
Verifiable Proxy Re-encryption
from Indistinguishability Obfuscation

Muhua Liu1, Ying Wu1, Jinyong Chang1, Rui Xue1(B), and Wei Guo2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
{liumuhua,wuying,changjinyong,xuerui}@iie.ac.cn

2 Information Center, Guangdong Power Grid Company Limited,
Guangzhou 510000, Guangdong, China

guowei@gdxx.csg.cn

Abstract. Proxy re-encryption scheme allows a semi-trusted proxy to
re-encrypt ciphertexts of a client into ciphertexts of a receiver. However,
the proxy might not as honest or reliable as supposed in practice.

Ohata et al. [16] recently introduced a new functionality for proxy
re-encryption with verifiability of the re-encryption soundness. However,
careful inspection reveals that the construction in their work can not
resist against normal collusion attack. Specifically, if the proxy and the
receiver collude, the master key of the client will be leaked. We consider
this as a serious weakness. Moreover, the storage of keys for a receiver
in that work will increase linearly with the number of clients.

In this paper, we present a novel generic scheme for verifiable proxy re-
encryption from indistinguishability obfuscation. It can ensure the secu-
rity of master secret key even when the proxy and the receiver collude.
In addition, our scheme possesses the advantage that any receiver’s key
storage will remain constant, no matter how many clients he deals with.
Furthermore, the re-encryption mechanism in our construction is very
succinct in that the size of re-encrypted ciphertext relies only on the
size of the encrypted message and the security parameter, compared to
that in [16], which relies on the size of the original ciphertext and the
receiver’s public key as well.

Keywords: Verifiability · Indistinguishability obfuscation · Proxy
re-encryption

1 Introduction

There are many applications that require to covert encrypted messages of one
client, per a proxy, into ciphertexts of a receiver, such as secure file systems,
outsourced filtering of encrypted spam [1]. Blaze et al. [3] proposed the notion
of atomic proxy cryptography, which allows a semi-trusted proxy to convert a
ciphertext of a client into a ciphertext of a receiver without seeing the underlying
plaintext and the secret key of either the client or the receiver.
c© Springer International Publishing Switzerland 2016
S. Qing et al. (Eds.): ICICS 2015, LNCS 9543, pp. 363–378, 2016.
DOI: 10.1007/978-3-319-29814-6 31

364 M. Liu et al.

In the ordinary proxy re-encryption schemes, the proxy is modeled as a semi-
trusted party, who will perform the re-encryption algorithm honestly. But, in
some real scenarios, the proxy is not as honest or reliable as it might be. Consid-
ering the following scenario, for example, a client stores a large encrypted data
CT in the cloud. When he wants to share his encrypted data with a receiver, he
will give his transformation key TK to a cloud proxy. Then, the proxy may con-
vert CT into a re-encrypted ciphertext CTout that can be decrypted under the
receiver’s secret key. However, the proxy may make mistakes for various reasons
like a faulty implementation of the re-encryption algorithm, or returning a ran-
dom result even for saving computation time. Therefore, a proxy re-encryption
protocol that allows the receiver to make verification of the correctness of the
re-encrypted ciphertexts is much expected.

Ohata et al. [16] recently proposed a verifiable proxy re-encryption protocol.
In the protocol, the receiver is enhanced with the function to verify whether
a received ciphertext is correctly transformed from an original ciphertext by
a proxy, and thus can detect illegal actives of the proxy. The scheme achieves
re-encryption verifiability by adding a re-encryption verifiable algorithm, which
takes two ciphertexts CT and CTout, a secret key skR of a receiver, and a
public key pk of a client as input, and allows to check the faithfulness of the
transformation of CTout.

The idea of the construction is as follows: the client splits his secret key sk
into two shares sk1 and sk2 by a threshold public key encryption scheme [5], and
sends the original ciphertext CT and sk1 to the proxy, and φ = EncpkR

(sk2) to
the receiver. Then the proxy re-encrypts the ciphertext CT by μ1 = Decsk1(CT)
and CTout = EncpkR

(μ1 ‖ CT). After getting the ciphertexts φ and CTout, the
receiver computes μ1 ‖ CT = DecskR

(CTout) and μ2 = Decsk2(CT), and outputs
a plaintext m by the combining algorithm of the threshold public key encryption
scheme. In order to achieve proxy re-encryption with re-encryption verifiability,
their scheme complies with the following properties: When re-encrypting CT
into CTout, CT is somehow embedded into CTout in such a way that when the
receiver decrypts CTout, the embedded ciphertext CT can be extracted. In re-
encryption verification, the receiver checks whether an extracted ciphertext CT
equals to the given candidate CT ′.

In the above scheme, if the proxy and the receiver collude together, the two
shares sk1 and sk2 can be obtained that could further recover the secret key of
the client. Another drawback in their scheme is that the receiver has to store each
secret key sk2 to decrypt the received ciphertexts of one client. When the receiver
deals with a couple of clients, the key storage of the receiver grows linearly with
the number of clients. In addition, the size of the re-encrypted ciphertext in their
construction not only relies on the size of the encrypted message and the security
parameter, but also relies on the size of the original ciphertext and the receiver’s
public key. That is not preferred when a large amount of messages need to be
processed.

