Skip to main content

Anticipating Synchronization and State Predictor for Nonlinear Systems

  • Chapter
  • First Online:
Nonlinear Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 470))

Abstract

This chapter discusses a synchronization problem, anticipating synchronization, and its application in control design for nonlinear systems with delays. The anticipating synchronization phenomena was initially reported by Voss (2000), and Oguchi and Nijmeijer (2005) then generalized it from the framework of control theory. This chapter revisits the anticipating synchronization problem and introduces a state predictor based on synchronization. Furthermore, we discuss recent progress on predictor design for nonlinear systems with delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voss, H.U.: Anticipating chaotic synchronization. Phys. Rev. E 61, 5115–5119 (2000)

    Article  Google Scholar 

  2. Voss, H.U.: Real-time anticipation of chaotic states of an electronic circuit. Int. J. Bifurc. Chaos 12, 1619–1625 (2002)

    Article  Google Scholar 

  3. Masoller, C.: Anticipation in the synchronization of chaotic semiconductor laser with optical feedback. Phys. Rev. Lett. 86, 2782–2785 (2001)

    Article  Google Scholar 

  4. Sivaprakasam, S., et al.: Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. Phys. Rev. Lett. 87, 154101 (2001)

    Article  Google Scholar 

  5. Oguchi, T., Nijmeijer, H.: Prediction of chaotic behavior. IEEE Trans. Circuits Syst. I: Regular paper 52, 2464–2472 (2005)

    Article  MathSciNet  Google Scholar 

  6. Oguchi, T.: A finite spectrum assignment for retarded nonlinear systems and its solvability condition. Int. J. Control 80(6), 898–907 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Oguchi, T.: Finite spectrum assignment for nolinear time-delay systems. In: Malisoff, M., et al. (eds.) Recent Results on Nonlinear Delay Control Systems, pp. 291–310. Springer, Cham (2015)

    Google Scholar 

  8. Lakshmanan, M., Senthilkumar, D.V.: Dynamics of Nonlinear Time-Delay Systems. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  9. Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic, Berlin (1999)

    Book  MATH  Google Scholar 

  10. Huijberts, H., Nijmeijer, H., Oguchi, T.: Anticipating synchronization of chaotic Lur’e systems. Chaos: Interdiscip. J. Nonlinear Sci. 17, 013117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, S., Lam, J.: Improved delay-dependent stability results for time-delay systems. IEEE Trans. Autom. Control 50(3), 384–387 (2005)

    Article  MathSciNet  Google Scholar 

  12. Han, Q.-L.: New delay-dependent synchronization criteria for Lur’e systems using time delay feedback control. Phys. Lett. A 360, 563–569 (2007)

    Article  MATH  Google Scholar 

  13. Smith, O.J.: A controller to overcome dead time. ISA J. 6(2), 28–33 (1959)

    Google Scholar 

  14. Kravaris, C., Wright, R.A.: Deadtime compensation for nonlinear processes. AIChE J. 35(9), 1535–1542 (1989)

    Article  Google Scholar 

  15. Krstić, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkhäuser, Boston (2009)

    Book  MATH  Google Scholar 

  16. Nijmeijer, H., Mareels, I.M.Y.: An observer looks at synchronization. IEEE Trans. Circuits Syst. I(44), 882–890 (1997)

    Article  MathSciNet  Google Scholar 

  17. Nijmeijer, H., van der Schaft, A.: Nonlinear Dynamical Control Systems. Springer, Heidelberg (1990)

    Google Scholar 

  18. Isidori, A.: Nonlinear Control Systems -An Introduction. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  19. Cao, Y., Oguchi, T., Verhoeckx, P.B., Nijmeijer, H.: Predictor-based consensus control of a multi-agent system with time-delays. In: Proceedings of 2015 IEEE Conference on Control Application (CCA), pp. 113–118 (2015)

    Google Scholar 

  20. Hale, J.K., Verduin Lunel, S.M.: Introduction to Functional Differential Equations. Springer, Heidelberg (1993)

    Book  Google Scholar 

  21. Cruz-Hernández, C.: Synchronization of time-delay Chua’s oscillator with application to secure communication. Nonlinear Dyn. Syst. Theory 4, 1–13 (2004)

    MATH  Google Scholar 

  22. Marino, R., Tomei, P.: Nonlinear Control Design- Geometric, Adaptive and Robust. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Oguchi .

Editor information

Editors and Affiliations

Appendix: Stability of Systems with Uncertainties

Appendix: Stability of Systems with Uncertainties

We consider the following system with uncertainties and/or perturbation.

$$\begin{aligned} {\left\{ \begin{array}{ll} \dot{x}(t)=f(t,x_t)+g(t,x_t) , &{} \forall t\ge 0 \\ x_{t_0}=\phi (t) &{} \forall t\in [-\tau , 0], \end{array}\right. } \end{aligned}$$
(5.33)

where \(x \in {\mathbb R}^n\), \(x_t(\theta )=x(t+\theta )\) for \(\theta \in [-\tau ,0]\), \(\phi \in {\mathscr {C}}[-\tau ,0]\), and \(g(t,x_t)\) denotes the uncertainty and/or perturbation.

