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Abstract Cytokine storms are a potentially fatal exaggerated immune response
consisting of an uncontrolled positive feedback loop between immune cells and
cytokines. The dynamics of cytokines are highly complex and little is known about
specific interactions. Researchers at the Ontario Veterinary College have encoun-
tered cytokine storms during virotherapy. Multiple mouse trials were conducted
where a virus was injected into mice whose leukocytes lacked expression of the type
Linterferon receptor. In each case a rapid, fatal cytokine storm occurred. A nonlinear
differential equation model of the recorded cytokine amounts was produced to
obtain some information on their mutual interactions. Results provide insight into
the complex mechanism that drives the storm and possible ways to prevent such
immune responses.

1 Introduction

Overly robust cytokine responses are responsible for a broad array of very chal-
lenging and often fatal clinical conditions. These include infectious diseases such
as influenza [16], severe acute respiratory syndrome (SARS) [11], bacteria-induced
toxic shock syndrome [20] and sepsis [9], as well as multiple sclerosis [13], graft-
versus-host disease [7] and sometime adverse effects of therapies [22]. Cytokines
are released by cells to coordinate an immune response to help protect against
foreign and/or dangerous matter. They are produced in response to infection and
inflammation [5]. There are five major classifications of cytokines; interferons
(IFN), interleukins (IL), chemokines, colony-stimulating factors (CSF), and tumour
necrosis factors (TNF) [23]. Together they function in order to stimulate a response
that will control cellular stress as well as minimize the amount of damage to a
particular cell or group of cells [5].
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Although the goal of each cytokine is to ultimately protect the host against
dangerous insults, it is not uncommon for this process to become unbalanced.
For reasons unknown, positive feedback loops can become up-regulated during an
immune response involving complex interaction between cytokines and immune
cells. The fine balance that is typical of healthy individuals is lost and gives rise to a
cascade which is termed a cytokine storm. The dynamics of cytokines during normal
immune responses and even more so during storms are highly complex and little
is known about specific interactions [5, 27]. Cytokine storms not only have very
negative effects on the immune response, they often have life threatening effects
including a decrease in blood pressure, increase in heart rate and can often lead to
death of the host [27].

As more biological data is collected, the immense complexities of the immune
system is becoming increasingly apparent [26]. It is clear that mathematical mod-
elling has become an essential tool to complement experimental techniques both in
vitro and in vivo. Combining these approaches can result in major advancements in
both the understanding of cancer and immune system dynamics including cytokine
interactions, with the potential to identify strategies to control toxic cytokine storms
[26].

Previous mathematical models include at most two cytokines and do not focus
the research on the interactions and function of the cytokines. Typical cytokines
included in models are IL-2, IL-10, IL-12 and TNFE. Unfortunately, even the models
that contain cytokines do not investigate the specific interactions that we are
interested in. These models exclude many of the cytokines that are of greatest
interest to us [6, 12, 15, 19].

Since our focus is to model only the dynamics of cytokines, we turn to ordinary
differential equation (ODE) models to provide a good framework for exploring
interactions between different cytokine populations. To keep the model relatively
simple, we ignore the effects of effector cells (activated immune cells) due to the
complexities it brings to the model. To date, the only model that is of a similar
nature is produced by [27] called Dynamics of a Cytokine Storm. In this paper, the
interactions of nine cytokines were modelled using data from a human clinical trial
where six volunteers took part in a study that accidentally led them to undergo the
effects of a cytokine storm [27]. This model was primarily constructed to look at the
effects of the antibody responsible for the cytokine storm using a linear ODE model
where parameter estimation determined coupling parameters between cytokines.
The coupling parameters identified which cytokine was responsible for enhancing
or inhibiting each other cytokine as well as self-regulation [27].

In this paper, we determine how cytokines interact with one another based on a
set of time series data provided by Dr. Byram Bridle and his lab members Dr. Scott
Walsh and Alexandra Rasiuk at the Ontario Veterinary College (OVC). Following
administration of a highly attenuated virus to mice with leukocytes lacking the
type I IFN receptor, a deadly cytokine storm developed leading to death in only
24 h. Down-regulation of anti-viral IFN signaling is a common mechanism used
by viruses during infection, including those associated with cytokine storms (e.g.
influenza virus [14], SARS-coronavirus [3] and Ebola virus [2]). Thus, a natural
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question arises: what are the specific dynamics of cytokines with respect to both
initiating and exacerbating a cytokine storm when type I interferon signalling is
impaired?