In this paper, we present a novel verifiable proxy re-encryption scheme that
makes up the drawbacks as above. We focus on the unidirectional non-interactive

Verifiable Proxy Re-encryption from Indistinguishability Obfuscation 365

verifiable proxy re-encryption scheme. Here is our desired properties for a veri-
fiable proxy re-encryption scheme:

– Verifiability: A malicious proxy can not persuade a receiver to accept a
wrong re-encrypted ciphertext.

– Weak Master Secret Key Security: An adversary can not get the master
secret key even if the proxy and the receiver collude. In our scheme, we
just consider the adversary which only gets one transformation key. We call
this as weak master secret key security. One motivation [1], to consider this
stems from some proxy re-encryption schemes define two or more types of
ciphertext, some of which may only be decrypted using the master secret
key. A scheme which provides the master key security will protect those
ciphertexts.

– Key Optimality: The size of the receiver’s key storage remains constant,
regardless of how many clients from which he receives ciphertext.

– Succinct: The size of the re-encrypted ciphertext just relies on the size of
the encrypted message and the security parameter.

– Efficiency: The time complexity of the verifiable algorithm should be
smaller than the transformation algorithm. Otherwise, the receiver can com-
plete the transformation process by himself.

The starting idea for our construction is to pick a standard public-key encryp-
tion key pair (pk1, sk1) and a symmetric encryption scheme in the setup step
of the verifiable proxy re-encryption scheme. Choosing a random string K1 as
the secret key of symmetric encryption scheme, an encryption of a message m
will simply be an encryption of K1 using the public key pk1 and an encryption
of m using the symmetric key K1. Specifically, our approach is built on the
key encapsulated mechanism. We compress the random string K1 to a shorter
string using a hash function, and then, use the output of the hash function to
check the correctness of the re-encrypted ciphertext. However, the hash value
will leak some entropy of the session key which is no longer uniform. Hence, we
apply a key extractor to extract a nearly uniform symmetric key KSE, which will
replace the random string K1 as the symmetric encryption key. To verify the
integrity of the symmetric encrypted ciphertext, we compute a hash value on
the concatenation of the symmetric encrypted ciphertext and the hash value of
K1, and use the second hash value as the verifiable key. The transformation key
TK is an obfuscation of a circuit G which has the master secret key sk1 hard-
wired in its description. It takes a original ciphertext as input, and outputs a
re-encrypted ciphertext CTout. While this solution would work if the obfuscator
achieves the black box obfuscation definition [2], there is no reason to believe
that an indistinguishability obfuscator would necessarily hide sk1.

Recall that the indistinguishability chosen plaintext attack (CPA) security
definition requires that the adversary will not be able to distinguish an encryp-
tion of m0 from an encryption of m1. A natural first step would be to have two
public key pk1 and pk2, and require the encryption of random string K1 to con-
sist of encryption of K1 under both public keys. Then, we encrypt the message
m by using the extracted key from the random string K1, and get the ciphertext

366 M. Liu et al.

(CT1, CT2, CT3), where CT1 and CT2 are the ciphertexts of the random string
K1, and CT3 is the ciphertext of the message m. However, in this case, the origi-
nal decryptor (i.e., client) cannot generate a proof on his own that the ciphertexts
CT1 and CT2 encrypt the same message to provide to the obfuscator transforma-
tion circuit. Thus, we must require the encryptor to generate a proof π , which
must hide K1. A solution is to have the encryptor generate a non-interactive
witness indistinguishable proof. One statement is that the ciphertexts CT1 and
CT2 are encryptions of the same message, the other statement is a commitment
to CT1 ‖ CT2. After getting the ciphertext CT = (CT1, CT2, CT3, π), the obfus-
cated circuit firstly check the proof π, if it checks out, it would use secret key
sk1 for decryption and computation.

Note that the encryption algorithm of our construction is not efficient com-
pared with Ohata’s work [16], because of using the tool of NIWI. Our scheme
just achieves the CPA security. To construct a scheme which satisfies the CCA
security is our future work.

1.1 Related Works

Mambo and Okamoto [14] proposed the notion of proxy encryption, which del-
egates the ability of decryption through an interaction. Blaze et al. [3] pro-
posed the first bidirectional proxy re-encryption scheme based on the ElGamal
encryption scheme. Their construction is CPA secure under the Decisional Diffie-
Hellman assumption. However, their scheme is not master secret key secure, and
if the proxy and the receiver collude, they can recover client’s secret key.

Ivan and Dodis [11] proposed an unidirectional non-interactive proxy encryp-
tion for ElGamal encryption scheme by sharing the client’s secret to two partici-
pants. Their construction also can not achieve the master secret key security and
key optimality. Ateniese et al. [1] proposed an unidirectional proxy re-encryption
scheme based on bilinear maps. Their construction is weak master secret key
secure, efficient, and chosen-plaintext secure under the Bilinear Diffie-Hellman
assumption.

Canetti and Hohenberger [4] described a bidirectional construction of proxy
re-encryption providing chosen-ciphertext security. Libert and Vergnaud [13]
presented the first unidirectional proxy re-encryption schemes with replayable
chosen-ciphertext security in the standard model. Shao and Cao [18] proposed
the first CCA-secure proxy re-encryption without pairings. But their construc-
tion is secure in the random oracle model. Subsequently, Matsuda et al. [15]
improved Shao’s [18] result and constructed a bidirectional chosen-ciphertext
security proxy re-encryption scheme without bilinear maps in the standard model.
But later, Weng et al. [19] pointed out that Matsuda’s [15] scheme is not chosen-
ciphertext secure. Hohenberger et al. [9] proposed a novel proxy re-encryption
scheme based on the obfuscation, but their security is weak since the adversary
is only allowed to black-box access to re-encryption oracle. Hanaoka et al. [8]
presented the first generic construction of chosen-ciphertext secure unidirectional
proxy re-encryption scheme based on threshold public key encryption [5]. Isshiki
et al. [10] proposed a proxy re-encryption scheme in a stronger security model

Verifiable Proxy Re-encryption from Indistinguishability Obfuscation 367

extended from Hanaoka’s scheme [8]. Recently, Kirshanova [12] proposed a new
unidirectional proxy scheme based on the hardness of the LWE problem. Their
scheme is provably CCA-1 secure in the selective model. However, none of these
work considered the re-encryption verifiability. Ohata et al. [16] firstly introduced
this property, but their construction can not resist the attack of collusion. In this
work, we give a novel construction which has some better properties than the con-
struction of Ohata et al. [16].

1.2 Organization

The rest of this paper is organized as follows. We start by giving the definitions
for verifiable proxy re-encryption in Sect. 2. Next, in Sect. 3, we recall the def-
initions for various cryptographic primitives used in our construction. We then
present our construction for verifiable proxy re-encryption scheme in Sect. 4.
Finally, we give the conclusion of this work in Sect. 5.

Basic Notation. In what follows we will denote with λ ∈ N a security parame-
ter. We say negl(λ) is negligible if |negl(λ)| < 1/poly(λ) holds for all polynomials
poly(λ) and all sufficiently large λ. Denote PPT as probabilistic polynomial time.
“x ‖ y” denotes a concatenation of x and y. We write x

R←− X for sampling x
from the set X uniformly at random.

2 Verifiable Proxy Re-encryption

In this section, we give the definition of verifiable proxy re-encryption which
is different from the definition of Ohata’s [16]. Because our verifiable algorithm
needs additional information to verify the correctness of the re-encrypted cipher-
text, we adopt a new definition. We start by presenting the syntax for verifiable
proxy re-encryption and then proceed to give the security definitions.

Syntax. Denote PKER as the receiver’s encryption system, and the key pairs
(pkR, skR) as the receiver’s key. A verifiable proxy re-encryption VPRE consists
of five algorithms (Setup,Enc,KeyGen,Trans,Dec):

– Setup(1λ) → (mpk,msk): The setup algorithm takes as input a security
parameter λ and outputs the master public key mpk and the master secret
key msk.

– Enc(mpk,m) → (CT, V K): The encryption algorithm takes as input the
master public key mpk and a message m ∈ M, and outputs a ciphertext CT
and a verifiable key V K.

– KeyGen(pkR,msk) → TK: The transformation key generation algorithm
takes as input the master secret key msk and the receiver’s public key pkR,
and outputs a transformation key TK.

– Trans(CT, TK) → CTout: The ciphertext transformation algorithm takes as
input a ciphertext CT and a transformation key TK, and outputs a re-
encrypted ciphertext CTout.

368 M. Liu et al.

– Dec(V K, skR, CTout) → m or ⊥: The decryption algorithm takes as input
the verifiable key V K, the ciphertext CTout, and the receiver’s secret key
skR, and outputs a message m or ⊥, where ⊥ indicates that the transforma-
tion ciphertext is invalid.

Definition 1 (Correctness). A verifiable proxy re-encryption scheme VPRE
is correct if the ciphertext generated by the encryption algorithm allows an honest
worker to output a transformation ciphertext that will be decrypted as the orig-
inal message. More formally, for any m ∈ M, any (mpk,msk) ← Setup(1λ),
(CT, V K) ← Enc(mpk,m), and any TK ← KeyGen(pkR,msk), if CTout ←
Trans(CT, TK), then m ← Dec(skR, V K,CTout) holds with all but negligible
probability.

CPA Security Experiment. We adopt the chosen plaintext attack (CPA)
security for the verifiable proxy re-encryption scheme. The game is described as
follows:

Setup: A challenger firstly generates the honest receiver’s key pairs
(skRi

, pkRi
) ← PKERi

.Setup(1λ) for i = i, . . . , �, and sets PK = {pkRi
}�

i=1.
Then, the challenger runs the Setup(1λ) to generate a master public key mpk
and a master secret key msk. It gives the master public key mpk and the public
key set PK = {pkRi

}�
i=1 to the adversary A.

Phase 1: Proceeding adaptively, the adversary can repeatedly make the trans-
formation key generation queries:

– The adversary A submits the pkRi
to the challenger.

– If pkRi
/∈ {pkRi

}�
i=1, then the challenger outputs ⊥. Else, the challenger runs

the KeyGen(pkRi
,msk) to generate the transformation key TKi, and sends

TKi to the adversary.

Challenge: A submits two equal-length messages m0 and m1 to the challenger.
The challenger randomly picks a bit b ∈ {0, 1}, and runs Enc(mpk,mb) to obtain
a challenge ciphertext CT ∗ and a verification key V K∗ of the message mb. It
returns (CT ∗, V K∗) to the adversary.

Phase 2: This phase is the same as Phase 1.

Guess: A outputs a guess b′.

