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Abstract. We discuss an interpolation scheme (based on optimization)
to fit a given ordered sample of reduced data Q.,, in arbitrary Euclidean
space. Here the corresponding knots are not given and need to be first
somehow guessed. This is accomplished by solving an appropriate opti-
mization problem, where the missing knots minimize the cost function
measuring the total squared norm of acceleration of the interpolant (here
a natural spline). The initial infinite dimensional optimization (set to
minimize an acceleration within the class of admissible curves) is reduced
to the finite dimensional problem, for which the unknown optimal inter-
polation knots are to be found. The latter introduces a highly non-linear
optimization task, both difficult for theoretical analysis and in derivation
of computationally feasible optimization scheme (in particular handling
medium and large number of data points). The experiments to com-
pare the interpolants based either on optimal knots or on the so-called
cumulative chords are performed for 2D and 3D data. The problem of
interpolating or approximating reduced data is applicable in computer
vision (image segmentation), in computer graphics (curve modeling in
computer aided geometrical design) or in engineering and physics (tra-
jectory modeling).

Keywords: Reduced sparse data - Interpolation + Knots selection

1 Introduction

The problem of fitting data points in Euclidean space E™ is a classical problem
for which there exist many different interpolation or approximation techniques
(see e.g. [1-6]). Most classical interpolation schemes assume a given sequence of
ordered data .# = {xg,21,...,2,} (where x; € E™) together with the corre-
sponding set of ordered interpolation knots {¢;}_, (parametric interpolation on
non-reduced data). The problem of data fitting and modeling gets more compli-
cated while dealing with the reduced datai.e. when only .# is available (termed as
non-parametric interpolation). Here, for a given fitting scheme, different choices
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of ordered interpolation knots {#;}?_, render different curves. An early work on
this topic can be found in [7] which was later extended among all in [8-19],
where various quantitative criteria (often for special m = 2,3) are introduced
to measure the appropriateness of particular choice of {fi}?:o (e.g. convergence
rate for dense data .# derived from the unknown curve). A more recent work in
which different parameterization of the unknown knots are discussed, including
the so-called cumulative chord parameterization

t; =0, tiv1 =1 + lgi+1 — all; (1)

can be found e.g. in [5], [20-26]. The analysis of convergence rates to the unknown
curve v : [0,7] — E™ and its length d(vy) (based on different parameterizations
and dense samplings) is also recently studied among all in [27-40].

In this paper we introduce a special criterion of choosing the unknown knots
(applicable not only to dense but also to sparse data) minimizing the mean
squared of norm of the second derivative of the interpolating curve. An initial
infinite dimensional optimization problem (see Lemma 1) is reduced to the cor-
responding finite dimensional one (set to determine the unknown knots). The
latter constitutes a constrained highly non-linear optimization task (knots must
be ordered) difficult for the theoretical analysis and computationally sensitive to
the increase of interpolation points while standard optimization techniques are
invoked. An alternative (not analyzed in this paper) is a computationally fea-
sible optimization scheme called Leap-Frog (see [41-44]) which is here adapted
to compute the suboptimal knots for ordered data in arbitrary Euclidean space
E™. The performance of the Leap-Frog Algorithm is illustrated on 2D and 3D
reduced data .Z (i.e. for m = 2,3) and subsequently compared with the multi-
dimensional analogue of Secant Method (see e.g. [2] or [46]). The initial guess is
chosen according to cumulative chords (1).

The proposed scheme for knots selection is applicable, in data fitting and
curve modeling (e.g. computer graphics and computer vision), in approximation
and interpolation (e.g. in trajectory planning, image segmentation, data com-
pression) as well as in many other engineering and physics problems (robotics
or particle trajectory estimation). Specific applications for fitting sparse (and
dense) reduced data .# in E™ can be found e.g. in [5,6] or [47].