2 Mathematical Model

Most biological systems are innately non-linear and thus a non-linear ODE model
is essential to obtain the proper dynamics [26]. The model we use is given by:

i

1+ e for i,j=1,2,...,13. (1)
e Vi

X = — X +
The first and most common assumption throughout the literature is that the
concentration of a particular cytokine, x;, continues to decrease linearly when there
is no outside stimulus [10, 17]. Since cytokines are secreted by other cells it makes
sense that in the absence of these producers, the number of cytokines will rapidly
decline at a rate u; (>0) [10, 17, 25]. The second assumption is that the rate of
production of cytokines is dependent on interactions with other cytokines and is
sigmoidal in shape of the form

M;
1 +e’
where M; (>0) is the maximum production rate. The interaction with other
cytokines, y;, determines the slope of the function, and thus how much of a cytokine

is produced, potentially offsetting some or all of the decay [10, 17, 25]. The
interaction factor y; is given by

yi =0+ Zainj + S, ()
Jj=1

meaning that y; is composed of effects from the presence of other cytokines, «;;
effects from components for which there is no data, ¢ ;; and the stimulus, S;, by the
virus. The stimulus is of the form

S,’ = be_’/T,

where there is an initial dose of the drug, b, which decays exponentially with
characteristic time 7.
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3 Data

Data was collected and provided by Dr. Byram Bridle, Dr. Scott Walsh and
Alexandra Rasiuk who study the role of type I IFN signalling in the regulation
of cytokine responses at the OVC. Chimeric mice were made by lethal irradiation
of the bone marrow of C57BL/6 mice (Charles River Laboratories) followed by
reconstitution with bone marrow from either wild-type or type I IFN receptor
(IFNAR)-knockout donors (the latter provided by Laurel Lenz, University of
Colorado School of Medicine). These mouse-based experiments were approved
by the institutional Animal Care Committee and complied with the standard of
the Canadian Council of Animal Care. These mice were infected intravenously
with recombinant Vesicular Stomatitis Virus with a deletion of methionine at
position 51 of the matrix protein (VSVAmS1) [21]. The matrix protein of VSV
suppresses antiviral type I IFN responses. Therefore, this mutant virus renders the
already attenuated laboratory strain of VSV even safer and it is being developed
as an oncolytic virus for the treatment of cancers via intravenous infusion [24].
Surprisingly, mice lacking the IFNAR on their leukocytes experienced a profound
cytokine storm, ultimately leading to death in only 24 h. The resulting time series
data provided concentrations of 13 different cytokines in plasma, measured using a
multiplex array (BioRad).

Concentrations of 13 cytokines were recorded at times 0, 2.5, 5, 10 and
24h for both the wild-type mice and mice lacking the IFNAR on 20% of their
leukocytes. Raw data was then normalized to account for the vast variability in the
concentrations. This was done by dividing the concentration at each time point by
the sum of the concentrations across all time points for a particular cytokine. In order
to produce an accurate fit to the model it was essential to group cytokines to reduce
the number of parameters. Grouping was based on the inflammatory classification
of each cytokine as well as similarity of cytokine profile. The time at which the peak
concentration occurred was recorded along with either the pro- or anti-inflammatory
classification. Groupings can be seen in Table 1. Parameter estimation techniques,
specifically fmincon in MATLAB, were used to fit the model to the data. The cost

Table 1 Grouping of 13 cytokines based on raw data and inflammatory classification

Inflammatory WT data peak KO data peak

Group Cytokines classification (h) (h)
1 IL-13, IL-5 Anti 2.5 24
2 MIP-18, TNF-«, IL-12 Pro 2.5 24
3 IL-1p, eotaxin, IFN-y Pro 5 24
4 1L-4, IL-10 Anti 5 24
5 IL-6 Pro/Anti 2.5 10
6 MIP-1a Pro 5 24
7 Rantes Pro 10 24
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function is the typical least squares function with a normalization matrix to offset
discrepancies between groups.

4 Results

Mathematical analysis is an important tool for biological predictions and for
producing more questions and further areas of research both in biology and
mathematics [1]. Model results from parameter optimization of IFNAR-knockout
mice data are shown in Fig. 1. The model provides an accurate fit to the cytokine
time series data for both IFNAR-knockout and wild-type mice (not shown). The
model parameters that provide the most interesting information are the «;; values, as
they relate how each cytokine group interacts with each of the other groups. The sign
and magnitude of these values indicate the type of effect a particular cytokine has; a
negative parameter value indicates an inhibitory effect, a positive value an enhancing
effect and the largest magnitude produces the most significant coupling. The three
largest o;; values for each group of the IFNAR-knockout mice are displayed in
Fig.2 where the lines indicate either enhancing (solid line with an arrowhead) or
inhibiting (dotted line with a ‘T’) and the line thickness displays the magnitude (the
thicker the line, the greater the magnitude).

Preliminary results from Fig.2 show that Groups 2, 4, 5 and 6 are the most
significant. Each of them have a large number of interactions, multiple two-way
paths, exhibit definite enhancement or inhibition, and fit well with what is known
biologically.

