
A Self-Matching Sliding Block
Algorithm Applied to Deduplication

in Distributed Storage System

Chuiyi Xie1,2(&), Ying Huo2, Sihan Qing3,4,5,
Shoushan Luo1, and Lingli Hu2

1 National Engineering Laboratory for Disaster Backup and Recovery,
Beijing University of Posts and Telecommunications, Beijing, China

gdxcy@163.com
2 Department of Information and Computing Science,

Shaoguan University, Shaoguan, China
3 Institute of Software,

Chinese Academy of Sciences, Beijing, China
4 Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, China
5 School of Software and Microelectronics, Peking University, Beijing, China

Abstract. The deduplication technology can significantly reduce the amount of
storage in data centers, thus to save network bandwidth and decrease the cost of
construction and maintenance. Having inspired by the sliding block method of
the Sliding Block (SB) algorithm and independent block-dividing thought of the
Content Defined Chunking (CDC) algorithm, a Self-Matching Sliding Block
(SMSB) algorithm for deduplication is proposed. Via communication with
metadata node, the storage system client builds a matching table in local
memory that contains fingerprint and checksum, based on the matching table to
realize sliding block self-matching so as to detect the duplicate blocks. The
experimental results show that the deduplication rate and the disk space uti-
lization rate of SMSB algorithm is respectively 2.03 times and 1.28 times of the
CDC algorithm and that the data processing speed is 0.83 times of the CDC
algorithm. The SMSB algorithm is suitable for distributed storage system.

Keywords: Distributed storage � Deduplication � Sliding block algorithm �
Rabin fingerprint � Adler-32 checksum

1 Introduction

Distributed storage system can store huge amounts of data. Due to its characteristics of
high performance-cost ratio and good scalability, it is widely used in cloud storage,
disaster recovery, backup and other purposes. But distributed storage system has a lot
of duplicate data, which brings a waste of storage space and adds a lot of unnecessary
network traffic. So it is quite necessary to employ deduplication technology for dis-
tributed storage.

© Springer International Publishing Switzerland 2016
S. Qing et al. (Eds.): ICICS 2015, LNCS 9543, pp. 406–413, 2016.
DOI: 10.1007/978-3-319-29814-6_34



By the difference of detection granularity, deduplication can process in file-level
and block-level or byte/bit-level. The smaller detection granularity, the more detected
redundant data will be, but the complexity and consume will correspondingly increase.
The Content-Defined Chunking (CDC), a classic algorithm for deduplication, employs
Sliding Window technology to determine the split point of chunking, has been applied
in LBFS, [1] Pastiche backup system [2] and Deep Store archive storage system [3] and
the like. The CDC is suitable for frequently updated data set and has more advantages
of reducing the occupying of storage space over the Fixed-Sized Block method. [1]
However, in the extreme case, if the entire data stream does not find the matching
boundary point, the CDC will degenerate to the FSB. To process the blocks beyond a
certain length, Eshghi and Tang [4] proposed a Two Thresholds Two Divisors (TTTD)
algorithm supporting the size of chunk which bears two expectations and two
thresholds. Lu et al. [5] proposed the solution of counting the frequency of occurrences
of block to improve the effect of the block and raise the rate of deduplication. Zhang
et al. [6] proposed an asymmetric extremum content defined chunking algorithm for
fast and bandwidth-efficient data deduplication. Yu et al. [7] present a leap-based CDC
algorithm which provides significant improvement in deduplication performance
without compromising the deduplication ratio.

The chunks produced by CDC are varied with length; thereby more complexity of
management appears. The Sliding Block (SB) algorithm [8] combines the advantages
of fixed-size and variable-size, mainly produces fix-size chunks. The SB algorithm is
efficient to solve the insert and delete problem. Wang et al. [9] employ backtracking
sub-blocks strategy in SB algorithm, via backtracking the left/right 1/4 and 1/2
sub-blocks in matching-failed segments, improves the duplicate detection precision
compared with the traditional SB algorithm and CDC algorithm. Zhu et al. [10]
designed and implemented a backup system with intelligent data deduplication, which
named Backup Ded up including four deduplication strategies, that is SIS, FSB, CDC
and SB.