Definition 2 (CPA security). A VPRE scheme is CPA secure if for any
PPT adversary A,

AdvCPA
VPRE,A(λ) :=

∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣
≤ negl(λ).

Weak Master Secret Key Security. We require that the adversary can not
get the master secret key even if the proxy and the receiver collude. A VPRE

Verifiable Proxy Re-encryption from Indistinguishability Obfuscation 369

scheme is weak master secret key secure if the adversary can not learn the master
secret key of the client, even when he is given the transformation key and the
receiver’s secret key. The adversary is allowed to query the transformation key
generation oracle only once. The game is described as follows:

Setup: A challenger runs the Setup(1λ) to generate a master public key mpk
and a master secret key msk, and sends the master public key mpk to the the
adversary A.

Query: The adversary can make the transformation key generation query one
time:

– A runs (pkR, skR) ← PKER.Setup(1λ), and submits the public key pkR to
the challenger.

– The challenger runs the KeyGen(msk, pkR) to generate a transformation key
TK, and sends TK to A.

Challenge: A outputs a secret key α. The adversary succeeds if and only if
α = msk.

Definition 3 (Weak Master Secret Key Security). A VPRE scheme is
weak master secret key secure if for any PPT adversary A,

AdvMKS
VPRE,A(λ) := Pr[α = msk] ≤ negl(λ).

Verifiability. A VPRE scheme is verifiable security if a malicious server can
not persuade the receiver to accept an incorrect transformation ciphertext, even
when he is allowed to query the transformation key generation oracle and the
decryption oracle. The game is described as follows:

Setup: First, the challenger generates the honest receiver’s key pairs
(skRi

, pkRi
) ← PKERi

.Setup(1λ) for i = 1, . . . , �, and sets PK = {pkRi
}�

i=1.
Then, the challenger runs (mpk,msk) ← Setup(1λ), and sends the master pub-
lic key mpk and the public key set PK = {pkRi

}�
i=1 to the adversary A.

Phase 1: Proceeding adaptively, the adversary can repeatedly make the trans-
formation key generation queries:

– The adversary A submits the pkRi
to the challenger.

– If pkRi
/∈ {pkRi

}�
i=1, then the challenger outputs ⊥. Otherwise, the chal-

lenger runs the KeyGen(pkRi
,msk) to generate the transformation key TKi,

and sends TKi to the adversary.

Phase 2: The adversary can repeatedly query the decryption oracle:

– The adversary A submits the (V K,CTout, TKi) to the challenger.
– The challenger finds the corresponding secret key skRi

, and computes
m or ⊥ ← Dec(skRi

, V K,CTout), and returns the result to A.

370 M. Liu et al.

Challenge: The adversary A submits a message m to the challenger. The chal-
lenger obtains a challenge ciphertext CT ∗ and a verification key V K∗ of the
message m. It returns (CT ∗, V K∗) to the adversary.

Phase 3: This phase is the same as Phase 1.

Phase 4: This phase is the same as Phase 2.

Verify: The adversary A outputs a transformation ciphertext (CT ∗
out, pkRj

).
The challenger finds the corresponding skRj

, and computes m′ ← Dec(skRj
,

V K∗, CT ∗
out). If m′ �= m and m′ �= ⊥, then the adversary A succeeds, and the

game outputs 1.

Definition 4 (Verifiability). A VPRE scheme is verifiable security if for any
m ∈ M, and for any PPT adversary A,

AdvV erify
VPRE,A(λ) := Pr[Game outputs 1] ≤ negl(λ).

Definition 5 (Efficiency). A VPRE scheme is efficient if for any
(CT, V K) ← PKE.Enc(mpk,m), and TK ← KeyGen(msk, pkR), the time
required to verify the correctness of transformation ciphertext is o(T), where
T is the time required to compute CTout ← Trans(CT, TK).

3 Preliminaries

In this section, we present definitions for various cryptographic primitives that we
will use in our construction. We assume familiarity with standard semantically
secure public-key encryption, standard semantically secure symmetric encryp-
tion, and omit their formal definition from this section. For reasons of space, we
give the definition of non-interactive witness indistinguishable proofs and com-
mitment schemes in AppendixA. We recall the notions of indistinguishability
obfuscation, puncturable pseudorandom functions, and randomness extractor.

3.1 Indistinguishability Obfuscation

We present the formal definition following the syntax of Garg et al. [7]

Definition 6 (Indistinguishability Obfuscation (iO)). A uniform PPT machine
iO is called an indistinguishability obfuscator for a circuit class {Cλ} if the fol-
lowing holds:

– (Correctness): For all security parameters λ ∈ N, C ∈ Cλ, and inputs x,
we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

Verifiable Proxy Re-encryption from Indistinguishability Obfuscation 371

– (Indistinguishability): For any (not necessarily uniform) PPT distin-
guisher (Samp, D), there exists a negligible function negl such that the follow-
ing holds: if Pr[∀x, C0(x) = C1(x); (C0, C1, σ) ← Samp(1λ)] ≥ 1 − negl(λ),
then:

|Pr[D(σ, iO(λ,C0)) = 1 : (C0, C1, σ) ← Samp(1λ)]

−Pr[D(σ, iO(λ,C1)) = 1 : (C0, C1, σ) ← Samp(1λ)]| ≤ negl(λ).

Recently, Garg et al. [7] gave the first candidate construction for an indistin-
guishability obfuscator iO for the circuit class P/poly.