2 Problem Formulation

Assume that ordered (by indexing) data points M = {xo,x1,29,...,2,} are
given (here z; € E™ and z; # x;41, for i = 0,1,...,n with n > 2). Such .# is
called admissible data. Define now a class (denoted by .#1) of admissible curves
as piecewise C? curves v : [0, T] — E™ (where 0 < T' < oo is fixed) interpolating
A with the ordered free unknown knots {t;}?_, satistying v(t;) = z; (here t; <
tit1,to = 0 and t,, = T'). More specifically, we assume that any choice of ordered
interpolation knots {t;}7_, yields a curve v € C1([0, T) such that it extends over
sub-segment [t;, t;11] (for each i = 0,1,...,n — 1) to v € C?([t;,tir1]) - i.e. v
is C? except of being C! only at interpolation knots {t;}" . The reason why
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we do not confine our analysis within a more natural class of v € C?%([tg, t,]) is
justified by the subsequent choice of computational scheme (called herein Leap-
Frog - see [42]) which effectively deals with the optimization problem (3). This
scheme is designed to iteratively produce the a sequence of curves vf r € I7
generically positioned outside of the class C?([to,t,]) (i.e. v¥r ¢ C%([to,tn])).
However, the computed optimum by Leap-Frog belongs to the tighter class of
functions in C?([to,t,]) - see [41,48].
We look for an optimal vop: € Fr minimizing the following functional:

n—1 tit1
=D OIS @)
i=0 7l
i.e. satisfying
I (Yopt) = min _Zr(y) . (3)
YEST

For future needs define also _#7. as the i-th segment energy:

A= [ R, (@)

2]

obviously satisfying the inequality #7(y) < _Zr (7). Note that for each function
v € S the corresponding sequence of unknown interpolation knots {¢;}7_, (with
to and t, = T fixed) satisfies with n — 1 internal components the following:

QL ={(ti,ta,. .. ta1) ER" Hitg <ty <ty < .. <tpo1 <t, =T} (5)

Evidently (3) defines an infinite dimensional optimization task (considered
over 1) not invariant with respect to an arbitrary C? class re-parameterization
¢:10,T) — [0, 7] (with T > 0).

Remark 1. Note that if we confine reparametrizations’ class to the affine ones
ie. ¢(t) = tT/T (with ¢~'(s) = sT/T) then as ¢~ (s) = t, ¢~ = T/T and
¢~1" =0, formula (2) reads for 7(s) = (70 ¢~1)(s) (upon using integration by
substitution) as:

3n1

tit1 ) 3 ” 1ty
s =g 3 [ NG os eI = 53 [T sl

- T, O
Thus a curve vop: € A7 is optimal to _Z7 if and only if a corresponding Yo, € Fi
is optimal for _#;. Therefore we can effectively assume ¢,, = T' to be arbitrary.
Similar argument can be applied to to = 0 (we set ¢(t) = t — to if the latter does
not hold). O



6 R. Kozera and L. Noakes

In the anticipation of the forthcoming materials we briefly re-introduce dif-
ferent families of piecewise cubics interpolating data points .# (see also [10,
Chap.IV]) subject to various boundary conditions. In addition, in the remark to
follow we also formulate the specific energy formulation (a special case of (2))
for the family of the so-called natural splines.

Remark 2. First recall that a cubic spline interpolant 'y% = 7g|[ti,t7¢+1}» for given
temporarily fixed interpolation knots 7 = (to,t1,...,tn—1,ts) (here the knots
{tn}1o are admissible) is defined as

VG () = e+ et — 1) + cailt — ) + cault — 1), (7)
to satisfy (for i =0,1,2,...,n —1; ¢j; € R™, where j =1,2,3,4)
VS i) = Tivr , 3G tigr) = vign, k=0,1

with the velocities vy, vy, v2,...,v5_1,v, € R™ assumed to be temporarily free
parameters (if unknown). The coefficients ¢;; (with At; =t,41 —t;) are defined
as follows:

Cl,i = Ty,
Co,i =V,
Vi + Vig1 — 2961427;11
Cq4 = (AtZ)Q )
(1i+A1—-T11) —
€3, = —_— ca; At (8)

At

The latter comes from (7) and Newton’s formula (see e.g. [4, Chap. 1])

VG (1) =G (1) + G i i) (E — ) + 75 [t b, i)t — 1)
G [tir tis tiprs tia)(E = £)° (¢ = tign)

combined with ¢;,; = 7%(%), C = Vg (t:;), 30 = ‘y%(ti)/l and ¢4, =
'ygi (t;)/6. Adding n — 1 constraints enforcing continuity of second derivatives
of ¥& at z1,2,..., 2,1 ie. for i = 1,2,...,n — 1 ﬁ%’l(ti) = vg(tz) leads
(upon using (7) and (8)) to the m tridiagonal linear systems (strictly diagonally

dominant) of n — 1 equations in n + 1 vector unknowns representing velocities
at A i.e. vg,v1,02,...,0p_1,U, € R™:

Vi1 At + 20;(Ati—1 + Aty) + vi 1 Atz = b,

Ti— Ti—1 Tit1 — Ty
b, =3 Atii Ati, —_— ). 9
( A, T A ) (9)

The terminal velocities vg and v, (if unknown) can be calculated from the
conditions % (0) = ¥%(T..) = 0 combined with (8) (this yields a natural cubic



Optimal Knots Selection for Sparse Reduced Data 7

spline interpolant v - a special ¥4 ) which supplements (9) with two missing
linear equations:

L1 — Xo — Zn—1

n 2n—3 10
Atg 0 U1t Aty (10)

200+ v1 =3

The resulting m linear systems, each of size (n + 1) x (n + 1), (based on (9)
and (10)) as strictly row diagonally dominant result in one vector solution
V0, V1, V2, .« -, Un—1, 0y (solved e.g. by Gauss elimination without pivoting - see
[4, Chap.4]), which when fed into (8) determines explicitly a natural cubic spline
7Y (with fixed 7).

Combining (2) with (7) results in (in fact it is also true for any spline v%
provided the respective velocities {v;}I_, are somhow prescribed - e.g. also for a
Hermite or a complete spline [4, Chap 4))):

Z / t)||2dt
i1
= Z / (2¢3,i +6c4,4(t —t;)|2¢3,; + 6ca,:(t — t;))dt
. t
n—1

=4 (llesill>Ati + 3lcail*(Ati)® + 3(esileai)(Ati)?) .

=0

Upon introducing c¢s; = c3; + c4,;At; the latter reduces into:

a(At)?).  (11)

n—1
=43 (Atilles ill® + (At)*leasll® + (cs
1=0

By (8) we also have c5; = (w41 — 7;)/(At;)?) — (vi/At;) and thus

. _ .2 112 . — ey
At; : 2 _ HxH—l -731|| ||'Uz|| _ 2<$,+1 xz|U1>
sl @an)F Ay YL
(At |eas |2 = Wit vl | Az = 2al®  Avigs + viloigs — 22)
oo A, (A%)8 @ur
i1 — Zi|vi Fvip1) 2|z *xi”Q ||Uz||2 (vilvit1)
i iAtz'2:<x+1 Ti|vi + vig1) _ _
<Cs, |C4,,>( ) (Ati)z (Ati)?’ Ati Ati
+2<vi|xi+1 — ;)

(At;)?
which when passed to (11) yields finally

-1
Ir(v5%) =4 ( 5 (=3[|zip1 — zil|* 4 3(vs + vig1|Tig1 — @) Aty

(el + o2 + (ilvi)) (A6)2) . (12)
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Clearly for a given data points .# and each strictly increasing sequence of
fixed knots {t;}7_, the natural spline 5 exists and is unique. Note also that
(12) (in contrast with each curve 'y% itself) involves only two vector coefficients
c3,; and cq; appearing in (7).

Once we vary the knots {t;}7, (subject totg < t; <ta < .. <tp_1 <t, =T
with ¢, = T and t, fixed) the corresponding space of such natural splines 7V
(denoted here by #N9) evidently satisfies # NS C 7 N C2([0,T.]) (also 4N
is C°°([t;,t;y1]) for each i = 0,1,...,n — 1 - we omit subscript .7 to emphasize
that internal knots may vary).

If now we minimize (2) only over a class of natural splines V5 C 7 (such
thinning of (2) and (3) to (12) is justified later in Lemma 1) then

NSy _ . NS
SrOND = min | Fr() (13)
reduces into finding optimal parameters for (13) (£, t5",...,t%",) (here ter-

minal knots ¢, = T and ¢y are constant) within the family of natural splines
INS subject to the constraint to < t77* < 97" < ... <t < t, = T. As
we mentioned there is a one-to-one correspondence between natural spline 7V
and the interpolation knots. Consequently (13) can be reformulated (see also
(5)) upon introduction 7 = (t1,ta,...,t,_1) into the following minimization

problem in 7 :

/T(’}/é\;f) = min jrlg(thtg,...,tn_l)

Fent
= min 155 (s) [P ds
Tenl Ty It
n—1 _1
= min 4 ( - —31‘1-1—xi2+30i+vi1xi1—xiAti
i 43 (Sl =l 30 il )
—(lloill® + l[via|* + <Uz‘|vi+1>)(4ti)2) : (14)

Thus an implicit formula (12) yields, upon feeding v; from (9) and (10), the
explicit non-linear expression for ZF (see (14)) ready for minimization over
NS with respect to free variables (t1,ta,...,t,—1) € £2f . Note that the value
of the energy Zf (ﬂA ) is always finite for each T € Q,g since v € C? and
therefore ||55°|| is continuous over a compact set [to,t,] (as t, =T < +00).