In this paper, a Self-Matching Sliding Block (SMSB) Algorithm applied to dedu-
plication in distributed storage system is proposed. The SMSB creates a matching table
in deduplication processing node and processes the self-matching on the fingerprint and
checksum of sliding block. It ignores a large number of data blocks which do not meet
the matching conditions, so as to improve the efficiency of deduplication. It is suitable
for distributed environment.

2 Deduplication Problem in Distributed Storage

Distributed storage system, which is generally consisted of a single management node
that can practice unified allocation and management of resources to all storage nodes
and a plurality of data storage nodes, may be visited by multiple clients simultaneously.
The management node saves data block information, the storage nodes store all data
blocks. If need to perform deduplication in the distributed storage system, the task can
be assigned to minor storage nodes or data sender. The transfer for duplicate data

A Self-matching Sliding Block Algorithm Applied to Deduplication 407



wastes so much bandwidth; therefore, the processing of eliminating redundant done
before the transfer of data is a very appropriate option.

The deduplication rate of the SB algorithm ranks top in all types of the same data
detecting method, but this algorithm needs to query checksum for matching the block
when the sliding window move one byte forward. Since the metadata of distributed
storage system is stored in one or more nodes, and the nodes performing task of
matching cannot save the massive checksum and data, they can only complete the
matching task by visiting metadata nodes via network. The processing speed is too
slow! The CDC algorithm can take advantage of the internal characteristics of the data
for deduplication without having to query the metadata node in the sub-block process,
but compared with the SB algorithm, this algorithm has lower deduplication rate and
disk space utilization.

3 SMSB Algorithm

In order to solve the deduplication problem in distributed storage, we proposed a novel
Self-Matching Sliding Block (SMSB) algorithm. The SMSB uses a matching table as
repetitive testing cache, and each node performing deduplication updates timely
matching table data by querying metadata node in the process.

3.1 Description

The process of SMSB algorithm is shown in Fig. 1. Firstly, calculating the fingerprint and
checksum of the data block in sliding window, if successfully matched, it shows that the
block is likely to be repeated; and then calculate the hash value for further examination. If
the match is not successful, it is probably not repeated block, and then the sliding window
continues to move forward. When the sliding window has been moved to a block size
distance, the block in it matching no blocks is likely a new one. The hash value of the
block is calculated and stored, and later used as a comparison target block.

Files

Checksum;
Fingerprint

Hash

Match
 Found?Compare to Stored

Hash Values Duplicate
Detected

NO

Yes

Checksum;
Fingerprint

Checksum;
Fingerprint

Checksum;
Fingerprint

Checksum;
Fingerprint

Match
 Found?

NO

Slide
Window

Match Checksum 
and Fingerprint

Yes

Fig. 1. Self-Matching Sliding Block method

408 C. Xie et al.



3.2 Matching Table

The matching table consists of fingerprint and checksum. For a continuous string [X1,
X2,…, XW, XW+1, XW+2,…] (each character has 8 bits), any Xi represents polynomial
Xi(t) Select a irreducible polynomial P(t) on Galois field GF(2n), the Rabin fingerprint
[11] R1 tð Þ and Adler-32 checksum [12] S1 of string [X1, X2, …, XW] are calculated as
follows:

R1 tð Þ ¼
XW

j¼1
Xj tð Þt8 W�jð Þ mod P tð Þ ð1Þ

A1 ¼ 1þ PW
j¼1 Xj mod 65521

B1 ¼
PW

j¼1 W � jþ 1ð Þ � Xj
� �þW mod 65521

S1 ¼ Bi � 16þAi

8
<

: ð2Þ

For a string [X1+1, X1+2,…, XW, XW+1](i ≥ 1), its fingerprint Riþ 1 tð Þ and checksum
Siþ 1 are calculated as follows:

Riþ 1 tð Þ ¼ Ri tð Þt8 � X1 tð Þt8w þX1þw tð Þ modPðtÞ ð3Þ

Aiþ 1 ¼ Ai � Xi þXiþW mod 65521
Biþ 1 ¼ Bi þAiþ 1 �WXi�1 mod 65521
Siþ 1 ¼ Biþ 1 � 16þAiþ 1

8
<

: ð4Þ

Equations (3) and (4) have the computation time complexity of O(1).

3.3 Create and Maintain Matching Table

A matching table is created in memory, in order to achieve fast matching. Matching
table is actually a simple index table stored in memory as an array, using the fingerprint
of the data block as the array subscript (index), checksum as the value of the array
element (index results). Matching table is updated by the latest block-priority strategy.
When storing a new data block, according to the Rabin fingerprint(rabin) and Adler-32
checksum(adler) of the block, update Match[rabin] as adler.

3.4 Self-matching

Assume that storage space has processed a certain number of data blocks, in the
matching table established based on this, checksum and fingerprint has a corresponding
relationship as follows: (R1, S1), (R2, S2), (R3, S3), (R4, S4). When the sliding
window moves forward, the fingerprint and checksum of each block corresponding to it
will be calculated, and as a matching pair. The course of their work is shown in Fig. 2.

A Self-matching Sliding Block Algorithm Applied to Deduplication 409



4 Experimental Results

The experiments use the actual data of the ordinary computer to extract three types of
files (Word documents, source code, and BMP images) in the hard disk, less duplicate
or identical files. The collected data sets are listed in Table 1.

In the experiments, the data sets on Table 1 were partitioned by using 64, 256, 512,
1024, 4096 bytes as a unit block. In CDC algorithm, the minimum block size is set to
be a half of the maximum value.

4.1 Deduplication Rate Test

The deduplication rates and comparison results are shown in Fig. 3.

found..

Files

R1;S3

Fingerprint Checksum
R1 S1
R2 S2
R3 S3
R4 S4

Match Table(before 
self-matching)

Fingerrint Checksum
R1 S5

Match Table(after 
self-matching)

R2;S2

R1;S5

R3;S5

R4;S6

R1;S1

R2 S2
R3 S3
R4 S4

Fig. 2. Self-matching process

Table 1. Testing data set

File type Quantity of documents Size (Bytes)

Office document 57 21,978 K
Source code 368 4,769 K
BMP image 12 60,258 K

Fig. 3. Compare with different chunk size

410 C. Xie et al.



4.2 Disk Space Utilization Test

The rates of disk space utilization and comparison results are shown in Fig. 4.

4.3 The Data Processing Rate Test

The data processing rates and comparison results are shown in Fig. 5.

4.4 Summary of Results

The comparison results of three algorithms by each evaluation criteria are summarized
in Table 2. SMSB algorithm is better than the CDC algorithm in deduplication rate,
disk space utilization, but it is lower in the data processing rate. The deduplication rate
and the disk space utilization rate of SMSB algorithm is respectively 2.03 times and
1.28 times of the CDC algorithm and that the data processing speed is 0.83 times of the
CDC algorithm. We are confident that the SMSB algorithm is more suitable than the
CDC algorithm when used in a distributed storage system.

Fig. 4. Compare with different chunk size

Fig. 5. Compare with different chunk size

A Self-matching Sliding Block Algorithm Applied to Deduplication 411



5 Conclusion

Due to the limitations of the experimental conditions, the program has only been tested
on small data sets, in the actual environment, the distributed storage system data block
size will be bigger, generally between 4 KB to 128 KB, the proportion of duplicate data
in the system will also be larger. The main purpose of this paper is to compare the
processing performance of different algorithms, so as to find better deduplication
method. Therefore, the work in this paper has a practical guiding significance.

For the distributed storage system with the feature of the Locality Preserved
Caching (LPC), such as disaster recovery system and the backup system, we can
modify the maintenance rules of the matching table according to this feature thus to
identify the successor of duplicate blocks in the storage system, thus the coming block
will be able to be predicted. We are ready to further improve and enhance the per-
formance of SMSB algorithm for disaster recovery, backup storage system.

