Skip to main content

Ages for Exoplanet Host Stars

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Age is an important characteristic of a planetary system but also one that is difficult to determine. Assuming that the host star and the planets are formed at the same time, the challenge is to determine the stellar age. Asteroseismology provides precise age determination, but in many cases the required detailed pulsation observations are not available. Here we concentrate on other techniques, which may have broader applicability but also serious limitations. Further development of this area requires improvements in our understanding of the evolution of stars and their age-dependent characteristics, combined with observations that allow reliable calibration of the various techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. ARA&A 47:481–522

    Article  ADS  Google Scholar 

  • Barnes SA (2003) On the rotational evolution of solar- and late-type stars, its magnetic origins, and the possibility of stellar gyrochronology. ApJ 586:464–479

    Article  ADS  Google Scholar 

  • Barnes SA (2007) Ages for illustrative field stars using gyrochronology: viability, limitations, and errors. ApJ 669:1167–1189

    Article  ADS  Google Scholar 

  • Barnes SA, Weingrill J, Fritzewski D, Strassmeier KG, Platais I (2016) Rotation periods for cool stars in the 4 Gyr old open cluster M67, the solar-stellar connection, and the applicability of gyrochronology to at least solar age. ApJ 823:16

    Article  ADS  Google Scholar 

  • Basu S, Antia HM (2008) Helioseismology and solar abundances. Phys Rep 457:217–283

    Article  ADS  Google Scholar 

  • Booth RS, Poppenhaeger K, Watson CA, Silva Aguirre V, Wolk SJ (2017) An improved age-activity relationship for cool stars older than a gigayear. MNRAS 471:1012–1025

    Article  ADS  Google Scholar 

  • Boyajian TS, McAlister HA, van Belle G et al (2012) Stellar diameters and temperatures. I. Main-sequence A, F, and G stars. ApJ 746(1):101

    Article  ADS  Google Scholar 

  • Brandt TD, Huang CX (2015) The age and age spread of the Praesepe and Hyades clusters: a consistent, ∼800 Myr picture from rotating stellar models. ApJ 807:24

    Article  ADS  Google Scholar 

  • Brown TM (2014) The metastable dynamo model of stellar rotational evolution. ApJ 789:101

    Article  ADS  Google Scholar 

  • Burgasser AJ, Mamajek EE (2017) On the age of the TRAPPIST-1 system. ApJ 845:110

    Article  ADS  Google Scholar 

  • Campante TL, Barclay T, Swift JJ et al (2015) an ancient extrasolar system with five sub-earth-size planets. ApJ 799:170

    Article  ADS  Google Scholar 

  • Casagrande L, Portinari L, Glass IS et al (2014) Towards stellar effective temperatures and diameters at 1 per cent accuracy for future surveys. Mon Not R Astron Soc 439(2):2060–2073

    Article  ADS  Google Scholar 

  • Chromey FR (2016) To measure the sky. Cambridge University Press, Cambridge

    Google Scholar 

  • Claret A, Torres G (2016) The dependence of convective core overshooting on stellar mass. A&A 592:A15

    Article  ADS  Google Scholar 

  • Connelly JN, Bizzarro M, Krot AN et al (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338:651

    Article  ADS  Google Scholar 

  • Deheuvels S, Brandão I, Silva Aguirre V et al (2016) Measuring the extent of convective cores in low-mass stars using Kepler data: toward a calibration of core overshooting. A&A 589:A93

    Article  ADS  Google Scholar 

  • Durney B (1972) Evidence for changes in the angular velocity of the surface regions of the sun and stars – comments. NASA Spec Publ 308:282

    ADS  Google Scholar 

  • Fogtmann-Schulz A, Hinrup B, Van Eylen V et al (2014) Accurate parameters of the oldest known Rocky-exoplanet hosting system: Kepler-10 revisited. ApJ 781:67

