Inter Astron Union 4(S253):173–179

    Google Scholar 

  • Foreman-Mackey D, Hogg DW, Morton TD (2014) Exoplanet population inference and the abundance of Earth analogs from noisy, incomplete catalogs. Astrophy J 795(1):64

    Google Scholar 

  • Fortney J, Saumon D, Marley M, Lodders K, Freedman R (2006) Atmosphere, interior, and evolution of the metal-rich transiting planet HD 149026b. Astrophy J 642(1):495

    Google Scholar 

  • Fortney JJ, Mordasini C, Nettelmann N et al (2013) A framework for characterizing the atmospheres of low-mass low-density transiting planets. Astrophy J 775(1):80

    Google Scholar 

  • Fowler AC (1993) Boundary layer theory and subduction. J Geophys Res 98(B12):21997–22005

    Google Scholar 

  • Freedman RS, Marley MS, Lodders K (2008) Line and mean opacities for ultracool dwarfs and extrasolar planets. Astrophys J Suppl Ser 174(2):504

    Google Scholar 

  • French M, Redmer R (2015) Construction of a thermodynamic potential for the water ices vii and x. Phys Rev B 91(1):014308

    Google Scholar 

  • Gerya T (2014) Precambrian geodynamics: concepts and models. Gondwana Res 25:442–463

    Google Scholar 

  • Gilli G, Israelian G, Ecuvillon A, Santos N, Mayor M (2006) Abundances of refractory elements in the atmospheres of stars with extrasolar planets. Astron Astrophys 449(2):723–736

    Google Scholar 

  • Grasset O, Schneider J, Sotin C (2009) A study of the accuracy of mass-radius relationships for silicate-rich and ice-rich planets up to 100 Earth masses. Astrophys J 693(1):722

    Google Scholar 

  • Gregg T (2015) 10.09 – planetary tectonics and volcanism: the inner solar system. In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elsevier, Oxford, pp 307–325. https://doi.org/10.1016/B978-0-444-53802-4.00187-1

  • Guillot T (2010) On the radiative equilibrium of irradiated planetary atmospheres. Astron Astrophys 520:A27

    Google Scholar 

  • Henning WG, O’Connell RJ, Sasselov DD (2009) Tidally heated terrestrial exoplanets: viscoelastic response models. Astrophy J 707(2):1000

    Google Scholar 

  • Hinkel NR, Timmes F, Young PA, Pagano MD, Turnbull MC (2014) Stellar abundances in the solar neighborhood: the hypatia catalog. Astron J 148(3):54

    Google Scholar 

  • Howe AR, Burrows A, Verne W (2014) Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes. Astrophys J 787(2):173

    Google Scholar 

  • Inoue T, Wada T, Sasaki R, Yurimoto H (2010) Water partitioning in the Earth’s mantle. Phys Earth Planet Inter 183(1):245–251

    Google Scholar 

  • Jin S, Mordasini C, Parmentier V et al (2014) Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation. Astrophys J 795(1):65

    Google Scholar 

  • Kasting J (2010) How to find a habitable planet. Princeton University Press, Princeton

    Google Scholar 

  • Keller T, Tackley PJ (2009) Towards self-consistent modeling of the martian dichotomy: the influence of one-ridge convection on crustal thickness distribution. Icarus 202(2):429–443. http://www.sciencedirect.com/science/article/B6WGF-4VXTSR1-2/2/000271ae1b8140a0f820d927810982e6

  • Khan A, Shankland T (2012) A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth Planet Sci Lett 317:27–43

    Google Scholar 

  • Kite E, Manga M, Gaidos E (2009) Geodynamics and rate of volcanism on massive Earth-like planets. Astrophys J 700(2):1732

    Google Scholar 

  • Kite ES, Fegley B Jr, Schaefer L, Gaidos E (2016) Atmosphere-interior exchange on hot, rocky exoplanets. Astrophys J 828(2):80

    Google Scholar 

  • Kohlstedt D, Hansen L (2015) 2.18 – constitutive equations, rheological behavior, and viscosity of rocks. In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elsevier, Oxford, pp 441–472. https://doi.org/10.1016/B978-0-444-53802-4.00042-7. http://www.sciencedirect.com/science/article/pii/B9780444538024000427

  • Korenaga J (2009) Scaling of stagnant-lid convection with Arrhenius rheology and the effects of mantle melting. Geophys J Int 179:154–170

    Google Scholar 

  • Leconte J, Forget F, Lammer H (2015) On the (anticipated) diversity of terrestrial planet atmospheres. Exp Astron 40(2–3):449–467

    Google Scholar 

  • Li ZXA, Lee CTA, Peslier AH, Lenardic A, Mackwell SJ (2008) Water contents in mantle xenoliths from the colorado plateau and vicinity: implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res Solid Earth 113(B9)

    Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591(2):1220

    Google Scholar 

  • Lopez ED, Fortney JJ (2014) Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys J 792(1):1

    Google Scholar 

  • Lourenço D, Rozel A, Tackley P (2016) Melting-induced crustal production helps plate tectonics on Earth-like planets. Earth Planet Sci Lett 438:18–28

    Google Scholar 

  • Luger R, Barnes R, Lopez E et al (2015) Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15(1):57–88

    Google Scholar 

  • Madhusudhan N, Lee KK, Mousis O (2012) A possible carbon-rich interior in super-Earth 55 cancri e. Astrophys J Lett 759(2):L40

    Google Scholar 

  • Mallard C, Coltice N, Seton M, Mueller D, Tackley P (2016) Subduction controls the distribution and fragmentation of Earth’s tectonic plates. Nature 535:140–143

    Google Scholar 

  • Marcy GW, Isaacson H, Howard AW et al (2014) Masses, radii, and orbits of small kepler planets: the transition from gaseous to rocky planets. Astrophys J Suppl 210(2). https://arxiv.org/abs/1401.4195

  • Moore WB, Webb AAG (2013) Heat-pipe Earth. Nature 501(7468):501–505

    Google Scholar 

  • Moresi L, Solomatov V (1998) Mantle convection with a brittle lithosphere: thoughts on the global tectonic style of the Earth and Venus. Geophys J 133:669–682

    Google Scholar 

  • Nisr C, Meng Y, MacDowell A et al (2017) Thermal expansion of SiC at high pressure-temperature and implications for thermal convection in the deep interiors of carbide exoplanets. J Geophys Res Planets 122:124–133

    Google Scholar 

  • Noack L, Breuer D (2014) Plate tectonics on rocky exoplanets: influence of initial conditions and mantle rheology. Planet Space Sci 98:41–49

    Google Scholar 

  • Noack L, Breuer D, Spohn T (2012) Coupling the atmosphere with interior dynamics: implications for the resurfacing of Venus. Icarus 217(2):484–498

    Google Scholar 

  • Noack L, Höning D, Rivoldini A et al (2016) Water-rich planets: how habitable is a water layer deeper than on Earth? Icarus 277:215–236

    Google Scholar 

  • Owen JE, Mohanty S (2016) Habitability of terrestrial-mass planets in the HZ of M dwarfs – I. H/He-dominated atmospheres. Mon Not R Astron Soc 459(4):4088–4108

    Google Scholar 

  • Petigura EA, Howard AW, Marcy GW (2013) Prevalence of Earth-size planets orbiting Sun-like stars. Proc Natl Acad Sci 110(48):19273–19278

    Google Scholar 

  • Pierrehumbert RT (2010) Principles of planetary climate. Cambridge University Press, Leiden

    Google Scholar 

  • Poirier JP (1994) Light elements in the Earth’s outer core: a critical review. Phys Earth Planet Inter 85(3–4):319–337

    Google Scholar 

  • Poirier JP (2000) Introduction to the physics of the Earth’s interior. Cambridge University Press, Cambridge

    Google Scholar 

  • Quanz SP, Crossfield I, Meyer MR, Schmalzl E, Held J (2015) Direct detection of exoplanets in the 3–10 μm range with e-elt/metis. Int J Astrobiol 14(2):279–289

    Google Scholar 

  • Rappaport S, Sanchis-Ojeda R, Rogers LA, Levine A, Winn JN (2013) The roche limit for close-orbiting planets: minimum density, composition constraints, and application to the 4.2-hour planet KOI 1843.03. Astrophys J Lett. https://arxiv.org/abs/1307.4080

  • Rauer H, Catala C, Aerts C et al (2014) The plato 2.0 mission. Exp Astron 38(1–2):249–330

    Google Scholar 

  • Rogers LA (2014) Most 1.6 Earth-radius planets are not rocky. Astrophys J. https://arxiv.org/abs/1407.4457

  • Rogers L, Seager S (2010) A framework for quantifying the degeneracies of exoplanet interior compositions. Astrophys J 712(2):974

    Google Scholar 

  • Rubie D, Melosh H, Reid J, Liebske C, Righter K (2003) Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth Planet Sci Lett 205(3):239–255

    Google Scholar 

  • Sandu C, Lenardic A, McGovern P (2011) The effects of deep water cycling on planetary thermal evolution. J Geophys Res Solid Earth 116(B12)

    Google Scholar 

  • Schmitt JR, Agol E, Deck KM et al (2014) Planet hunters. vii. Discovery of a new low-mass, low-density planet (PH3 c) orbiting Kepler-289 with mass measurements of two additional planets (PH3 b and d). Astrophys J 795(2):167