For a function \(\phi \in {\mathscr {C}}([a,b],{\mathbb R}^n)\), define the continuous norm \(\Vert \cdot \Vert _c\) by \(\Vert \phi \Vert _c:=\sup _{\theta \in [a, b]}\Vert \phi (\theta )\Vert \), where \(\Vert \cdot \Vert \) denotes the Euclidean norm of a vector.

Suppose now that the nominal system

$$\begin{aligned} \dot{x}(t)=f(t,x_t) \end{aligned}$$
(5.34)

has a delay-dependent asymptotically stable equilibrium point at the origin. Then the following theorem is well-known.

Theorem 5.3

([9]) Let there exist a continuous functional \(V(t,\phi ):{\mathbb R}\times {\mathscr {C}} [-\tau , 0] \rightarrow {\mathbb R}\) such that

$$ w_1(\Vert \phi (0)\Vert ) \le V(t,\phi ) \le w_2(\Vert \phi \Vert _c),$$

\(w_1(r)\rightarrow \infty \) as \(r\rightarrow \infty \) and \( \dot{V}(x_t)\le 0.\)

Let Z be the set of those elements from \({\mathscr {C}}[-\tau ,0]\) for which \(\dot{V}=0\) and Q is the largest invariant set situated in Z. Then all solutions of (5.34) tend to Q as \(t\rightarrow \infty \). In particular, if the set Q has the only zero element, then the trivial solution of (5.34) is asymptotically stable.

Here \(\dot{V}\) is the right derivative of V along the solutions of (5.34), i.e.,

$$ \dot{V}(x_t):=\lim _{h\rightarrow 0+}\sup \frac{1}{h}(V(x_{t+h})-V(x_t)).$$

To derive a sufficient condition for robust stability of perturbed systems, we use the following type of Lyapunov–Krasovskii functional throughout this section.

$$\begin{aligned} V(x_t)=V_0(x(t))+V_1(x_t), \end{aligned}$$
(5.35)

where \(V_0\) is a positive-definite function of x(t), and \(V_1(x_t)\) consists of the sum of the integrals of the functional \(x(t+\theta )\), such as

$$\begin{aligned} V_1(x_t):=&\int _{t-\tau }^t\bar{V}_1(x(\theta ))d\theta +\int _{-\tau }^0\int _{t+s}^t\bar{V}_2(x(\theta ))d\theta ds \\&+\cdots . \end{aligned}$$

Note that the derivative of \(V_1(x_t)\) with respect to time does not contain \(\dot{x}\).

Then we obtain the following result.

Theorem 5.4

Let \(x=0\) be a delay-dependent asymptotically stable equilibrium point of the nominal system (5.34). Let \(V(t,x_t):{\mathbb R}\times {\mathscr {C}}\rightarrow {\mathbb R}\) be a Lyapunov–Krasovskii functional (5.35) that satisfies the following conditions:

  1. (5.4a)

    \(\alpha _1\Vert \psi (0)\Vert ^2\le V(t,\psi )\le \alpha _2\Vert \psi \Vert _c^2\)

  2. (5.4b)

    the time derivative of V along the trajectories of the unperturbed system (5.34) satisfies \(\dot{V}_{(5.34)}(t,\psi )\le -\alpha _3\Vert \psi (0)\Vert ^2\)

where \(\dot{V}_{(5.34)}\) means the derivation of V along the solution of (5.34) and \(\psi \in Q_H:=\{\psi \in {\mathscr {C}}[-\tau , 0]:\Vert \psi \Vert _c<H\}\). In addition, suppose that

  1. (5.4c)

    \(\Bigl \Vert \frac{\partial V_0(x)}{\partial x}\Bigr \Vert \le \alpha _4\Vert x\Vert \)

  2. (5.4d)

    \(\Vert g(t,0)\Vert =0\)

  3. (5.4e)

    \(\Vert g(t,\psi )\Vert <\gamma \Vert \psi (0)\Vert \)

  4. (5.4f)

    \(\gamma <\frac{\alpha _3}{\alpha _4}\)

where \(\alpha _i\), \(i=1,\ldots ,4\) and \(\gamma \) are positive constants. Then, the origin is an asymptotically stable equilibrium point of the perturbed system (5.33). Moreover, if all the assumptions hold globally, then the origin is globally asymptotically stable.

Proof

From the condition (5.4d), \(x=0\) is also an equilibrium point of the perturbed system (5.33). The existence of V satisfying condition (5.4a) and (5.4b) guarantees that the zero solution of the unperturbed system (5.34) is asymptotically stable from the Lyapunov–Krasovskii theorem [9, 20]. The time derivative of V along the trajectories of (5.33) satisfies

$$\begin{aligned} \dot{V}(x_t)&\le -\alpha _3\Vert x(t)\Vert ^2+L_gV_0 \\&\le -\alpha _3\Vert x(t)\Vert ^2+\alpha _4\gamma \Vert x(t)\Vert ^2 \\&\le -(\alpha _3-\alpha _4\gamma )\Vert x(t)\Vert ^2. \end{aligned}$$

From the Lyapunov–Krasovskii theorem, if \(\gamma < \frac{\alpha _3}{\alpha _4}\), the zero solution of the system (5.33) is also asymptotically stable.

Example 5.1

We consider the following Chua’s circuit with time-delay [21].

$$\begin{aligned} \dot{x}=&\left[ \begin{matrix} -\alpha (1+b) &{} \alpha &{} 0 \\ 1 &{} -1 &{} 1 \\ 0 &{} -\beta &{} -\gamma \\ \end{matrix}\right] x+ \left[ \begin{matrix} -\alpha (a-b) \\ 0 \\ 0 \\ \end{matrix}\right] \varphi (x_1)+\left[ \begin{matrix} 0 \\ 0 \\ -\beta \\ \end{matrix}\right] \varepsilon \sin (\eta x_1(t-\tau )) \nonumber \\ :=&A_0x+B\varphi (x_1)+B_1\xi (x_1(t-\tau )) \\ y(t)=&\left[ \begin{matrix} 1 &{} 0 &{} 0 \\ \end{matrix}\right] x :=Cx, \nonumber \end{aligned}$$
(5.36)

where \(\varphi (x_1)=\frac{1}{2}(|x_1+1|-|x_1-1|)\) and \(\xi (x_1(t))=\sin (\eta x_1(t))\) with \(\alpha =10\), \(\beta =19.53\), \(\gamma =0.1636\), \(a=-1.4325\), \(b=-0.7831\), \(\eta =0.5\), \(\varepsilon =0.2\) and \(\tau =0.019\).

If we construct the following predictor,

$$ \varSigma _s: {\left\{ \begin{array}{ll} \dot{z}=A_{0}z+B\varphi (z_1)+B_1\xi (y) +K\{Cz(t-\tau )-y\} \\ z(t)=z_0, \ t\in [-2\tau ,0], \end{array}\right. } $$

then the dynamics of the prediction error \(e(t)=z(t-\tau )-x(t)\) is given by

$$\begin{aligned} \dot{e}&=A_{0}e+KCe(t-\tau )+B\{\varphi (e_1+x_1)-\varphi (x_1)\} \nonumber \\&\triangleq A_{0}e+KCe(t-\tau )+B\phi (x_1,e_1). \end{aligned}$$
(5.37)
Fig. 5.8
figure 8

Prediction Error (Theorem 5.4)

By choosing a Lyapunov–Krasovskii functional as

$$\begin{aligned} V(e_t)=&e(t)^TPe(t)+\int _{0}^{\tau }\int _{t-s}^t \phi ^TB^TRB\phi duds+\sum _{j=0}^1\int _{j\tau }^{(j+1)\tau }\int _{t-s}^te^T(u)Q_je(u)duds, \end{aligned}$$

and a coupling gain as \(K=\left[ \begin{matrix}-12.1, -2.25, 3.71 \\ \end{matrix}\right] ^T\), anticipating synchronization of the unperturbed systems can be accomplished. Now, we consider the effect of a perturbation on anticipating synchronization. We assume that \(A_0\) in both the master and slave systems contains uncertainties as follows.

$${A}_0=\left[ \begin{matrix} -\alpha (1+b)+\varDelta &{} \alpha &{} 0 \\ 1 &{} -1+\varDelta &{} 1 \\ 0 &{} -\beta &{} -\gamma +\varDelta \\ \end{matrix}\right] .$$

The prediction error dynamics is then obtained by

$$\begin{aligned} \dot{e}&:=A_{0}e+KCe(t-\tau )+B\phi (x_1,e_1)+g, \end{aligned}$$

where \(g=\varDelta Ie(t)\) In this case, if \(\varDelta \) is bounded, the perturbation satisfies the conditions (5.4d) and (5.4e). In addition, we can obtain the corresponding parameters of condition (5.4f) of Theorem 5.4 as follows: \(\gamma <0.0594\). Considering \(x(0)=[1, -2, 0]^T\), \(x(\theta )=0\) for \(\theta <0\) as the initial condition of the master system, \(z(\theta )=0\) for \(\theta <0\) as that of the slave system, and the perturbation \(\varDelta =0.05\), the behavior of the prediction error \(e(t)=z(t-\tau _1)-x(t)\) is depicted in Fig. 5.8. Since the prediction error converges to the origin, we know that the effect of the perturbation vanishes, and the slave system works effectively as a predictor of the master system.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oguchi, T. (2017). Anticipating Synchronization and State Predictor for Nonlinear Systems. In: van de Wouw, N., Lefeber, E., Lopez Arteaga, I. (eds) Nonlinear Systems. Lecture Notes in Control and Information Sciences, vol 470. Springer, Cham. https://doi.org/10.1007/978-3-319-30357-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30357-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30356-7

  • Online ISBN: 978-3-319-30357-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics