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Abstract. Anautomatic approach to model-based pose estimation is pre-
sented that only uses given, segmented contours in X-ray images. The pose
estimation based on Fourier Descriptors is extended to an arbitrary, cal-
ibrated stereo setup and eliminates the need for a manually given initial-
ization. To further refine the pose, local and global optimization schemes
that minimize the distance between the segmentation and the projected
object over the six pose parameters are compared. Experiments show that
a sampling-based optimization outperforms gradient-based methods and
the sampling can be further improved to fit the given imaging setup and
the object of interest. Simulated data shows that the pose can be estimated
nearly perfect in stereo setups and yields highly accurate results on single-
view setups. Clinical data supports these findings.
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1 Introduction

Inferring three-dimensional information from two-dimensional images is an
important part of bio-medical image analysis. Three-dimensional data is rarely
acquired in clinical routine due to higher costs, the additional time to gather and
process the data or simply because the imaging device is not available. Never-
theless, this particular information is often needed in image guided surgery and
preoperative planning [3] or the evaluation of three-dimensional movements like
implant migration [4] and knee kinematics [5].

Pose estimation is one part of the challenging task of relating two-dimensional
and three-dimensional data. Given a model of the object of interest and at least
one projection, the goal is to determine the pose of the model that best explains
the projections. Using rigid objects the pose consists of six parameters: the
location (three translations) and orientation (three rotations) of a known object.
In a bio-medical context bones or endoprostheses are usually of interest.

Many algorithms have been developed to assess the problem of pose estima-
tion in a clinical context [6]. Typically, these methods require a manual initializa-
tion to start a minimization process that aligns the segmented and the projected
contours [4,7]. Depending on the amount of data that has to be processed, this
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can be a time-consuming task, limiting the usability in clinical routine. Addition-
ally, stereo setups with orthogonal cameras are often used to ideally represent
the three-dimensional space. In a clinical environment this may be impracticable.
Monocular setups or smaller angles between the cameras have to be considered.

Automatic or semi-automatic pose estimation are commonly proposed for
fluoroscopic images [8]. Temporal relations are used to initialize the following
frame. However, a manually provided pose is still required to start the process
at the first frame or to guide it during certain key frames.

Another often neglected problem are projective characteristics of objects of
interest in a clinical context. Human long bones and many endoprostheses may
show little rotational variation about one axis and radiopaque objects like metal
implants can only be processed by their contour, further limiting usable features.

In our work we provide a fully automatic method for the pose estimation of
rigid objects from X-ray images in a monocular or stereo imaging setup. Given
the segmented contour of the object in the images an initial pose is computed
using Fourier Descriptors and a matching to a database of simulated projections.
The pose is further refined by minimizing the distance between the given segmen-
tation and the projection of the model over the pose parameters. We combine
local and global optimization schemes, such that properties of the imaging setup
and the object of interest are considered.

2 Methods

2.1 Fourier Descriptor

The Fourier Descriptor (FD) offers a representation of a two-dimensional shape
that is invariant to translation, scale and rotation if properly normalized. It
allows to easily compare similar objects and is mostly used for shape discrimi-
nation and retrieval [9]. The FD uses the discrete Fourier transform to convert
a two-dimensional closed contour into the one-dimensional frequency domain
(Fig. 1).

The boundary of the object is sampled by N = 2™ equidistant points (2, y,)
given in the complex plane:

Cn =Tp + JjYn,n=0,...,N—1. (1)

The Fourier transform of this closed contour is given by

= 2mkn
C’k:chexp<—jN),k:O,...,N—l. (2)
n=0

Properties of the transform are exploited to normalize the coefficients Cj. Trans-
lations of the contour in the image plane only have an effect on the coefficient
Cy. Setting

Co=0 (3)
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(a) X-ray image (b) Sampled contour (c) Fourier Descriptor

Fig. 1. X-ray image of a total hip implant (a), sampled contour (b) and its normalize
Fourier Descriptor (c). Displayed are magnitude |S,| and phase angle arg(S,) of the
FD computed with 128 equidistant points.

centers the contour and normalizes for translational differences. The size of the
object affects the magnitude of the coefficients Cj. Ensuring that |C;| = 1 holds,
normalizes for the scale of the shape. Rotational differences and the respective
starting point of the contour affect the phase of the coefficients Cj. Thus, the
normalized FD are given by

é — |g_k| exp (jarg(Cl) +2arg(CN—1)) exp (J.karg(Cl) —;rg(CN—1)> @
1

where arg(z) denotes the phase of the complex number z. Rotations are normal-
ized by the main ellipse of the shape, the starting point is shifted to ensure that
arg(Cy) = arg(Cn_1) = 0 always holds. However, a rotation of the ellipse about
47 remains indeterminable and thus, a second normalization

Cr = Croexp (jm(k — 1)) (5)

has to be considered.

2.2 Pose Estimation with Fourier Descriptors

The properties of the Fourier Descriptor enable a relatively fast and intuitive
approach to estimate the pose without the need for a manual initialization. We
follow the work of Banks et al. [1] and extend it to an arbitrary, calibrated
imaging setup.

By using the normalized FD to describe a projection of an object, the six-
dimensional pose space can be reduced to two rotational parameters. Transla-
tions in the three-dimensional space are covered by the invariance of the descriptor
to scale and translation in the image plane. The rotational invariance limits the
distinguishable three-dimensional rotations. By sampling over the remaining two
rotations the whole pose space can be covered. In the following we briefly explain
our pose estimation procedure.
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A database of views of the object over two rotations is built. Visually speak-
ing, we obtain all possible FD of the projected object by viewing the object
from positions lying on a sphere with the object located at the center. Missing
parameters of the pose are inferred by the normalization factors, the known pose
in the database and the geometric properties of the imaging setup after finding
the best matching view in the database.

The database is built by simulating the imaging process with a known three-
dimensional model of the object of interest. With a simulated camera at the
z-axis the object centered on the same axis is first rotated around the z-axis
by an angle w, € [—7/2,7/2], followed by a rotation around the y-axis by an
angle w, € [—m,7] (see Fig.2). To each pair of angles (w;,w,) the normalized
FD C(ws,w,) and the normalization factors are stored.

Y4 Image Plane

Camera x
(X-ray tube)

Fig. 2. Simulation setup to build the database of model views.

The pose estimation is carried out using a single view of the object in a
calibrated setup, e.g. we know the projection matrix P that projects three-
dimensional points into the image plane. In particular, the focal length f (dis-
tance from the x-ray tube to the X-ray cassette), the camera center (location
of the focus of the x-ray tube), the pixel size (sz,s,) of the detector and the
principal point (pg,p,) are needed. Intrinsic camera parameters of the simu-
lated and the real imaging setup do not need to coincide, but should be roughly
comparable.

After segmenting the object of interest in the image the normalized Fourier
Descriptors Cinput apd Cminput gre computed. For the sake of simplicity, we only
refer to Cmput, However, it should be noted that both possible normalizations
have to be considered. In order to find the most similar FD of our database to
C’i”p“t, we search for the closes FD in terms of the Euclidian distance:

N—-1

cd = arg min Z

(wa,wy) =2

Cilwnsiay) — G

(6)

)
The in-plane rotation, i.e. the rotation about the z-axis, is estimated by

_arg(C"") +arg(CRPY)  arg(CFF) + arg(CR,)

ws = 2 2 ) (7)
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the difference in the rotations used for normalization. The angle has to be
adjusted by 7 if the second normalization C™ was used for the input contour.
With the intercept theorem the distance of the object from the camera center,
i.e. the translation in direction of the z-axis, is given by

|Cdb| fznput b
te = <|Cznput| f'db -1 dZ : (8)

The formula uses the scale factor as magnification factor in the projection and
the distance d2° of the object to the camera center in the database setup. Figure 3
shows the geometric explanation of (8).

Image Planes
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Fig. 3. Geometric explanation of depth estimation using FD. Simulated and real cam-
era are aligned and the depth is related to the apparent size of the object in the image
planes.

The remaining parameters are estimated in a similar fashion using the in-
plane rotation and the different magnification factors. Translational parameters
can be estimated by

ty 1 d(Zib |Oldb| xinput l,db
(ty> = N fb (Wmtl <yinput> - R(w.) <ydb> ) 9)

(xinput)> sinput (Re(C’é”p “h — pé”p“t)
input = . i t .