The class of natural splines .# V¥ is invoked here since one can reduce (3) to
the same optimization confined merely to the subclass of natural splines .# V< C
Jr (see [10,41,48]). In fact by [41] the following holds (for arbitrary fixed knots
to < tp = T)
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Lemma 1. For a given admissible data points A in arbitrary Euclidean space
E™ the subclass of natural splines S NS C 71 satisfies
; : NS

min = min . 15

min #r(7) N Jr(v"7) (15)

In the next section we test the optimization problem (15) (converted into (12)
or (14)) on some 2D and 3D data.

3 Numerical Experiments

Experiments are performed with Mathematica Package. We compare now the

performance of Leap-Frog (see [41]) with the Secant Method applied to (12) (as

justified by (15)). The experiments are conducted only for sparse reduced data

points .# in E%3. They represent special cases of all admissible sparse reduced

data in arbitrary E™. The initial guesses are based on cumulative chords (1).
The first example deals with reduced data .# in E? (i.e. for m = 2).

NARNERN

Fig. 1. Natural splines interpolating data points .#2p1 (a) 'ygfni with uniform knots
Tuniy (D) vgf with cumulative chords 7, (c) 'ygfoﬁf with optimal knots 7,5 = M
op

(thus ngf = 'yg%y) (d) v52, and v5 plotted together.
ont o

Ezample 1. Consider for n = 5 the following 2D reduced data points (see dotted
points in Fig. 1):

Moy = {(~4,0), (—0.5,—4), (0.5,—3), (~0.5,4), (0.5,3), (~1,3.8)} .

A blind guess of uniform interpolation knots yields (rescaled to T, = T, -
see (1)):

Tuni = {0, 3.38291, 6.76583, 10.1487, 13.5317,16.9146 }

and the initial guess based on cumulative chord 7. = (o, 9;, T.) (i-e. based on
the geometry of the layout of the data) renders:

7, = {0,5.31507, 6.72929, 13.8004, 15.2146, 16.9146 }.
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The natural splines WNS (based on Z,,,; = (0, Zm, 16. 9146)) and ’ygcs (based
on 7,) yield the energles /y( Tomi) = T.18796 < S5 (T.) = 7.8536. Both
interpolants 7 . and 'y S are shown in Fig. 1a and b, respectively. The Secant

Method yields (for (12)) the optimal knots (augmented by terminal times to = 0
and t5 = T,)

T ={0,3.67209,5.62892, 11.435,14.5491,16.9146}

with the optimal energy /9 (§SM) = 4.25388. The execution time amounts to

opt
T5M = 7.037922s¢ec. The resulting curve ’qum is plotted in Fig. 1c. Note that

for each free variable Secant Method uses here two 1n1t1a1 numbers t$ £0.5. The

Leap-Frog Algorithm decreases the initial energy / 7.(J) upon 42 iterations to
J5 (ﬂogi‘/f ) (i.e. as for Secant Method) with optlmal Values satisfying Z,LF" =

yospi‘/[ , up to the 6th decimal place - this is the iteration bound). The respective

execution time THF = 3.333620sec < T°M. The Oth, 1st, 10th, 20th, 30th and
42nd iterations Leap-Frog decrease the energy j 7, (T ) to:

{7.8536, 4.93366, 4.25839, 4.25389, 4.25388, 4.25388}

with only the first two iterations contributing to major energy decrease (and

hence the corrections of the initial guess for knots taken as .7;). The resulting

natural spline ’ygf r (clearly the same as 722‘ u yielded by Secant Method) based
opt opt

on ﬂoétF is shown in Fig. 1c and also visually compared with vf%s in Fig. 1d.
Note that if Leap-Frog iteration bound condition is changed e.g. to make current
Leap-Frog energy equal to ¢ £ (7.5M) (say up to 5th decimal place) then only
22 iterations are needed here with shorter execution time TI%F = 2.270440 sec
and with optimal knots

FEFe — 10,3.67502, 5.63183,11.436814.5498, 16.9146}.

opt

We miss out now a bit on precise estimation of the optimal knots but we speed
up the Leap-Frog execution time by obtaining almost the same interpolating
curve as the optimal one (as ZﬁtF P ?Ogi” ). The other iteration a posteriori
stopping criteria can also be considered which even further accelerate Leap-Frog
performance at almost no cost in difference between computed curve an optimal

curve. a
We pass now to an example of reduced data in E? (i.e. with m = 3).