    Article  ADS  Google Scholar 

  • Folsom CP, Petit P, Bouvier J et al (2016) The evolution of surface magnetic fields in young solar-type stars – I. The first 250 Myr. MNRAS 457:580–607

    Article  ADS  Google Scholar 

  • Folsom CP, Bouvier J, Petit P et al (2018) The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250–650 Myr). MNRAS 474:4956–4987

    Article  ADS  Google Scholar 

  • Gaia Collaboration, Brown AGA, Vallenari A et al (2016) Gaia data release 1. Astron Astrophys 595:A2

    Article  Google Scholar 

  • Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460

    Article  ADS  Google Scholar 

  • Hanbury Brown R, Davis J, Allen LR (1974) The angular diameters of 32 stars. MNRAS 167:121–136

    Article  ADS  Google Scholar 

  • Huber D, Ireland MJ, Bedding TR et al (2012) Fundamental properties of stars using asteroseismology from Kepler and CoRoT and interferometry from the CHARA array. ApJ 760(1):32

    Article  ADS  Google Scholar 

  • Jeffries RD (2014) Using rotation, magnetic activity and lithium to estimate the ages of low mass stars. EAS publications series, vol 65, pp 289–325. https://doi.org/10.1051/eas/1465008

    Article  Google Scholar 

  • Jørgensen BR, Lindegren L (2005) Determination of stellar ages from isochrones: Bayesian estimation versus isochrone fitting. A&A 436:127–143

    Article  ADS  Google Scholar 

  • Kippenhahn R, Weigert A, Weiss A (2012) Stellar structure and evolution. https://doi.org/10.1007/978-3-642-30304-3

    Book  Google Scholar 

  • Mamajek EE, Hillenbrand LA (2008) Improved age estimation for solar-type dwarfs using activity-rotation diagnostics. ApJ 687:1264–1293

    Article  ADS  Google Scholar 

  • Mann AW, Gaidos E, Mace GN et al (2016a) Zodiacal exoplanets in time (ZEIT). I. A Neptune-sized planet orbiting an M4.5 dwarf in the Hyades star cluster. ApJ 818:46

    Article  ADS  Google Scholar 

  • Mann AW, Newton ER, Rizzuto AC et al (2016b) Zodiacal exoplanets in time (ZEIT). III. A short-period planet orbiting a pre-main-sequence star in the upper Scorpius OB association. AJ 152:61

    Article  ADS  Google Scholar 

  • Mann AW, Gaidos E, Vanderburg A et al (2017) Zodiacal exoplanets in time (ZEIT). IV. Seven transiting planets in the Praesepe cluster. AJ 153:64

    Article  ADS  Google Scholar 

  • Mann AW, Vanderburg A, Rizzuto AC et al (2018) Zodiacal exoplanets in time (ZEIT). VI. A three-planet system in the Hyades cluster including an earth-sized planet. AJ 155:4

    Article  ADS  Google Scholar 

  • Maxted PFL, Serenelli AM, Southworth J (2015a) Bayesian mass and age estimates for transiting exoplanet host stars. A&A 575:A36

    Article  ADS  Google Scholar 

  • Maxted PFL, Serenelli AM, Southworth J (2015b) Comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars. A&A 577:A90

    Article  ADS  Google Scholar 

  • Meibom S, Mathieu RD, Stassun KG (2009) Stellar rotation in M35: mass-period relations, spin-down rates, and gyrochronology. ApJ 695:679–694

    Article  ADS  Google Scholar 

  • Meibom S, Barnes SA, Latham DW et al (2011a) The Kepler cluster study: stellar rotation in NGC 6811. ApJ 733:L9

    Article  ADS  Google Scholar 

  • Meibom S, Mathieu RD, Stassun KG, Liebesny P, Saar SH (2011b) The color-period diagram and stellar rotational evolution – new rotation period measurements in the open cluster M34. ApJ 733:115

    Article  ADS  Google Scholar 

  • Meibom S, Barnes SA, Platais I et al (2015) A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster. Nature 517:589–591