Acknowledgment. This study is supported by National Natural Science Foundation of China
(61170282), Guangdong Laboratory Research Foundation (GDJ2014081), Shaoguan Innovation
Foundation (2012CX/K123), Scientific Research Project of Shaoguan University (201216),
Discipline Construction Project of Guangdong Province (2013KJCX0168), and Guangdong
Natural Science Foundation (2014A030307029).

References

1. Muthitacharoen, A., Chen, B., Mazieres, D.: A low-bandwidth network file system. Proc.
ACM Symp. Oper. Syst. Principles 35(5), 174–187 (2001)

2. Cox, L.P., Murray, C.D., Noble, B.D.: Pastiche: making backup cheap and easy.
ACM SIGOPS Oper. Syst. Rev. 36, 285–298 (2002)

3. You, L.L., Pollack, K.T., Long, D.D.E.: Deep store: an archival storage system architecture.
In: 2014 IEEE 30th International Conference on Data Engineering, pp. 804–815. IEEE
Press, New York (2005)

4. Eshghi, K., Tang, H.K.: A framework for analyzing and improving content-based chunking
algorithms. Technical report, Hewlett-Packard Labs (2005)

5. Lu, G.L., Jin, Y., Du, H.C.: Frequency based chunking for data de-duplication. In: Modeling
Analysis & Simulation of Computer & Telecommunication Systems, pp.287–296. IEEE
Press, New York (2010)

6. Zhang, Y.C., Jiang, H., Feng, D., Xia, W., Fu, M., Huang, F.T., Zhou, Y.K.: AE: an
asymmetric extremum content defined chunking algorithm for fast and bandwidth-efficient
data deduplication. In: 2015 IEEE Conference on Computer Communications (INFOCOM),
pp.1337–1345. IEEE Press, Kowloon (2015)

Table 2. Self-Matching Sliding Block

Evaluation criteria Results

Deduplication rate CDC < SMSB SB
Disk space utilization CDC < SB SMSB
Data processing rate SB < SMSB < CDC

412 C. Xie et al.



7. Yu, C., Zhang, C., Mao Y., Li, F.L.: Leap-based content defined chunking — theory and
implementation. In: 2015 31st Symposium on Mass Storage Systems and Technologies
(MSST), pp.1–12. IEEE Press, Santa Clara (2015)

8. Bobbarjung, D.R., Jagannathan, S., Dubnicki, C.: Improving duplicate elimination in storage
systems. ACM Trans. Storage 2(4), 424–448 (2006)

9. Wang, G.P., Chen, S.Y., Lin, M.W., Liu, X.W.: SBBS: a sliding blocking algorithm with
backtracking sub-blocks for duplicate data detection. Expert Syst. Appl. 41, 2415–2423
(2014)

10. Zhu, G.F., Zhang X.J., Wang, L., Zhu, Y.G., Dong, X.S.: An intelligent data deduplication
based backup system. In: 2012 15th International Conference on Network-Based
Information Systems (NBiS), pp. 771–776. IEEE Press, New York (2012)

11. Rabin, M.: Fingerprint by random polynomials. Technical Report, Center for Research in
Computing Technology, Harvard University (1981)

12. Deutsch, L.P., Gailly, J.L.: RFC 1950: ZLIB compressed data format specification version 3.
In: RFC 1950, Aladdin Enterprises, Info-ZIP (1996)

A Self-matching Sliding Block Algorithm Applied to Deduplication 413


	A Self-Matching Sliding Block Algorithm Applied to Deduplication in Distributed Storage System
	Abstract
	1 Introduction
	2 Deduplication Problem in Distributed Storage
	3 SMSB Algorithm
	3.1 Description
	3.2 Matching Table
	3.3 Create and Maintain Matching Table
	3.4 Self-matching

	4 Experimental Results
	4.1 Deduplication Rate Test
	4.2 Disk Space Utilization Test
	4.3 The Data Processing Rate Test
	4.4 Summary of Results

	5 Conclusion
	Acknowledgment
	References