Yy S:zgnput (Im(cénpu ) _ p;nput)
relates the perceived translation in the image plane to the scale of the camera
coordinate system. The database entry is adjusted analogously. Lastly,

db input nput
W\ _ (Yo} po_ arctan (ziPut / fine
(wy> B (ng> (=) (arctan (yinput ) finput (11)
uses the inclination to define the left rotational parameters. In a final step,

the object has to be transformed to the world coordinate system by using the
extrinsic parameters of the real camera setup.

where

(10)
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2.3 Pose Estimation Using Contour Distance

The Fourier Descriptors allow for an approximate estimation of the object pose
dependent on pose space coverage. A more exact pose can be derived by directly
minimizing the distance between the segmented contour ¢**Y in the image and
the projection of the object cP™7. For each point on the segmented contour the
closest point on the projected contour is identified and the sum the distances is
minimized over the pose of the object:

) 1 n ) 2
Blw,t) = d (9, (w,1)) = =3 min ¢} — " (1) - minl. (12)
i=1

In a stereo setup the energy for both views is simply added.

A standard procedure in pose estimation is the Iterative Closest Points (ICP)
algorithm that estimates the optimal transformation between two point clouds.
A variant directly relates the two-dimensional points of the contour to the three-
dimensional model to infer the pose [11]. ICP solves the problem in (12) indirectly
by minimizing the distance between the correspondences in each step.

In general, the ICP method is fast and fairly robust. However, the solution
is a local minimum and depends on the starting point. Especially objects with
low rotational variance suffer from an energy function with many broad, local
minima. Unfortunately, those objects are common in the bio-medical context.
Long bones or many implants fall in this category and often lack the desired
accuracy in the estimated pose.

Other methods solve (12) by directly optimizing over the six pose parameters

. . . . . T
in an iterative manner. Given a starting pose (w(®,¢(?))" € RS we search for a

series of updates
WD) w® VAP AN
(t(iJrl)):(t(i))_‘_(At)’ZZo (13)

that gradually minimizes the energy (12). Non-linear optimization schemes are
either derivative-free like the Nelder-Mead method or use the (approximated)
gradient to define a descending direction like Sequential Quadratic Programming
[10]. Again, these methods guarantee only a local minimum.

Global optimization schemes like Simulated Annealing [2] often incorporate
a stochastic component and the search direction is found randomly to further
explore the function.

2.4 A Combined Approach

Finally, we aim to combine the approaches introduced above. Fourier Descriptors
and a database matching are used to estimate an initial pose which is further
refined by minimizing the contour distance. Firstly, we extend the descriptor-
based pose estimation to a stereo setup. Afterwards, we briefly explain the addi-
tional refinement steps.

In the single-view setup the segmented contour is compared to each database
entry and the best matching entry is used to estimate the pose as described in
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Sect. 2.2. For a stereo setup the known geometry of the imaging setup can be
incorporated to solve for ambiguities in the database matching. The two contours
are matched to pairs that are feasible, i.e. the views in the database differ in the
same angle as the cameras. One pose is estimated for each view and the poses
are combined to preserve reliable pose parameters.

Without loss of generality, we assume both cameras lie in the xz-plane with
one camera centered on the z-axis and the second camera rotated by an angle «
around the y-axis. For the first camera the z- and y-coordinates are related to
in-plane pose parameters. Translations along these axes and a rotation around
the z-axis induce high changes in the image and these parameters are typically
estimated more accurate. The z-coordinate on the other hand corresponds to
depth information and often lacks precision.

Given two different sets of points X' = {(z},yf,2)", i=1,...,n} and
X2 ={(a?,92,22)T, i =1,...,n} that describe the model in the estimated pose
for each camera, we compute a mixed model

m(a@} + | cos a|z?)
X = st +y2) yi=1,...,np . (14)
1+] Closa| (| COSO{‘Z} + Zz2)
For an angle of @ = 90° between the cameras the depth information of each
camera is mainly ignored. Smaller camera angles require the usage of more depth
information.

The computed model is topologically not identical to the original model.
Either the first or the second model has to be rigidly transformed to match the
model X,,,. This yields the initial pose in the stereo setup as shown in Fig. 4. The
initial pose is estimated using mostly two-dimensional information. To account
for possible errors we use this pose to start an ICP-based pose estimation, relat-
ing three-dimensional model points to the two-dimensional contours from all
available cameras.

Finally, the contour distance is minimized directly over the six pose para-
meters. We use a sampling-based optimization scheme and incorporate a priori
information about the object and the imaging setup to guide the minimization
process. The initial pose estimation yields errors that are, in general, not equally
distributed among the pose parameters. Out-of-plane parameters are prone to
errors and reflection planes or axes of symmetry induce further difficulties. To
improve the sampling we estimate the errors that are typically induced in the
initial pose estimation step. Random poses are generated in the simulation setup
and pose estimation is performed using Fourier Descriptors. The measured errors
in rotation and translation indicate suitable search directions, i.e. mean and stan-
dard deviation for the sampling step in the Simulated Annealing. Since those
errors mostly depend on the angle between the cameras and the shape character-
istics of the model the trained sampling parameters transfer well to comparable
real setups.
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view view 1

(a) Separate pose estimation (b) Combined pose

Fig. 4. Pose estimation using fourier descriptors in a stereo setup. Examples are shown
for an individual (a) and combined estimation (b), with estimated models and their
projections in green or red and the ground truth in blue (Color figure online).

3 Experiments and Results

We test our method on both simulated and real clinical data with a comparable
X-ray setup.

3.1 Simulated Data

The simulations are carried out to demonstrate the ability of our method to auto-
matically estimate the pose of the femoral part of a hip implant and the distal
part of the femur. The used surface model of the implant is a three-dimensional
scan of a short-stem total hip replacement manufactured by Aesculap, Germany.
The model of the femur was reconstructed from a computed tomography. Figure 5
shows that both objects offer a relatively low amount of rotational variance around
one axis and the estimation of an accurate pose is typically challenging even if a
user generated input is given to guide the process.

Pose estimation of these models is an integral part of the Model-based Roent-
gen Stereophotogrammetric Analysis [4]. The simulated imaging setup resembles
a real clinical setup in this context. We assume the projective model of a pinhole
camera to approximate a radiography and generate contours. A focal length of
1200mm, an average distance of the object to the camera center of 1000mm and
an image resolution of 0.2 mm per pixel are used as standard imaging setup. We
generate 200 random poses of the implant and the femur for evaluation. Rota-
tions are drawn from an uniform distribution without further limitations to fully
explore the capabilities of the method, translations are limited to a maximum
of 100 mm. Additionally, we added a 5% noise to the parameters of the base
imaging setup for each generated pose.

Initial pose estimation was carried out with Fourier Descriptors computed
with a database generated in the standard imaging setup. In a refinement step
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(b) Distal Femur

(a) Hip implant

Fig. 5. Models used for experiments on simulated data and selected projections.
The depicted contours are generated by rotating each model by an angle a €
{-30°,-10°,10°,30°} to visualize the low rotational variance.

the energy (12) is minimized with Sequential Quadratic Programming (SQP) as
described in [4], a state of the art approach in model-based implant migration
analysis. Furthermore, we show the results of the Nelder-Mead method (NM) and
two sampling-based optimization schemes: Simulated Annealing with equally dis-
tributed search directions (SA) and empirically estimated distributions (SA*?)
as explained above. Results are listed in Table1 showing the rotational errors
(angle of rotation about one axis) and translational errors (Euclidean distance
between object center).

Table 1. Mean and standard deviation of rotational and translational errors using
simulated data (200 random poses) of the hip implant and the distal femur using
different pose estimation methods.

' FD sQp NM SA SA®s

Stereo setup, angle between cameras: 90°

Rerr (deg)

3.87 £ 2.62

1.28 £1.38

0.78 £1.13

0.22 £0.68

0.01 £ 0,01

terr (Mmm)

1.28 £ 0.85

0.38 £0.39

0.09£0.15

0.02 £0.06

0.01 £0.05

Stereo setup, angle between cameras: 30°

Rerr (deg)

4.83+6.91

2.15+£3.76

1.58 £2.79

0.41 +2.41

0.04 £0.22

terr (Mm)

5.58 £6.88

2.33+£2.44

0.53 £1.66

0.30 £0.87

0.02£0.05

Monocular Setup

Rerr (deg)

6.35 £ 4.86

3.94 £ 3.49

2.61 +2.54

2.05 +2.43

0.49 £1.04

terr (mm)

10.1+11.3

6.06 £+ 8.26

3.73+4.19

2.78 £ 3.87

0.84+0.43

We sampled the views in the database at approximately 5° which corresponds
to the computed error using Fourier Descriptors. Translational errors in the
initial pose estimation are highly dependent on the imaging setup and show
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that the FD lack precision in the depth estimation. Subsequent refinement steps
are capable of eliminating most of the error in the pose in a stereo setup, so the
FD typically generate a reasonable starting pose.

The SQP approach yields results that are in the scope of the accuracy
reported in the literature for stereo setups even without a manually initialization
of the pose. Derivative-free optimization schemes outperform the gradient-based
SQP in our test. Sampling-based optimization is the method of choice if a highly
accurate pose is needed. Simulated Annealing shows the best results with nearly
perfectly estimated poses in a stereo setup and acceptable poses in a monocular
setup. Limiting the search direction by estimating possible errors does not only
further improves the accuracy, but the minimum is typically found faster as well.
However, computation time remains a disadvantage of these methods.

3.2 Clinical Data

In a second step we evaluate our method on 40 clinically acquired images. The
used X-ray stereo images are from a short-stem total hip replacement study.
The X-ray tubes are placed with an angle of approximately 40°. Every image is
calibrated with the help of a calibration box. In the evaluation we focus on the
pose estimation of the femur implant.

A few difficulties have to be addressed: the implant varies in size and the neck
of the implant is often occluded by the hip socket. We ignore the neck part of
the implant model and build a separate database for each size to apply the pose
estimation via Fourier Descriptors. The implant contour is segmented by simple
thresholding and automatically adjusted accordingly by analyzing the curvature
along the contour. A sample of a segmented contour is displayed in Fig. 6a.

(a) Hip implant (b) SQP (3.3224) (c) NM (1.2581) (d) SA®** (1.0479)

Fig. 6. Effect of different energy minima on the computed pose. A sample image with
the used segmented contour is shown in (a). Red rectangles show areas of interest,
depicted in (b)—(d) with comparisons between segmented (blue) and projected (green)
contours. The provided values show the energy (12) (Color figure online)
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Unfortunately, no ground truth is known for the pose estimation of the
implant in this study. We provide the found minimal energy (12) to compare
different approaches and assume that errors in the pose and final energy are
dependent as Fig. 6 suggests. However, the relation is highly non-linear. Even
small improvements on the energy function may induce qualitatively better poses
if out-of-plane parameters are optimized. The poses estimated by NM and SA¢5?
differ in about 2° and 9° compared to the SQP pose, but the energy of both
poses is similar.

On average, we achieved a minimal energy of 3.164+0.94 using SQP, 1.29+0.37
using NM, 1.22 4+ 0.35 using SA and 1.14 4 0.34 using our proposed, adapted
Simulated Annealing SA®*t. Similar to the finding on the simulated data, the
Nelder-Mead method and Simulated Annealing are superior to the SQP method
typically used to solve this problem. On average, SA yields a minimal energy
10 % lower than NM. Although the improvement seems small, the mean of the
pose differences are about 3° in rotation and 0.8 mm in translation. Main differ-
ences are rotations about the longitudinal axis and translations in out-of-plane
direction. As Fig. 6 indicates the resulting poses of the SA typically show a qual-
itatively better agreement with the segmented contour.

4 Conclusion

We presented an automatic approach to model-based pose estimation in a clinical
setup that utilizes X-ray images. No user-provided initial pose is needed. Given
the contour of the object in one image the starting pose can be estimated by
using Fourier Descriptors and a database of predefined, simulated views of the
object.

The pose estimation process was extended to an arbitrary, calibrated imaging
setup, so simulations to generate the database and the real setup do not have
to share the same projective parameters. Monocular pose estimation is possi-
ble, however, if a second view of the object is provided the estimated poses can
be combined using their known relation to greatly increase the quality of the
estimation. In our simulated experiments sampling-based methods clearly out-
performed the state of the art method used to assess implant migration. The
space of probable search directions can be effectively limited by generating test
samples and the optimization generally provides better results especially in a
monocular test setup.

Experiments on clinical data further support the findings on simulated data.
On general, the Simulated Annealing generates poses with lowest energy that
agrees best with the segmented contour. The computational overhead justifies
the higher accuracy.

The initial pose estimation presented in this paper requires that the object is
fully visible in the image. Occlusions can only be handled by reducing the object
to a common part displayed in all data as shown in the clinical experiments.
Therefore, our proposed method is particularly suited for the pose estimation of
radiopaque implants with clearly visible boundaries. Additional experiments are
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needed to further evaluate the applicability to pose estimation of bones, a more
challenging task since the image contour is more prone to segmentation errors
due to a lower contrast to its surrounding. Effects of these errors on the pose
estimation process need to be investigated and incorporated accordingly.

Acknowledgments. We would like to thank the Laboratory for Biomechanics and
Biomaterials, Dept. of Orthopaedics, Hannover Medical School for providing the models
and the clinical data used in the evaluation.
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