    Article  ADS  Google Scholar 

  • Pont F, Eyer L (2004) Isochrone ages for field dwarfs: method and application to the age-metallicity relation. MNRAS 351:487–504

    Article  ADS  Google Scholar 

  • Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330

    Article  ADS  Google Scholar 

  • Ricker GR, Vanderspek R, Winn J et al (2016) The Transiting Exoplanet Survey Satellite. In: Space telescopes and instrumentation 2016: optical, infrared, and millimeter wave. Proceeding of SPIE, vol 9904, p 99042B. https://doi.org/10.1117/12.2232071

  • Sandford E, Kipping D (2017) Know the planet, know the star: precise stellar densities from Kepler transit light curves. AJ 154:228

    Article  ADS  Google Scholar 

  • Segransan D, Kervella P, Forveille T, Queloz D (2003) First radius measurements of very low mass stars with the VLTI. Astron Astrophys 397(3):L5–L8

    Article  ADS  Google Scholar 

  • Serenelli AM, Bergemann M, Ruchti G, Casagrande L (2013) Bayesian analysis of ages, masses and distances to cool stars with non-LTE spectroscopic parameters. MNRAS 429:3645–3657

    Article  ADS  Google Scholar 

  • Sestito P, Randich S (2005) Time scales of Li evolution: a homogeneous analysis of open clusters from ZAMS to late-MS. A&A 442:615–627

    Article  ADS  Google Scholar 

  • Silva Aguirre V, Basu S, Brandão IM et al (2013) Stellar ages and convective cores in field main-sequence stars: first asteroseismic application to two Kepler targets. ApJ 769:141

    Article  ADS  Google Scholar 

  • Silva Aguirre V, Davies GR, Basu S et al (2015) Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology. MNRAS 452:2127–2148

    Article  ADS  Google Scholar 

  • Silva Aguirre V, Lund MN, Antia HM et al (2017) Standing on the shoulders of dwarfs: the Kepler asteroseismic LEGACY sample. II. Radii, masses, and ages. ApJ 835:173

    Google Scholar 

  • Skumanich A (1972) Time scales for CA II emission decay, rotational braking, and lithium depletion. ApJ 171:565

    Article  ADS  Google Scholar 

  • Soderblom DR (2010) The ages of stars. ARA&A 48:581–629

    Article  ADS  Google Scholar 

  • Soderblom DR, Hillenbrand LA, Jeffries RD, Mamajek EE, Naylor T (2014) Ages of young stars. In: H. Beuther, R. S. Klessen, C. P. Dullemond, T. Henning (eds), Protostars and planets VI. University of Arizona Press, Tucson, pp 219–241

    Google Scholar 

  • Somers G, Pinsonneault MH (2016) Lithium depletion is a strong test of core-envelope recoupling. ApJ 829:32

    Article  ADS  Google Scholar 

  • Thompson MJ, Christensen-Dalsgaard J, Miesch MS, Toomre J (2003) The internal rotation of the sun. ARA&A 41:599–643

    Article  ADS  Google Scholar 

  • Triaud AHMJ (2011) The time dependence of hot Jupiters’ orbital inclinations. A&A 534:L6

    Article  ADS  Google Scholar 

  • van Saders JL, Ceillier T, Metcalfe TS et al (2016) Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars. Nature 529:181–184

    Article  ADS  Google Scholar 

  • White TR, Huber D, Maestro V et al (2013) Interferometric radii of bright Kepler stars with the CHARA array: θ cygni and 16 cygni A and B. MNRAS 433(2):1262–1270

    Article  ADS  Google Scholar 

  • Zwintz K, Fossati L, Ryabchikova T et al (2014) Echography of young stars reveals their evolution. Science 345:550–553

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNRF106). V.S.A. acknowledges support from the Villum Foundation (Research grant 10118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørgen Christensen-Dalsgaard .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Christensen-Dalsgaard, J., Aguirre, V.S. (2018). Ages for Exoplanet Host Stars. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_184-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_184-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics