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Abstract. Machine vision is now being extensively used for defect detec-
tion in the manufacturing process of collagen-based products such as
sausage skins. At present the industry standard is to use a LabView soft-
ware environment to manage and detect any defects in the collagen skins.
Available data corroborates that this method allows for false positives
to appear in the results which is responsible for reducing the overall sys-
tem performance and resulting wastage of resources. Hence novel criteria
were added to enhance the current techniques. The proposed improve-
ments aim to achieve a higher accuracy and flexibility in detecting both
true and false positives by utilizing a function that probes for the color
deviation and fluctuation in the collagen skins. After implementation of
the method in a well-known Australian company, investigational results
demonstrate an average 26 % increase in the ability to detect false posi-
tives with a corresponding substantial reduction in operating cost.
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1 Introduction

Machine Vision is a technology used to replace the manual inspection of goods
used in a wide area of manufacturing which has already become an increas-
ingly important service. This technology is used in a variety of industries to
automate production, increase production yield with greater efficiency, defect
detection whilst improving product quality. Although the approach taken by
each industry varies depending on the individual products, there are three main
approaches for automatic visual inspection (AVI) and defect detection: mod-
elling or referential, inspection or non-referential, and hybrid [7]. The inspection
of printed circuit boards (PCBs) [3,4], the defect detection of tiles [5] often use
referential and hybrid approaches [1,16]. On the other hand, in agriculture, the
common approach for defect detection is by utilizing non-referential approaches
[14]. This is mainly because problems arise in analyzing natural objects such
as fruits because they have a wide variety of colours and textures [2]. Fruits
belonging to the same commercial batch may have different colours depending
on the stage of maturity.
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Fig. 1. (a) Sausages, (b) collagen casing folds, and (c) an image of a flattened col-
lagen casing (taken from bbghg.net, diytrade.com, and an Australian manufacturing
company respectively)

Figure 1 shows sausages and their casings. Casings might have some defects
such as creases or folds, black spec, etc. In an automated sausage manufacturing
company, a collagen casing needs to be inflated and checked for defect before
inserting materials into it. An Australian collagen casing manufacturing com-
pany uses a LabView AVI system [15] for accepting or rejecting casings to ensure
quality by scanning the casings images. Major causes of the rejected images are
due to the existence of creases or folds, black spots, and presence of hairs etc.
However, manual inspections afterwards point out the limitations of the Lab-
view program. It is noticed that a number of images are accepted although they
should have been rejected and vice versa costing the company thousands of dol-
lars in wasted resources. Our target is to reduce the false rejection rate thereby
improving the overall defect detection. In order to achieve this goal an innov-
ative non-referential image processing technique is proposed and implemented
through real life experiments to improve the overall defect detection accuracy
which is presented in this paper.

We utilize a modified method from PCB inspection [1] to include novel cri-
teria for the defect detection of collagen sausage skins. The method works by
locating abnormality in pixel intensity within a sausage image. Here a small
abnormality is intensified so that by employing a predefined threshold our pro-
posed method is able to detect it. This solution employs a local merit function
to quantify the cost of a pixel that is defective [1]. The function comprises of
two components: intensity deviation and intensity fluctuation. It is envisaged
to increase accuracy by recognizing creases in the sausage skins created in the
inspection process, as a non-defect as well as continuing to recognize black-specs
as defects. Experimental results confirm that this approach of intensity deviation
and intensity fluctuation improves the defect detection rates of collagen-based
sausage skins significantly.

The remainder of this paper is structured as follows. Section2 provides a
brief description of how the defects are defined and inspection process of the
collagen based products. Section 3 describes the proposed non-referential model
for improving the detection process. In Sect. 4 experimental results and analysis
are detailed. Finally Sect. 5 presents conclusions and directions for future work.
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2 Collagen Skins

2.1 Definition and Features of Defects

During the manufacture of collagen-based sausage skins the most common defect
is called black spec. These black specs are the remnants of hairs left over from the
separation of the animal hide and the collagen film used for creating the sausage
skins. All black specs larger than 1 mm are then picked up by the machine vision
system and disregarded as defects in the system (Fig.2).

®

Fig. 2. Black spec defect larger than 1 mm in length.

2.2 The Inspection Process in the Existing LabView
Defect Detection

Defect detection in the manufacture of collagen sausage skins requires light to
be emitted through the bottom of the skin to shine through and illuminate any
defects. This illumination technique is known as Transmission (Fig. 3). Here the
rolled skins are inflated, flattened, and rolled over the top of a light source. The
camera then inspects each region of interest (ROI) and relays the images to the
computer system where currently LabView is employed to detect defect. The
different steps of the method used by LabView to detect defects are as follows:

e Create a ROI: Using a set-algorithm that finds the edges (Edge Clamps) of
the image, LabView determines the edge of the ROI.

e Black Spec Threshold value is determined to differentiate the background
noise and the image.

e A LabView Particle Analysis Algorithm is used to determine the size and
quantity of black specs.

e Depending on the user determined maximum size of the black spec, the image
is then determined to be defective or not.

It can be seen in Fig. 3 that LabView allows the user to place each module
in order to achieve the desired defect detection. It also demonstrates the lack of
flexibility to manipulate the specific algorithms to customize details. The user
can only drag and drop specific modules and add certain parameters for the
operation. An issue created from this process occurs when the collagen skin
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Fig. 3. (left)A transmission lighting system and (right) a schematic of LabView defect
detection.

Fig. 4. A sample of sausage skin folding rejected by the LabView system, however
manual inspection identified it as accepted, thus it a false positive case.

creases as it is flattened and rolled through the vision inspection system. These
folds are currently being wrongly picked up by the system as a defect and rejected
(Fig.4). This is a costly part of the manufacturing process and can be time
consuming and expensive for manufacturers to overcome.

3 Proposed Non-referential Model

The proposed model is based on a localized defects image model (LDIM) [1],
which uses a local merit function to quantify the cost that a pixel is defective. It
utilizes two components that look at the intensity deviation and intensity fluctu-
ation within the image. Taking into account of the fact that serious defects occur
less often than slight defects, the paper states that further a defect’s intensity
deviates from the dominant background intensity, the less and less often it is
liable to occur. The complete model is expressed as follows:

C(x,y) = Wa x D*(z,y) + Wy x F*(z,y) (1)

where the intensity deviation function is D(x,y) = V(x,y) — H;,, and the intensity
fluctuation function is F(z,y) = o(N(x,y)) — 4. Here -

e C(x,y) is a merit function which represents the cost that a particular pixel is
defective. It is the weighted summation of intensity deviation and fluctuation.
e W, and W are weights of D(x,y) and F(x,y) respectively. Both these weights

are determined during the experiments which are % as suggested in [1].
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e Dominant intensity of regional image H, , can be described by the most fre-
quent intensity of the neighbouring pixels for the position at (x, y). Thus
intensity deviation D(x,y) can be expressed as the absolute difference between
pixel value of source image V(x,y) and the dominant intensity H, .

e Thus, intensity deviation D(x,y) at pixel (x,y) can be expressed as the absolute
difference between pixel value of source image and dominant intensity.

e Evaluation of intensity fluctuation F(x,y) at (x,y) is based on the neighbor-
hood pixels whereby the value of a pixel and its neighborhood can deviate from
the main background intensity. Neighborhood pixels N(x,y) represents (2k+1)
pixel at position (x,y). Next standard deviation is applied to the N(x,y) to
get the value of total fluctuation o(N(z,y)).

e The difference between the intensity deviation, fluctuation and dominant
intensity is the localized level: D(x,y) is at the pixel level, F(x,y) is at (2k+1)
(2k+1) levels, while H, ,, is at regional level [1]. k represents the pixel window
size and its value is set as 5 pixels in our experiments as it was observed that
this values provides optimum results.

Pseudo code for the proposed model

Begin image input
Initiate parameters
For all images
For all pixel positions at (x,y)
Calculate D(x,y) and F(x,y)
Calculate model C(x,y)
End
End
Calculate cost function above threshold
Reject or accept image
End.