3.2 Puncturable Pseudorandom Functions

In our construction, we will use the puncturable PRFs, which are PRFs that can
be defined on all bit strings of a certain length, except for any polynomial-size
set of inputs. Below we recall their definition, as given by Sahai and Waters [17]:

Definition 7. A puncturable family of PRFs F is given by a triple of Turing
machines Key,Puncture,Eval, and a pair of computable functions n(·) and m(·),
satisfying the following conditions:

– (Functionality Preserved Under Puncturing). For every PPT adver-
sary A such that A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈
{0, 1}n(λ) where x /∈ S, we have that:

Pr[Eval(K,x) = Eval(KS , x) : K ← Key(1λ),KS = Puncture(K,S)] = 1.

– (Pseudorandom at Punctured Points). For every PPT adversary
(A1,A2) such that A1(1λ) outputs a set S ⊆ {0, 1}n(λ) and x ∈ S, con-
sider an experiment where K ← Key(1λ) and KS = Puncture(K,S). Then
we have

|Pr[A2(KS , x,Eval(K,x)) = 1] − Pr[A2(KS , x, Um(λ)) = 1]| ≤ negl(λ),

where Um(λ) denotes the uniform distribution over m(λ) bits.

3.3 Randomness Extractor

For a discrete distribution X over Σ, we denote its min-entropy by H∞(X) =
− log(maxσ∈Σ Pr[X = σ]). The average min-entropy of X conditioned on Y is
defined as H̃∞(X|Y) = − log(Ey←Y [2−H∞(X|Y =y)]).

We recall a useful lemma that will be used in our proof.

Lemma 1 [6]. Let X,Y and Z be random variables. If Y has at most 2r possible
values, then H̃∞(X|(Y,Z)) ≥ H̃∞(X|Z) − r.

372 M. Liu et al.

Definition 8 (Randomness Extractor). An efficient function Ext : X ×
{0, 1}t → Y is an average-case (k, ε)-strong extractor if for all random vari-
ables (X,Z) such that X ∈ X and H̃∞(X|Z) ≥ k, we have Δ((Z, s,

Ext(X, s)), (Z, s, UY)) ≤ ε, where s
R←− {0, 1}t, UY

R←− Y, and Δ(·, ·) denotes
the statistical distance between two distributions.

By the leftover hash lemma [6], any family of pairwise independent hash
functions H := {h : X → Y} is an average case (H̃∞(X|Z), ε)-strong extractor
if H̃∞(X|Z) ≥ log |Y| + 2 log(1/ε).

4 Construction

In this section we present our construction of the verifiable proxy re-encryption
scheme. Our construction relies on the following components: A public key
scheme PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec). A symmetric encryption
scheme SE = (SE.Enc, SE.Dec) with key space {0, 1}�SE . Two collision-resistant
hash functions: H0 : K → {0, 1}�H0 , H1 : {0, 1}∗ → {0, 1}�H1 . A family of pair-
wise independent hash functions H from K to {0, 1}�SE . The above parameters
satisfy the following condition: 0 < �SE ≤ (log |K| − �H0) − 2 log(1/ε), where ε is
a negligible value in λ. Let lenc = lenc(1λ) denote the length of ciphertexts in
(PKE.Setup,PKE.Enc,PKE.Dec). We will use a parameter len = 2 · lenc in the
description of our scheme.

Let (NIWI.Setup,NIWI.Prove,NIWI.Verify) be a NIWI proof system. Let Com
be a perfectly binding commitment scheme. Let iO be an indistinguishability
obfuscator for all efficiently computable circuits. Let (Key,Puncture,Eval) be a
puncturable family of PRF. We now proceed to describe our scheme VPRE =
(Setup,Enc,KeyGen,Trans,Dec).

– Setup(1λ) → (mpk,msk):
1. sample two key pairs for the public key encryption scheme (sk1, pk1) ←

PKE.KeyGen(1λ), and (sk2, pk2) ← PKE.KeyGen(1λ),
2. compute a CRS crs ← NIWI.Setup(1λ) for the NIWI proof system,
3. choose an extractor h ∈ H, two hash functions H0 and H1, and a sym-

metric encryption scheme SE,
4. compute a commitment C ← Com(0len),
5. set the master public key to be mpk = (pk1, pk2, h,H0,H1, crs, C,SE),

and the master secret key to be msk = sk1.
– Enc(m,mpk) → (CT, V K):

1. choose a random key K1, and compute a hash evaluation Tag = H0(K1)
of K1, and an extraction evaluation KSE = h(K1),

2. compute ciphertexts CT1 ← PKE.Enc(pk1,K1; r1), and CT2 ←
PKE.Enc(pk2, K1; r2) under the public key encryption scheme, and a
ciphertext CT3 ← SE.Enc(KSE,m) under the symmetric encryption
scheme, where r1 and r2 are chosen randomly,

3. compute a NIWI proof π ← NIWI.Prove(crs, y, w) for the NP statement
y = (CT1, CT2, C, pk1, pk2):

Verifiable Proxy Re-encryption from Indistinguishability Obfuscation 373

• either CT1 and CT2 are encryptions of the same message, or
• C is a commitment to CT1 ‖ CT2.

A witness wreal = (K1, r1, r2) for the first part of the statement, referred
to as the real witness, includes the randomness key K1 and the random-
ness r1 and r2 used to compute the ciphertexts CT1 and CT2, respec-
tively. A witness wtrap = s for the second part of the statement, referred
to as the trapdoor witness, includes the randomness s used to compute
C.

4. compute V K = H1(Tag ‖ CT3), and output the ciphertext CT = (CT1,
CT2, CT3, π) and the verifiable key V K.

– KeyGen(pkR,msk) → TK:
1. choose a fresh PRF key K ← Key(1λ),
2. compute the transformation key TK ← iO(G), where the circuit G is

described in Fig. 1. Note that G has the receiver’s public key pkR, the
master secret key sk1, the public key mpk and the PRF key K hardwired
in it.

– Trans(CT, TK) → CTout:
1. on input CT and a transformation key TK, the transformation algorithm

computes and outputs CTout = G(CT).
– Dec(V K, skR, CTout) → m or ⊥:

1. parse the transformed ciphertext as CTout = (C1, C2) and a verifiable
key V K = H1(Tag ‖ CT3),

2. recover a random key K1 from PKER.Dec(skR, C1),
3. compute Tag = H0(K1), if H1(Tag ‖ C2) �= V K, return ⊥, otherwise,

compute KSE = h(K1) and return m = SE.Dec(KSE, C2).

Input: Ciphertext CT
Constants: mpk, sk1, K, pkR

1. Parse CT = (CT1, CT2, CT3, π).
2. If NIWI.Verify(crs, y, π) = 0, then output ⊥ and stop, otherwise continue to the next step.

Here y = (CT1, CT2, C, pk1, pk2) is the statement corresponding to π.
3. Compute K1 ← PKE.Dec(sk1, CT1).
4. Compute r ← Eval(K, CT1 ‖ CT2).
5. Compute C1 ← PKEU .Enc(pkR, K1; r) by using the receiver’s encryption algorithm, set

C2 = CT3, and output CTout = (C1, C2).

Fig. 1. Functionality G

One thing we emphasize is that the transformed ciphertexts in our scheme are
succinct in that their size only depends on the message size and security parame-
ter. However, the size of re-encrypted ciphertext depends on the size of original
ciphertext and the receiver’s public key as well in Ohata’s construction [16].

374 M. Liu et al.

Theorem 1. The above verifiable proxy re-encryption is CPA secure if it is
instantiated with a secure punctured PRF, a CPA secure public key encryption,
a CPA secure symmetric encryption, a perfect binding commitment, and indis-
tinguishability secure obfuscator.

Here we show the intuition of the proof. Suppose the ciphertext (CT0 =
(CT1,0, CT2,0, CT3,0, π0), V K0) encrypts the message m0, and the ciphertext
(CT1 = (CT1,1, CT2,1, CT3,1, π1), V K1) encrypts the message m1. We need to
prove that the two ciphertexts are computational indistinguishable. In one of
our hybrid experiments, we need to move from an obfuscation that on input
CT = (CT1,0, CT2,0, CT3,0, π0) would yield the output ((Enc(pkR,K1; r)), C2)
to another obfuscation that on the same input would yield the output
((Enc(pkR,K2; r)), where the random string r is generated by a pseudorandom
function. However, the adversary may not be able to perform such a transforma-
tion, since our construction is based on indistinguishability obfuscation, which
only guarantees that the obfuscation of circuit that implement identical functions
are indistinguishable. Hence, this hybrid change would not be indistinguishable
because of Enc(pkR,K1; r) �= Enc(pkR,K2; r). In order to solve this problem, we
introduce five new values that can change the nature of the circuit that we are
obfuscating to disable all ciphertexts except for the five ciphertexts. The detailed
proof of the theorem is given in the full version of the paper.

Theorem 2. Suppose that H0 and H1 are collision-resistant hash functions,
Then, the proxy re-encryption scheme is verifiable security.

Proof. Given an adversary A against the verifiable security, we construct an
efficient adversary B to break the collision-resistance of the underlying hash
functions H0 or H1. Given two challenge hash functions (H∗

0 ,H∗
1), the adversary

B simulates the verifiability game described as follows.
B generates honest receiver’s key pairs (skRi

, pkRi
) ← PKERi

.Setup(1λ) for
i = 1, . . . , �, and sets PK = {pkRi

}�
i=1. Then, the adversary B generates the

public parameter mpk and the master secret key msk as Setup(1λ), except for
hash function H∗

0 and H∗
1 , and sends the master public key mpk and the public

key set PK to the adversary. Note that, the adversary B knows the master secret
key msk and the receiver’s secret key set SK = {skRi

}�
i=1. Therefore, it can

answer the query of the transformation key generation oracle and the decryption
oracle. For a challenge message m ∈ M submitted by A, the adversary B invokes
Enc(mpk,m) to obtain a ciphertext CT ∗ = (CT ∗

1 , CT ∗
2 , CT ∗

3 , π∗) of a random
string K∗

1 ∈ K. It then computes Tag = H∗
0 (K∗

1) and V K∗ = H∗
1 (Tag ‖ CT3),

and sends (CT ∗, V K∗) to the adversary A. The adversary A outputs CTout =
(C1, C2). B computes the random string K ′

1 ← PKER.Dec(skR, C1) and Tag′ =
H∗

0 (K ′
1). We observe that A succeeds if and only if m′ /∈ {m,⊥} and H∗

1 (Tag′ ‖
C2) = V K∗. If A succeeds, we consider the following two cases:
Case 1. (Tag′ ‖ C2) �= (Tag ‖ CT3). If this case occurs, B immediately obtains a
collision of the hash function H∗

1 .
Case 2. (Tag′ ‖ C2) = (Tag ‖ CT3), but K∗

1 �= K ′
1. Because H∗

0 (K∗
1) = Tag =

Tag′ = H∗
0 (K ′

1), B obtains a collision of the hash function H∗
0 .

Verifiable Proxy Re-encryption from Indistinguishability Obfuscation 375

Therefore, the adversary B is able to break the security of collision-resistant
hash functions. This completes the proof.

Theorem 3. If an adversary A can break the weak master secret key security
with probability ε, then, there exists a PPT adversary B, who attacks on the
indistinguishability obfuscation, such that AdvObf

iO,B(1λ) = ε.

Proof. Since the distinguisher B of obfuscator iO consists of two parts: Samp
and D, we respectively construct them as follows.

The algorithm Samp(·) takes 1λ as input. Then randomly choose a PRF
key K ← Key(1λ) and a random key K1, sample two key pairs (pk1, sk1) ←
PKE.KeyGen(1λ) and (pk2, sk2) ← PKE.KeyGen(1λ), compute a CRS crs ←
NIWI.Setup(1λ) for the NIWI proof system, an extractor h ∈ H, two hash
functions H0 and H1, and a symmetric encryption scheme SE, compute a
commitment C ← Com(0len), two ciphertexts CT ∗

1 = PKE.Enc(pk1,K1)
and CT ∗

2 = PKE.Enc(pk2,K1), a punctured key K ′ ← Puncture(K,CT ∗
1 ‖

CT ∗
2), and a random string r∗ ← Eval(K,CT ∗

1 ‖ CT ∗
2), and return mpk =

(pk1, pk2, h,H0,H1, crs, C,SE) to A. When A makes the transformation key
generation query, it sets G0 = G which is a circuit in our construction with
(mpk, pkR, sk1,K) hardwired in it. It computes C∗ = PKE.Enc(pkR,K1; r∗), and
constructs the circuit G1 which is described in Fig. 2, and has (mpk, pkR, sk2,K

′,
CT ∗

1 ‖ CT ∗
2 , C∗) hardwired in it. Finally, it outputs the two challenge circuits

(G0,G1).

Input: Ciphertext CT
Constants: mpk, sk2, K

′, pkR, CT ∗
1 ‖ CT ∗

2 , C∗

1. Parse CT = (CT1, CT2, CT3, π).
2. If NIWI.Verify(crs, y, π) = 0, then output ⊥ and stop, otherwise continue to the next step.

Here y = (CT1, CT2, C, pk1, pk2) is the statement corresponding to π.
3. If CT1 ‖ CT2 = CT ∗

1 ‖ CT ∗
2 , output CTout = (C1 = C∗, C2 = CT3) and stop.

4. Compute K1 ← PKE.Dec(sk2, CT2).
5. Compute r ← Eval(K′, CT1 ‖ CT2).
6. Compute C1 ← PKER.Enc(pkR, K1; r) by using the user’s encryption algorithm, setC2 =

CT3, and output CTout = (C1, C2).

Fig. 2. Functionality G1

The sub-distinguisher D takes as input TKb = iO(λ,Gb), where b is the
challenge bit for D. It sends TKb to the adversary A, and receives a secret key
sk. If sk = sk1, output b = 0, otherwise output b = 1.

Now, we prove that the two circuits G0 and G1 are equivalent on functionality.
First, for any input CT = (CT1, CT2, CT3, π), G0 outputs ⊥ if and only if G1

outputs ⊥. Note that both G0 and G1 output ⊥ if and only if the proof π does not

376 M. Liu et al.

verify, i.e., NIWI.Verify(crs, y, π) = 0, where y = (CT1, CT2, pk1, pk2, π). Next,
we prove that both G0 and G1 have the same functionality for all valid inputs.
We consider two cases: CT1 ‖ CT2 �= CT ∗

1 ‖ CT ∗
2 and CT1 ‖ CT2 = CT ∗

1 ‖ CT ∗
2 .

For the first case, by the first property of puncturable PRF, it follows that
Eval(K,CT1 ‖ CT2) = Eval(K ′, CT1 ‖ CT2) = r. Since NIWI is statistical
soundness, both G0 and G1 can get K1 by decrypting CT1 and CT2 respec-
tively, and output (C1 = PKER.Enc(pkR,K1; r), C2 = CT3) at the same time.
In the second case, G0 computes Eval(K,CT ∗

1 ‖ CT ∗
2) = r, then decrypts

K1 ← PKE.Dec(sk1, CT ∗
1) by using the secret key sk1, and outputs C1 =

PKEUEnc(pkR,K1; r). On the other hand, because CT ∗
1 ‖ CT ∗

2 = CT1 ‖ CT2,
G1 outputs the hardwired value C∗. Note that C1 = C∗ and C2 = CT3 dose not
be changed, we can get that G0(CT) = G1(CT).

Therefore, we have AdvMKS
VPRE,A(λ) = AdvObf

iO,B(1λ) = ε.

Efficiency. Our verifiable proxy re-encryption is efficient. Compared with the
transformation algorithm, the verifiable algorithm only introduces a hash value
which is the verification key, and two hash value computations in the final decryp-
tion algorithm.

5 Conclusion

In this work, we construct a verifiable proxy re-encryption scheme from indis-
tinguishability obfuscation. It can ensure the security of master secret key
even when the proxy and the receiver collude. In addition, the key storage of
the receiver will remain constant, no matter how many clients he deals with.
Furthermore, the size of re-encrypted ciphertexts in our scheme only depends on
the message size and security parameter.

Acknowledgment. This work is supported by the “Strategic Priority Research
Program” of the Chinese Academy of Sciences, Grants No. XDA06010701, National
Natural Science Foundation of China (No. 61402471, 61472414, 61170280), and IIE’s
Cryptography Research Project.

A Preliminaries (Cont.)

A.1 Non-interactive Witness Indistinguishable Proofs

In this section, we present the definition for non-interactive witness-
indistinguishable (NIWI) proofs. We emphasize that we are interested in proof
systems, i.e., where the soundness guarantee holds against computationally
unbounded cheating provers.

Definition 9. (NIWI). A non-interactive witness-indistinguishable proof sys-
tem for a language L with a PPT relation R is a tuple of algorithms
(NIWI.Setup,NIWI.Prove, NIWI.Verify) such that the following properties hold:

Verifiable Proxy Re-encryption from Indistinguishability Obfuscation 377

– (Perfect Completeness). For every (x,w) ∈ R, it holds that

Pr[NIWI.Verify(crs, x,NIWI.Prove(crs, x, w)) = 1] = 1

where crs ← NIWI.Setup(1λ), and the probability is taken over the coins of
NIWI.Setup, NIWI.Prove and NIWI.Verify.

– (Statistical Soundness). For every adversary A, it holds that

Pr
[

NIWI.Verify(crs, x, π) = 1 ∧ x /∈ L

∣
∣
∣
∣

crs ← NIWI.Setup(1λ);
(x, π) ← A(crs)

]

= negl(1λ).

– (Witness Indistinguishability). For any triplet (x,w0, w1) such that
(x,w0) ∈ R and (x,w1) ∈ R, the distributions {crs,NIWI.Prove(crs, x, w0)}
and {crs, NIWI.Prove(crs, x, w1)} are computationally indistinguishable,
where crs ← NIWI.Setup(1λ).

A.2 Commitment Schemes

A commitment scheme Com is a PPT algorithm that takes as input a string x and
a randomness r and outputs c ← Com(x; r). A perfectly binding commitment
scheme must satisfy the following properties:

– (Perfectly Binding). This property states that two different strings can-
not have the same commitment. More formally, ∀x1 �= x2 and r1, r2,
Com(x1; r1) �= Com(x2; r2).

– (Computational Hiding). For all strings x0 and x1 (of the same length),
for all PPT adversaries A, we have that:

|Pr[A1(Com(x0))] = 1 − Pr[A1(Com(x1)) = 1]| ≤ negl(λ).

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

3. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

4. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 2007 ACM Conference on Computer and Communications Secu-
rity, CCS 2007, pp. 185–194. Alexandria, 28–31 October 2007

5. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

6. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

378 M. Liu et al.

7. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp.
40–49. Berkeley, 26–29 October 2013

8. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.:
Generic constructionof chosenciphertext secureproxyre-encryption. In:Dunkelman,
O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Heidelberg (2012)

9. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfus-
cating re-encryption. J. Cryptol. 24(4), 694–719 (2011)

10. Isshiki, T., Nguyen, M.H., Tanaka, K.: Proxy re-encryption in a stronger security
model extended from CT-RSA2012. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 277–292. Springer, Heidelberg (2013)

11. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: Proceedings of the Network
and Distributed System Security Symposium, NDSS 2003. San Diego (2003)

12. Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 77–94. Springer, Heidelberg (2014)

13. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008)

14. Mambo, M., Okamoto, E.: Proxy cryptosystems: delegation of the power to decrypt
ciphertexts (special section on cryptography and information security). IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. 80(1), 54–63 (1997)

15. Matsuda, T., Nishimaki, R., Tanaka, K.: CCA proxy re-encryption without bilinear
maps in the standard model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 261–278. Springer, Heidelberg (2010)

16. Ohata, S., Kawai, Y., Matsuda, T., Hanaoka, G., Matsuura, K.: Re-encryption
verifiability: how to detect malicious activities of a proxy in proxy re-encryption. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 410–428. Springer, Heidelberg
(2015)

17. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing, STOC 2014, pp. 475–484.
New York, May 31–June 03 2014

18. Shao, J., Cao, Z.: CCA-secure proxy re-encryption without pairings. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 357–376. Springer, Heidelberg
(2009)

19. Weng, J., Zhao, Y., Hanaoka, G.: On the security of a bidirectional proxy re-
encryption scheme from PKC 2010. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 284–295. Springer, Heidelberg
(2011)

	Verifiable Proxy Re-encryption from Indistinguishability Obfuscation
	1 Introduction
	1.1 Related Works
	1.2 Organization

	2 Verifiable Proxy Re-encryption
	3 Preliminaries
	3.1 Indistinguishability Obfuscation
	3.2 Puncturable Pseudorandom Functions
	3.3 Randomness Extractor

	4 Construction
	5 Conclusion
	A Preliminaries (Cont.)
	A.1 Non-interactive Witness Indistinguishable Proofs
	A.2 Commitment Schemes

	References