The most significant group, Group 2, consists of three pro-inflammatory
cytokines: MIP-18, TNF-« and IL-12. Of the three, TNF-« is assumed to be the
dominating cytokine. TNF has been thoroughly studied and is one of the most well
known cytokines as it plays an important role in the outcome of immune function
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Fig. 1 Model results from parameter estimation of IFNAR-knockout mice. Dots represent raw
time series data, lines show the model prediction
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Fig. 2 Largest three interactions for each cytokine group of IFNAR-knockout mice are repre-
sented with a line. Solid lines with an arrow indicate enhancing effects while dotted lines with a
‘T’ indicate inhibitory effects

[18, 23]. Model results for Group 2 show that it is an integral part of six significant
interactions and has multiple two-way paths, one with Group 5 and another with
Group 7. All three interactions that affect Group 2 are enhancing, indicating that as
the storm progresses, the amount of cytokine will continue to rise. TNF-«, along
with IL-18 (found in Group 3), are considered early-response cytokines, occurring
soon after an immune response is triggered. It is known biologically that TNF-«
promotes the generation of IL-18 [23]. Although the results are not shown for the
wild-type case, the model results indicate that in fact Group 2 does enhance Group
3. In the case of IFNAR-knockout mice however, Group 2 inhibits Group 3 (the
relatively small interaction is not shown in Fig. 2). This difference begins to shed
light on why a storm occurred in mice lacking IFNAR on leukocytes.

Another central group is Group 4 which is made up of two anti-inflammatory
cytokines, IL-4 and IL-10, with the latter being a very prominent inhibitor. IL-10 is
often produced once a cytokine storm has begun in an attempt to return the balance
that has been lost, termed immunoparalysis. Although overproduction can often
allow the host to survive the cytokine storm longer, it is not likely it will survive long
term [8, 18, 23]. Model results for Group 4 show that there are six interactions that
are significant as well as two primarily enhancing two-way interactions with Groups
3 and 5. The three interactions that affect Group 4 are all enhancing, meaning that
the amount of Group 4 will likely increase as the storm continues. Biologically it is
known that IL-10 plays a role in the down regulation of both TNF-« (Group 2) and
IL-18 (Group 3) [18]. Referring to Fig.2, the model verifies that in fact Group 4
does inhibit Group 2, however Group 4 enhances Group 3. This could be due to the
grouping of cytokines, since Group 2 contains MIP-18 and IL-12 as well. On the
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contrary, in the wild-type case, Group 4 inhibits Group 3 while it enhances Group
2.

A well-studied cytokine that is known to be a key component of a cytokine storm
is IL-6, Group 5, which has both pro- and anti-inflammatory properties and is a
central cytokine used to assess cytokine responses in the host [23]. Figure 2 displays
the importance of this group with the eight interactions and two primarily enhancing
two-way paths. It is known biologically that the production of IL-6 is stimulated by
TNF-« and IL-18 [23]. Results from the model using wild-type data verify that
indeed both Groups 2 and 3 enhance Group 5, however the interaction between
Group 3 and 5 is relatively small. IFNAR-knockout results shown in Fig.2 imply
that Groups 2 and 3 inhibit Group 5 and that those interactions are significant. Again,
this can provide some insight into how a storm was able to occur.

Group 6, MIP-1a, is required for a typical inflammatory response to viruses [4].
It is a pro-inflammatory chemokine that inhibits proliferation of hematopoietic stem
cells in vitro and in vivo [4]. Model results for MIP-1a show that six interactions
are significant as well as a two-way interaction with Group 3. The three interactions
that affect MIP-1« are both inhibiting and enhancing whereas in the wild-type case
the interactions are purely enhancing, causing an increase in the amount of MIP- 1«
as the storm continues.

It has been noted that the fine balance of pro- and anti-inflammatory mechanisms
is critical in maintaining stability, and if these mechanisms become unbalanced,
the outcome may contribute to a cytokine storm [23]. Groups 1 and 4 are anti-
inflammatory cytokines, while the remainder act primarily as pro-inflammatory
cytokines. For wild-type populations, of the three most significant groups (2, 4, and
6), the anti-inflammatory cytokines are being inhibited, while the pro-inflammatory
cytokines are being enhanced. This balance in this system becomes lost in mice
lacking the IFNAR on their leukocytes, as shown in Fig.2. Instead of the anti-
inflammatory cytokines (Group 4) being inhibited, they are instead enhanced.
Immediately it becomes apparent that the fine balance that is typical of healthy
individuals has become unstable.

Future work including sensitivity analysis of cytokine groupings could provide
further information on the significance of the groupings and individual cytokines.
In conclusion, cytokines belonging to Groups 2, 4, 5 and 6, particularly TNF-«,
IL-10, IL-6 and MIP-18, have the largest effects on the dynamics of this particular
cytokine storm. Changes introduced into the system by knocking out IFNAR cause
key interactions to swap from enhancing to inhibiting and vice versa. It is possible
that reducing the alterations in the effects of Groups 2, 4, 5 and 6 could lead to the
reduction in severity and possibly even the entire storm.
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