4 Experimental Results

The following results are garnered from three groups of test images sourced from
a well-known Australian company. The company is a leading supplier of collagen
casings for food, creating a range of sausage skins and other meat products.
All images procured are from the production of sausage skins and are highly
representable of the manufacturing facility. Each image is captured at 2046 x800
pixels at 72 dpi grayscale. Three groups of 50 images each were provided to
us. After a manual inspection by the company of group 1s 50 test images, 34
and 16 were declared as defective and non-defective respectively. For group 2
the number of imperfect and perfect images was 30 and 20 respectively. The
companys physical inspections have declared 42 and 8 images as faulty and non-
faulty respectively in group 3. In order to validate the proposed non-referential
model, at first a threshold value of 900 pixels was chosen as this represents
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the number of pixels greater than the merit function threshold. Also included
in our experiments where differing results are achieved through using different
threshold pixel values (e.g. 500 and 2500 pixels). It is believed that images of
different groups are captured in different times and for different setup of LabView
machine and different initial materials, thus the thresholds are varied.

4.1 Measurement of Results

To analyse the performance the results were split into the following three cate-
gories of classification: Specificity, Sensitivity and Accuracy. Specificity measures
the proportion of negatives, which are correctly identified as such. Sensitivity cal-
culates the proportion of actual positives, which are correctly identified as such.
Accuracy is defined by the overall accuracy from the specificity and sensitivity.

Specificity = (TN/(TN + FP)) x 100% (2)
Sensitivity = (TP/(TP + FN)) x 100 % (3)
Accuracy = (TP +TN)/(TP+TN + FP+ FN)) x 100% (4)

where, TN: True Negatives, TP: True Positives, FN: False Negatives, FP: False
Positives.

Figures 5, 6, 8, and 10 in the next pages show graphs of the merit functions
and the images that are representative for respective groups samples. Different
cases are presented and compared with the LabView results to demonstrate
our solutions supremacy. It can be seen from Table 1 that our algorithm has
a significantly higher specificity. This demonstrates that it is able to correctly
identify false positives. The overall accuracy reaches to 98 % for this batch of
images.

Figure 5 shows that our algorithm works well to locate and identify the defect.
The graph indicates a clear spike in the cost function, indicating a defect. Both
LabView and our algorithm rejected this image correctly.

Fig. 5. An analysis of a defect image rejected by LabView, manual inspection, and also
our solution. (left) Merit function values, (right) Actual image.
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Table 1. Results of group 1. This table represents the LabView results, our solution,
and the actual confirmed defects vs. false positives in the batch.

LabView | Our results | Actual
Accept 3 14 -
Reject 47 36 -
TP 34 34 34
TN 3 16 16
FP 13 1 -
FN 0 0 -
Specificity % | 18.75 94.12 -
Sensitivity % | 100 100 -
Accuracy% | T4 98 -

Fig. 6. Results of group 1. Showing a false positive defect. This image was found
defective by LabView but shown correctly by our solution as non-defective.(left) Merit
function values, (right) Actual image

Figure 6 shows a false positive case where the image has a typical creasing
effect from the inspection process. The proposed algorithm worked as planned
by indicating this image was a non-defect, whereas this image was rejected by
the LabView environment.

4.2 Threshold Values for Group 1 Images

Two thresholds (Thl and Th2) were utilized to identify whether a particular
image would be accepted or rejected. If the value of the merit function C(x,y) of
a pixel position (x, y) is higher than the threshold Thl, that pixel is marked as
defected. If the numbers of defect pixels are higher than the threshold Th2, the
image is identified as defected. For an image I, the Thl is set as follows based
on the difference between the maximum and minimum pixel intensities and the
standard deviation (o) of the image:

1
Thl = ﬁ(a2 + 3?) (5)
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where a = max(I) — min(I) and § = a(I) — 4. Thl was kept constant for all
groups of images; however Th2 was varied based on the characteristics of the
different groups images. The values in Fig. 7 show the different results obtained
from changing the threshold (i.e., Th2) values in group 1. It is observed that
by increasing the threshold to 2500 pixels the accuracy lowers to 83 % from the
default 900 pixels threshold, which scored 98 %, whilst lowering our threshold
from the standard 900 pixels to 500 pixels, the accuracy lowers to 87.2 %.
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Fig. 7. Different accuracy levels at different threshold values for group 1 images.

Figure8 presents an image which has small dark patches as well as a dark
spec making the defect detection harder. The algorithm accepted this image as
non-defect incorrectly. It is believed that the darkness of skin has allowed for a
higher merit function value which is above the 900 pixels threshold. Thus, it is
required to adjust our threshold for this kind of images so that they are accepted
in our solution.

Fig. 8. Results of group 2 where it shows a defective image with black spec and creases
that was incorrectly identified as a non-defective image. (left) Merit function values,
(right) Actual image.

From Table 2 it is observed that the LabView solution rejected all images in
this batch resulting in our algorithm having a significantly higher specificity and
sensitivity, increasing our overall accuracy to 86 % for this batch of images.
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Table 2. Results of group 2. This table represents the LabView results, our solution,
and the actual confirmed defects vs. false positives in the batch.

LabView | Our Results | Actual
Accept 0 21 -
Reject 50 29 -
TP 30 26 30
TN 0 17 20
FP 20 3 -
FN 0 4 -
Specificity % | 0 85 -
Sensitivity % | 60 86 -
Accuracy % | 60 86 -

4.3 Different Threshold Values for Group 2 and 3 Images

The values in Fig. 9 show the different results retrieved from changing the thresh-
old values in group 2. It can be seen that by increasing the threshold to 2500
pixels the accuracy increases to 89.5% from the default 900 pixels threshold
which scored 86 %. Whilst lowering the threshold from the standard 900 pixels
to 500 pixels, the accuracy decreases to 78 %. It is believed that due to Lab-
Views different parameter settings, a larger threshold is required for this group
of images to improve the accuracy.
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Fig. 9. Different accuracy levels at different threshold values for group 2 images.

Table 3 establishes that the LabView solution rejected all images in this batch
whilst our algorithm recognized all 8 false positives and 8 true negatives. This
resulted in an overall accuracy of 84 %.

Figure 10 shows an image which is correctly accepted by the LabView envi-
ronment but rejected by our solution, the most probable reason being that back-
ground intensity fluctuation was not high enough to breach our threshold level.
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Fig. 10. The merit function and the corresponding image with creases which is a non-
defective image however, it is rejected by our solution. (left) Merit function values,
(right) Actual image.
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Fig. 11. Different accuracy levels at different threshold values for group 3 images.

The values in Fig. 11 show the different results retrieved from changing the
threshold values in Group 3. It is observed that by increasing the threshold to
2500 pixels the accuracy increases to 90 % from the default 900 pixels threshold
which scored 84 %, whilst lowering the threshold from the standard 900 pixels
to 500 pixels the accuracy decreases to 74 %.

In a nutshell, when the pixels threshold was lowered to 500 it yielded lower
results consistently, as well as raising the threshold count to 2500 pixels had
favourable results for two of the tests (groups 2 and 3). After comparing all
the experimental results it can be surmised that although in some cases 2500
pixels threshold improves accuracy, in all cases a threshold of 900 pixels performs
reasonably good.

5 Conclusions

The experimental results show that the current industry standard LabView envi-
ronment tends to be less specific in its defect detection rates and would simply
reject any product with a fold characteristic. This allows for a greater number
of false positive results occurring during the inspection stage of manufacturing.
On the contrary the proposed and implemented non-referential model achieves
a significant increase in specificity, allowing for a higher proportion of negatives
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to be correctly identified. The results demonstrate that whilst our solution doesnt
fix the problem completely, it improves the overall accuracy of defect detection
significantly. It is estimated that a general improvement of approximately 26 %
can save for the Australian Food processing company, an average of AUD 260
per day from the current AUD 1000 per day it costs for the wasted time and
product involved in false defect detection in a single batch of processing. With
factors such as moisture and humidity in the factory environment it is found
that settings on the machine are manually adjusted to compensate. Thus, the
algorithm threshold would need to be adjusting to suite. It is also noted that
differences between results can vary depending on many factors such as:

e Darkness of the skin
e Crease length and amount of creases present in the skin
e Moisture in the collagen skin

Other characteristics for which our solution has detection difficulties include:

e Black spec could be located within the fold or creases of the skin. Depending
on the density and amount of folds this defect has the ability to go undetected.

e Black spec could be located within the same frame as a finger defect.

e When a skin is severely creased throughout, our solution may not identify
the intensity fluctuation or difference as high enough to trigger the defect
threshold thereby rejecting the product.

In future it is envisaged to overcome the limitations of this work by improving
the model so that all types of defects could be smartly detected and analysed.

Acknowledgments. We acknowledge the Australian Food processing industry to pro-
vide images in this analysis and experiments. Due to privacy and business issues we
could not name the company in this manuscript.
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