Ezample 2. Consider for n = 5 the following 3D reduced data points (see dotted
points in Fig. 2):

Ms5p1 = {(0,0,0),(—0.5,0,—4),(0.5,0,—4), (-0.5,0,4),(0.5,0,4), (—1,0,3.8) }.
The uniform interpolation knots read (rescaled to T, = £, - see (1)) as:

Tumi = {0,3.12133,6.24266,9.364, 12.4853, 15.6067}
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(a) (b) (©) (d

Fig. 2. Natural splines interpolating data points .#sp1 (a) ’ygfm, with uniform knots
Tuniy (b) v5° with cumulative chords .7, (c) ’ygjp v with optimal knots 7,5/ = 5

s s
(thus ’ygLF = 795M) (d) ’ygfpf and 7%6 plotted together.

and the initial guess based on cumulative chord 7, is here:
. ={0,4.03113,5.03113,13.0934, 14.0934, 15.6067}.

The natural splines 75 = (based on Z,,;) and v5° (based on 7.) yield the
following energles /y( um) = 10.145 > j;( 7.) = 9.45031. Again, both
interpolants 'y > and 'y S are presented in Fig. 2a.b, respectively.

The Secant Method yields (for (12)) the optimal knots (augmented by termi-
nal times tg = 0 and t5 = T)

TN ={0,2.91851,5.12399, 11.1964, 13.507, 15.6067}

with the optimal energy #% (Z;giw ) = 4.65476. The execution time amounts

to T5M = 6.783365sec. The resulting curve y5%,, is plotted in Fig. 2c. Note

that for each free variable Secant Method uses here two initial numbers t$ £0.1.
Leap-Frog decreases the initial energy to #Z ( (FEFy= 75 5 (T2 (as for the

opt opt
Secant Method) with the iteration stopping conditions .Z,5f" = 90*;{” (up to 6th

decimal point) upon 38 iterations. The respective execution time amounts to
THE = 3.757498 < TSM . The Oth (i.e. #Z (7)), 1st, 2nd, 10th, 13th, and 36th
iterations Leap-Frog decrease the energy to:

{9.45031, 5.30697,4.83704, 4.65485, 4.65476, 4.65476 }

with again only the first three iterations contributing to major correction of
the initial guess knots 7. The resulting natural spline vgf r (clearly the same
opt

as ’yggM yielded by Secant Method) based on yogf is shown in Fig.2c and
“opt

also visually compared with 'ygcs in Fig. 2d. Again if Leap-Frog iteration bound

condition is changed e.g. to make current Leap-Frog energy equal to _# §C (75M)

(say up to 5th decimal place) then only 13 iterations are needed here with shorter

execution time T5F = 1.878057 < T and optimal knots

FLFe = {0,2.92093,5.12632, 11.1981, 13.5079, 15.6067}.

opt
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As previously, we miss out here a bit on precise estimation of the optimal knots
but we accelerate the Leap-Frog execution time by obtaining almost the same

interpolating curve as the optimal one (as Z)éf E 90‘2,{\4 ). ad

4 Conclusions

In this paper we discussed the method of fitting reduced data .# in arbitrary
Euclidean space E™ with natural splines Vgs based on finding the best unknown
knots (t7,t5P%, ... t%"")) (and thus the best natural spline) to minimize the
total mean of squared norm of acceleration of the interpolant. The original
optimization problem (2) derived in a wider class of piecewise-C? class inter-
polants is reduced to the class of natural splines ,Ygs - see Lemma 1. This
in turn reformulates into the finite-dimensional constrained optimization task
(14) in (¢1,ta,...,t,—1)-variables, subject to the satisfaction of the inequalities
to < t1 < tg,< ... < th—1 < t,. Two computational schemes are deployed
to test the quality of the computed interpolants - i.e. Leap-Frog and Secant
Method. They both do not rely on large size matrix inversion during the
computational procedure. For sparse reduced data .# our optimization set-up
together with applied numerical schemes offer a feasible choice (supplemented
with computational tools) of approximating the unknown interpolation knots
{ti}n o ~ {£P"}7_ . Future work will include the theoretical analysis of the
nature of (14) and convergence of tested iterative schemes to its local (global)
minima (minimum).

Some recent related work on fitting reduced data .# in E?3 can also be
found in [49,50].
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