    Google Scholar 

  • Seager S, Kuchner M, Hier-Majumder C, Militzer B (2007) Mass-radius relationships for solid exoplanets. Astrophys J 669(2):1279

    Article  ADS  Google Scholar 

  • Sizova E, Gerya T, Stüwe K, Brown M (2015) Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Res 271:198–224

    Article  ADS  Google Scholar 

  • Solomatov VS (1995) Scaling of temperature- and stress-dependent viscosity convection. Phys Fluids 7:266–274

    Article  ADS  MATH  Google Scholar 

  • Sotin C, Grasset O, Mocquet A (2007) Mass–radius curve for extrasolar Earth-like planets and ocean planets. Icarus 191(1):337–351

    Article  ADS  Google Scholar 

  • Stein C, Schmalzl J, Hansen U (2004) The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection. Phys Earth Plan Int 142:225–255

    Article  ADS  Google Scholar 

  • Stevenson DJ (2003) Styles of mantle convection and their influence on planetary evolution. Compt Rendus Geosci 335(1):99–111

    Article  ADS  Google Scholar 

  • Strom R, Schaber G, Dawson D (1994) The global resurfacing of Venus. J Geophys Res 99: 10899–10926

    Article  ADS  Google Scholar 

  • Tackley PJ (2000) Self consistent generation of tectonic plates in time-dependent, three dimensional mantle convection simulations, part 1: Pseudoplastic yielding. G3 1:(2000GC000036)

    Google Scholar 

  • Thiabaud A, Marboeuf U, Alibert Y et al (2014) From stellar nebula to planets: the refractory components. Astron Astrophys 562:A27

    Article  ADS  Google Scholar 

  • Unterborn CT, Dismukes EE, Panero WR (2016) Scaling the Earth: a sensitivity analysis of terrestrial exoplanetary interior models. Astrophys J 819(1):32

    Article  ADS  Google Scholar 

  • Valencia D, Sasselov DD, O’Connell RJ (2007) Detailed models of super-Earths: how well can we infer bulk properties? Astrophys J 665(2):1413

    Article  ADS  Google Scholar 

  • Valencia D, Ikoma M, Guillot T, Nettelmann N (2010) Composition and fate of short-period super-Earths-the case of CoRoT-7b. Astron Astrophys 516:A20

    Article  ADS  Google Scholar 

  • Vazan A, Helled R, Podolak M, Kovetz A (2016) The evolution and internal structure of Jupiter and Saturn with compositional gradients. Astrophys J 829(2):118

    Article  ADS  Google Scholar 

  • Venturini J, Alibert Y, Benz W (2016) Planet formation with envelope enrichment: new insights on planetary diversity. Astron Astrophys 596:A90

    Article  ADS  Google Scholar 

  • Wagner F, Sohl F, Hussmann H, Grott M, Rauer H (2011) Interior structure models of solid exoplanets using material laws in the infinite pressure limit. Icarus 214(2):366–376

    Article  ADS  Google Scholar 

  • Walker JC, Hays P, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res Oceans 86(C10):9776–9782

    Article  Google Scholar 

  • Weiss LM, Marcy GW (2014) The mass-radius relation for 65 exoplanets smaller than 4 Earth radii. Astrophys J Lett 783(1):L6

    Article  ADS  Google Scholar 

  • Weiss LM, Rogers LA, Isaacson HT et al (2015) Revisedmasses and densities of the planets around Kepler-10. In: Weiss LM, Rogers LA, Isaacson HT, Agol E, Marcy GW, Rowe JF, Kipping D, Fulton BJ, Lissauer JJ, Howard AW, Fabrycky D (eds) AAS/division for extreme solar systems abstracts, vol 3, p 10102

    Google Scholar 

  • Wilson HF, Militzer B (2014) Interior phase transformations and mass-radius relationships of silicon-carbon planets. Astrophys J 793(1):34

    Article  ADS  Google Scholar 

  • Wolfgang A, Rogers LA, Ford EB (2016) Probabilistic mass–radius relationship for sub-Neptune-sized planets. Astrophys J 825(1):19

    Article  ADS  Google Scholar 

  • Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441(7095):825–833

    Article  ADS  Google Scholar 

  • Xie S, Tackley PJ (2004) Evolution of U-Pb and Sm-Nd systems in numerical models of mantle convection and plate tectonics. J Geophys Res 109(B11):B11204

    Article  ADS  Google Scholar 

  • Zeng L, Seager S (2008) A computational tool to interpret the bulk composition of solid exoplanets based on mass and radius measurements. Publ Astron Soc Pac 120(871):983

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Dorn .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dorn, C., Bower, D.J., Rozel, A. (2018). Assessing the Interior Structure of Terrestrial Exoplanets with Implications for Habitability. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_66-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics