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Abstract. Despite extensive efforts, state-of-the-art detection appro-
aches show a strong degradation of performance with increasing level
of occlusion. A fundamental problem for the development and analy-
sis of occlusion-handling strategies is that occlusion information can not
be labeled accurately enough in real world video streams. In this paper
we present a rendered car detection benchmark with controlled levels
of occlusion and use it to extensively evaluate a visibility-based exist-
ing occlusion-handling strategy for a parts-based detection approach.
Thereby we determine the limitations and the optimal parameter settings
of this framework. Based on these findings we later propose an improved
strategy which is especially helpful for strongly occluded views.

Keywords: Object detection - Benchmark data set - Occlusion-
handling

1 Introduction

Perception of traffic participants is a fundamental component in driver assistant
systems. Despite extensive research visual detection of objects in natural scenes
is still not robustly solved. The reason for this is the large appearance variation
in which objects or classes occur. A very challenging variation is occlusion which
is caused by the constellation of objects in a scene. Occlusion reduces the num-
ber of visible features of an object but also causes accidental features. Current
object representations show acceptable results during a low to medium level of
occlusion but fail for stronger occlusions. Methods like [1,11] train a holistic
object template in a discriminative manner and focus resources on differences
between classes. This strong specialization on the training problem results in a
stronger decrease of performance for occluded objects when trained on unoc-
cluded views. In contrast to this parts-based methods like [7,8] accumulate local
features in a voting manner. Also when trained with unoccluded views, these
methods can handle arbitrary occlusion patterns, but require that sufficiently
many features can still be detected. However, in general the voting methods
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perform worse than the discriminative ones, whenever test and training set do
not show such systematic differences, as discussed in [15] and confirmed by the
detection results in [2]. In this paper we want to extensively evaluate visibility-
based occlusion-handling strategies for a parts-based detection approach using
a rendered benchmark data set.

Some methods make use of context to explicitly deal with occlusion infor-
mation, i.e. to exploit knowledge about the possible constellation of objects.
The two approaches in [4,14] use Markov-Random-Fields to infer if neighbor-
ing features are consistent with a single detected instance of an object or have
to be assigned to different ones. This allows both approaches to reason about
relative depth of objects and to produce a coarse segmentation. However, the
process over the whole input image leads to a time consuming iteration. Besides
instance-instance relations, also knowledge about general occlusion patterns can
be used. In [13] the authors handle vertical occlusion generated by the image
border, which means that they have some knowledge about the occlusion con-
stellation. This idea can be extended to the whole image if information about
the occluding object is provided.

Occlusion is related to the 3D relation of objects. A general cue of 3D informa-
tion is depth which can be used to check the physical plausibility of an object’s
position and size [6] or to segment and put attention to individual scene ele-
ments [12]. In [12] temporal differences between RGB-D(epth) views are used to
discover movable parts for action representation.

Other strategies make use of 3D annotated data of car views. A common strat-
egy for occlusion-handling is the use of the deformable part model (DPM) [3]. In
[10] the 3D annotated data of the KITTI data set [5] is used to generate bound-
ing boxes of the occluder, the occluding object, and their union and for each
of the three types a separate DPM is trained. In [16] the authors used hand-
annotated 3D CAD models and generated part models additionally to the full
car view. A single component DPM detector is trained for each part configu-
ration. To handle occlusion 288 occluder masks are generated for the training
data. The approach works not in real time and can handle only occlusion cases
which match somehow with the generated occlusion masks.

A parts-based detection approach with explicit occlusion-handling is shown
in [9]. For the occlusion-handling depth information is used to determine the
visibility of a car hypothesis. This information is used for a re-weighting of
the score.

In general most approaches with explicit occlusion-handling make use of
information of the occluding object delivered from different methods or sensors.
We also want to integrate mask information of the occluding object to reason
about visibility of features and to re-weight the activation score of a possible
car hypothesis. The occluding mask can be provided in a real system by 3D or
depth information. We want to show the limitations and the optimal parame-
ter setting for parts-based detection approaches which provides a mask of the
occluding object.

In Sect.2 we describe how we generated a rendered benchmark data set.
Section 3 outlines the used parts-based detection framework. Finally, in Sect. 4
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we extensively evaluate a visibility-based occlusion-handling strategy for a parts-
based detection approach, before we propose an improved strategy. Finally we
are drawing the conclusions and further work in Sect. 5.

2 Rendered Benchmark Data Set

Benchmark data sets like KITTI show precise bounding boxes for objects but do
not provide pixel-level information of the constellation of the occlusion, which is
quite important to evaluate different occlusion strategies. To get more accurate
labeling and a better control of the scene conditions we used a render framework
to generate a data set. With the render framework we can define the position of
the car, the position of the light source, the intensity of the light, and the angle
of rotation of the car. Additionally we can estimate which pixels of the rendered
image belongs to which object and can store this information in a mask which
is more precise than a bounding box. After rendering we pasted the car models
in the center of a car free street scene to get realistic clutter in the background.
For our data set we defined the ranges of variation for the parameters for the
scene conditions. At the rendering randomly values for the different parameters
are used inside the defined ranges. An overview of the different car models with
the changing scene conditions can be seen in Fig. 1.

The size of each rendered segment is set to 175 x 70 which correlates to the
optimal size for our car models plus a border. We normalized the size of each car
model in a way that the side view covers a given width of the segment. In general
parts-based detection approaches are trained to a limited view of rotation of an
object. For full rotation several detectors have to be trained. Since we want to
concentrate on the evaluation of occlusion-handling strategies we only used side
views of cars in a range of 30 degrees of variation at a total side view and omit
the rotation handling. We randomly shifted the center position of the car for
a better generalization after training. Because we want to evaluate occlusion
strategies we use a fixed size for each car. In the upper line of Fig.2 some
segments with cluttered background for the training can be seen. In the bottom
line the corresponding masks are shown.

For our data set we used for each car model 400 views. Segments of 44 car
models each with 400 views are used for the training set while the other 44 car
models each with 400 views are used for the test set. The training set includes
non-occluded car views with a segment size of 175 x 70 pixels.

We generated different test sets with different rates of occlusion. The set with
0 percent of occlusion only shows a car object in the center of a car free street
scene. These images were then used with an occluding object to generate test
sets with 20, 40, 60, and 80 percent of occlusion. To get a car like shape for
the occluding object we used an ellipse shaped patch. Instead a black colored
occluding object which is unnatural since it includes no features we cropped
patches out of car free street scenes. Figure 3 shows an example for a generated
test image and the corresponding masks. For a consistence evaluation of the
investigated occlusion-handling approach we also generated occluding constella-
tions without any car. For the training set we generated in total 17600 segments



102 M. Struwe et al.

e N o ey e
g-bgiﬂﬂb
- iy s Gl e oS
-‘9 e D e e wEs
e e B o ) She gl SBe
D e - TS e o @ e
il e o Dy i o e e
- i e e B o s kar
D o e e s oD B o

Fig.1. Data set with different scene conditions: A data set with randomly chosen
conditions for light position, light intensity, and angle of rotation is generated.

of un-occluded car views and for the test set 105600 images with different rates
of occlusion.

In the next section we will use this data set to train and test our parts-based
car detector.

3 Parts-Based Car Detector

Parts-based approaches detect the occurrence of part features over the image
where each feature can vote casts for the object center. At the end a confidence
map determines plausible detections. In this section we describe which descrip-
tors are used for the features. We also show how the visual feature codebook is
build and later used for detection.

3.1 Extraction of Texture Descriptors

Voting methods like [7] use a key point detector to localize interest points in the
input image. At these points some texture descriptors are used, e.g. SIFT [8].
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Fig. 2. Segments used for training: The upper line shows car segments with a cluttered
background while the bottom line shows the corresponding masks.

Fig. 3. Example of the test set: At the left a test image with an occluding ellipse is
shown. The two other images show the mask for the background object without any
occlusion and the mask of the occluding object, respectively.

We noticed that these points often result only at high textured areas. To handle
this drawback we decided to use a dense grid over the image for the extraction
of texture descriptors. We tested several distances for the gap between grid
points. A gap of 5 pixels shows the best compromise between the number of
keypoints and the computing time. After some evaluation we decided to use
SIFT descriptor without scaling what means that the receptive field size of 16
pixels correlates with the size of the patches used in the segment. To avoid the
extraction of untextured descriptors we use an edge detector with the same size of
the receptive field as the descriptor on each grid point. Only patches with corners
or edges provide enough texture information to get specific features. We simply
check if the resulting patch of the edge detector shows a minimum percentage of
marked pixels. Patches that do not achieve this criterion are unselected. With
those we can see a threefold reduction of the numbers of features (Fig. 4).

3.2 Learning of Parts-Based Object Representation

The object representation of a parts-based detector is stored in a visual code-
book. The codebook includes the features and the relative position to the object’s
center. One method to build the codebook is to use a clustering method. The
resulting clusters are the features of the codebook. Approaches that are trained
on natural data use the whole training segment which leads to extraction of
descriptors also at the background. These accidental non-car features have to be
filtered out which is a challenging task by itself. By using our rendered data we
can use the mask information of the object to limit the extraction on the object
that should be learned. For training we used the training segments without
occlusion. To build the codebook a MiniBatchKMeans clustering is performed.
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Position for Descriptor Extraction

Fig. 4. Extraction of Texture Descriptors: The extraction layer shows the edge map
and the resulting position for the descriptor extraction.

In contrast to the normal KMeans this clustering method splits the data into
chunks to save memory and computing time.

Figure 5 shows two features of the visual codebook. On the left the so called
feature maps are shown which describe the distribution of the occurrence of
each stimuli of the codebook cluster. The sum of each feature map is normal-
ized to one. On the right some corresponding stimuli of the descriptor clusters
are shown. A well-balanced amount of clusters have to be used to get feature
maps that are not too specific but also not too general. Too specific maps show
only activations at small compact areas and represent non-generalized training
results. Too general maps show a broad distribution of the stimuli and a non-
specific training result. In our case 220 clusters provided a good compromise
between both criteria. In the next section we show how the codebook is used for
detection.

Occurrence Maps Some clustured descriptor stimuli
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Fig. 5. Example of codebook features: On the left the so called occurrence maps are
shown which describe the distribution of the occurrence of each stimuli of the codebook
cluster. On the right some corresponding stimuli of the descriptor cluster are shown.

3.3 Parts-Based Detection Framework

In this section we will show a parts-based framework for car detection. First
we extract descriptors for the full test image like described in Sect.3.1. For
each descriptor we determine the best matching feature. This feature votes with
its occurrence map for the objects’ center. An accumulation of all votes of all
features at the test image is used to build the activation map. We refer to the
accumulated score at each single position with v (Fig. 6).
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Fig. 6. Detection framework: The winning feature map shows the best matching feature
for each pixel. Each feature votes with its occurrence map for the objects’ center. An
accumulation of all features is used to build the activation map.

Detection rate during occlusion

Occlusion Rate [%]
0

— 20

— 40
60

— 80

0.8

4
=Y

MISS RATE

14
IS

0.2

0.0k

FP/IMAGE

Fig.7. Detection Performance: The ROC plot shows the detection result of our
visibility-based parts-based car detector for five rates of occlusion.

Figure 7 shows the detection performance of this parts-based car detector for
0, 20, 40, 60, and 80 percent of occlusion. A loss in detection performance with
an increase of occlusion rate can be seen. Car hypothesis that shows a minimal
overlap of 80 percent in the height and 60 percent in the width of the ground
truth are marked as detected car.

4 Occlusion-Handling of the Parts-Based Car Detector

As described in Sect. 1 parts-based methods like [9] use an explicit occlusion-
handling to re-weight the accumulated score by making use of the predicted
visibility of the car hypothesis. Motivated by this we will show a visibility-
based occlusion-handling strategy for our parts-based detection framework. Like
described before the parts-based approaches use an accumulative step to calcu-
late the score for the car hypothesis. Occlusion will reduce this score. A visibility-
based occlusion-handling strategy is to predict the occlusion of an object by



106 M. Struwe et al.

Mask of Occluding Object Feature Contribution Map Predicted Occlusion Predicted Occlusion

m 20.0 %

Fig. 8. Uniform contribution for g calculation: On the left the mask of the occluding
object for a support window can be seen. The feature contribution map shows a uniform
contribution which results in a predicted occlusion rate of 20 percent.

using the mask of an occluding object and to re-weight the score v by taking the
predicted occlusion 3 into account. For this we use a so called support window.
The support window covers the field of the features that potentially contribute
to the hypothesis. The support window has the same size like our feature maps.
To calculate [ a uniform distribution of each pixel of the support window is
supposed (Fig.8).

The predicted occlusion of the support window is used to reject detected
features inside the occluding area before accumulating the score. We refer to the
score without occlusion-handling with /. The final score 4" will be calculated
with the predicted rate of occlusion § for the supporting window (Fig.9 with
(A) for the re-weighting), i.e.

' =~"/(1-5) (1)

If 8 is 0 than the re-weighting has no effect. But by increasing § at the
evaluation the re-weighting will increase the score while the support of 7/ is
getting lower. This can generate false positives at high values of . Our goal is
to find the maximum value for § that improves the detection performance. So
we need a limitation of 5 up to a defined maximum occlusion rate for the use of
the occlusion-handling. To find the optimal value for this limit §,,,, we evaluate
the detection performance of our car detector by using values from 0.1 to 0.9in
steps of 0.1 for B,,4.- To see also effect of 3,4, at different rates of occlusion we
use occlusion rates of 20, 40, 60, and 80 percent at the evaluation. The detection
results can be seen in Fig. 10. For 20 percent occlusion a (3,4, of 0.2 shows the
best results while for 80 percent occlusion a (4, of 0.5 yields the best results.
In general the best detection performance can be seen if 3,4, is equal or in most
cases lower than the predicted occlusion rate.

However, the results show that for each occlusion rate another 3,4, has to
be used. For a detection system only a fixed Gy, can be used. So we need an
optimal (3,4 for all occlusion rates. To find such a value we plotted the result
for the full data set including all occlusion rates for each 3,4, of an occlusion
rate. Figure 11(left) shows the best improvements at all occlusion rates by using
a Omaz of 0.2. Figure 11(right) shows an improved detection performance for all
occlusion rates by using the determined optimal value of 0.2 for (,,4,. The most
gain can be seen at 40 and 60 percent of occlusion.
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Fig. 9. Detection framework with occlusion-handling strategy: The mask of the occlud-
ing object is used to calculate the activation score by deselect the winning features at
the occluding area. For the uniform occlusion-handling the re-weighting (A) is used to
generate the final score. For the contribution-aware occlusion-handling the re-weighting
(B) is used and will be explained in Sect.4.1.
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Fig. 10. Evaluation of the Detection Performance: The plots show the detection result
for 0, 20, 40, 60, and 80 percent of occlusion separately.
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Fig. 11. Optimal parameter setting for occlusion-handling: (Left) Detection result for
the full data set including all occlusion rates for each Bmqe. (Right) shows the detection
performance for different occlusion rates by using the determined optimal value of 0.2
for Bmaz. The dotted lines show the detection result by using the parts-based car
detector without occlusion-handling while the solid lines belong to the detector with
uniform occlusion-handling.

4.1 Contribution-Aware Strategy for Occlusion-Handling
of a Parts-Based Car Detector

A uniform distribution of the parts of a car can not be expected by using a
parts-based detection approach. Therefore we developed a way to account for
the contribution to the accumulative score of the features. To get a more realistic
estimation of the missing score we want to use a so called feature contribution
map. For this we used the activation maps of each training segment and add all
maps together in the feature contribution map. This map is used for calculating
~" and (3. Now ' shows a more realistic score after the rejection of the feature
of the occluding area (Fig.9 with (B) for the re-weighting). Also 8 presents now
a more realistic occlusion rate of the car hypothesis (Fig. 12).

Like in Sect. 4 we plotted the detection result for the full data set including all
occlusion rates for each (4, of an occlusion rate. In Fig. 13(left) the use of 0.4

Mask of Occluding Object Feature Contribution Map Predicted Occlusion Predicted Occlusion

Fig. 12. Contribution-aware calculation for § calculation: On the left the mask of the
occluding object for a support window can be seen. The feature contribution map
shows a realistic contribution what result in a predicted occlusion rate of 35 percent
by covering 20 percent of the area of the supporting window.
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Fig. 13. Optimal parameter setting for contribution-aware occlusion-handling: (Left)
Detection result for the full data set including all occlusion rates for each Bmaz. (Right)
shows the detection results by using the determined optimal value of 0.4 for Bp,qz. The
dotted lines show the detection performance using the uniform occlusion-handling while
the solid lines results from the contribution-aware occlusion-handling.

for B,,az shows the best result. We used this 3,54, of 0.4 for the car detector with
the contribution-aware occlusion-handling and show the detection performance
in Fig. 13(right). The plot shows an improved detection performance at occlusion
rates of 40, 60, and 80 percent while a small lost can be seen for 20 percent of
occlusion.

5 Conclusion and Further Work

In this paper we introduced a rendered benchmark data set with controlled lev-
els of occlusion and scene conditions. We determined the limitations and the
optimal parameter settings of a parts-based car detector by extensively evalu-
ating a visibility-based occlusion-handling strategy. The result of this evalua-
tion is used to configure the car detector, which shows an improved detection
performance at all occlusion rates. We also showed an improved strategy for
occlusion-handling which boosts the detection performance specially for higher
occlusion rates. The proposed occlusion-handling strategies are applicable to
other detection approaches that include an accumulation step, like e.g. [3,10].
The results in Fig. 13 show that the detection performance can not be improved
for 80 percent of occlusion as much as for 40 and 60 rates of occlusion. A
very challenging effect is the number of false positives that are generated at
very high levels of occlusion if too strong re-weighting is applied. This limi-
tation of the system can not be solved by the used input information. More
scene understanding and information is necessary to have a kind of possibility
check to reduce the number of said false positives and to boost the detection
performance.
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