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Abstract. Thermal cameras can not be calibrated as easily as RGB cam-
eras, since their noise characteristics change over time; thus scene-based
non-uniformity correction (SBNUC) has been developed. We present a
method to boost the convergence of these algorithms by removing the
readout noise form the image before it is processed. The readout noise
can be estimated by capturing a series of pictures with varying exposure
times, fitting a line for each pixel and thereby estimating the bias of the
pixel. When this is subtracted from the image a noticeable portion of the
noise is compensated. We compare the results of two common SBNUC
algorithms with and without this compensation. The mean average error
improves by several orders of magnitude, which allows faster convergence
with smaller step sizes. The readout noise compensation (RNC) can be
used to improve the performance of any SBNUC approach.

1 Introduction

In thermal cameras the noise is both spatially varying and the noise character-
istics change over time. Hence, it is necessary to constantly update the noise
estimate. Scene-based non-uniformity correction (SBNUC) estimates the noise
parameters of the video stream online.

We present a method to estimate the readout noise by capturing a series of
images with different exposure times. Adding readout noise compensation (RNC)
to existing SBNUC techniques increases the initial image quality drastically.

The variety of SBNUC techniques can be devided in three major groups:
Neural net (NN) algorithms assuming neighboring pixels to capture the same
brightness, constant statistics/constant range (CR) algorithms assuming a uni-
form distribution of a pixel’s values over time and motion constraint algorithms
assuming a scene point can be found at a different location in the following
frame. All of these approaches start from an unnecessarily noisy image due to
the contained readout noise.

By removing this fixed pattern noise (FPN) the SBNUC algorithm can work
on images with less corruption, which leads to faster convergence and better
results. We compared NN and CR algorithms with and without RNC to validate
the advantage of this method. Since the step size of the adjustment can be
reduced it also has beneficial effects on ghosting.
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2 Previous Work

The choice of a photometric calibration process for a digital cameras is depending
on the wavelength the sensor is sensitive to. For conventional RGB cameras and
some infrared cameras the procedure requires the user to take dark frames, where
the lens is covered to let no light fall onto the sensor, and flat-fields, where every
pixel is illuminated with the same amount of brightness (see Granados et al. [2]
for details). For cameras sensitive to mid- and far-infrared it is not possible to
take dark frames, since the material to cover the lens would have to be cooled
to 0K or it will emit noticeable radiation.

To overcome this problem special calibration devices called black body radi-
ators have been developed. They have a spatially uniform area of material with
the same temperature. The dark frame can be extrapolated by taking measure-
ments at different temperatures.

One of the first methods for SBNUC has been developed by Scribner et al. [9].
They proposed to learn the gain and offset by minimizing the difference to the
mean value of the nearest neighbors with steepest descent. This approach is
inspired by the way neural nets backpropagate errors to adopt to the desired
output. Harris and Chiang [3] assume that the brightness corresponding to a
fixed pixel over time follows a Gaussian distribution with zero mean and unit
variance. They called it constant-statistics constraint and used it to level out the
mean and standard variation of the detector. Geng et al. [1] improved the algo-
rithm by combining the Gaussian kernel with a temporal median. The median
filter adds robustness to variation on the sample distribution. Hayat et al. [4]
assume a uniform distribution of the signal. The incident radiation is estimated
by using the mean and variance of the pixel values in a time window. The min-
imum and maximum values of the image in that window are used to project
the values back to the original domain. This algorithm was refined by Torres,
Reeves and Hayat [11] with a recursive method for updating the parameters of
the constant range algorithm, which in turn was enhanced by Pezoa et al. [5]
by replacing the simple moving average with an exponential moving average.
Torres and Hayat [10] also developed a Kalman filter considering gain and off-
set of the detectors as state variables modeled by a Gauss-Markov process. The
Kalman filter approach was then modified by San Martin, Torres and Pezoa [7]
assuming that the gain does not change over time and only the offset has to be
estimated. A more recent development are interframe registration based meth-
ods, like the one proposed by Zuo et al. [14]. They find the translation between
two consecutive frames by computing the cross-power spectrum. The phase cor-
relation is limited to pure translations, so this method it best suited for scanning
applications where the scene moves parallel to the image plane, or vice versa.

3 Noise Model

There are two different kinds of noise cameras are susceptible to: temporal and
spatial. While temporal noise can be easily dealt with by averaging multiple
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frames, it is often impossible to do so due to motion in the scene or the limited
frame rate of the camera. Spatial noise, or non-uniformity is the deviation of the
response of each pixel to the same signal.

3.1 Temporal Noise

The variation of a pixels value exposed to the same signal over time is called
temporal noise. It is caused by small variations in the conversion of light into
electrons and holes (photon shot noise), the temporal variations of electrons
and holes generated by the sensors temperature (dark current shot noise) and
the noise of the electronic device itself occurring during the charge-to-voltage
transfer and analog-to-digital conversion (readout noise).

As stated before, temporal noise can be compensated by averaging multiple
consecutive frames. If this not practical the noise is often suppressed by low-
pass filtering or more advanced methods in a companion chip in the camera. For
calibration purposes, one wants to make sure such noise compensation is turned
off since it adds unwanted non-linearity.

3.2 Spatial Noise

The quantum efficiency of the pixels is not uniform throughout the sensor i.e., for
the same signal the digital value differs from pixel to pixel. This is called spatial
noise and compensated by photometric calibration also known as non-uniformity
correction.

Photo-Response Non-uniformity (PRNU). Each pixel consist of a photo-
sensitive area in which the light is converted into current. The current is con-
verted into voltage, which is amplified to make the result less susceptible to noise
in the readout process. Due to small differences in size and material there are
not two identical pixels and hence the resulting value is not the same for the
same signal. This is called photo-response non-uniformity and simplified to a per
pixel gain factor.

Dark Current Non-uniformity (DCNU). As each pixel responds different to
light it also reacts different to temperature. The amount of current generated by
temperature is called dark current and the different susceptibility to it is called
dark current non-uniformity. It is modeled as an additive offset to the signal.

4 Photometric Calibration

4.1 Camera Model

A camera converts light into digital values. The irradiance X ) at a pixel position
J generates a digital value

v — gt(a(j)X(j) + b(j)) + Ng, (1)
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Fig. 1. Two pixels at different positions. On the left a pixel capturing a bright signal;
on the right a pixel capturing a dark signal. The blue line represents the pixel value
for each exposure time with 100 sampling points. The green line is the estimate of
the linear regression (LMS). The values are scaled from 14 bits per pixel to [0, 1], the
exposure time is in ps (Color figure online).

where ¢ is a global gain factor, t is the exposure time, /) is the per pixel
gain induced by PRNU, b\ is the offset induced by DCNU and Ny is the
readout noise. The camera response is assumed to be linear and, unlike in [2],
the quantization is omitted.

4.2 Non-uniformity Correction (NUC)

Most NUC algorithms drop the readout noise Ng and global gain g which sim-
plifies the equation and allows to compute the irradiance X@) (or some value
proportional to it) by estimating the per-pixel gain a?) and offset b4), by

Y@/ pl)

(@) ~
X a(])

(2)
As we will show it is not advisable to omit the readout noise. It is neither
negligible, nor hard to measure.

5 Readout Noise Compensation

In theory the readout noise is measured by taking a bias frame. That is an
image captured with zero integration time which according to the camera model
(Eq. 1) would consist only of readout noise. The problem is, no camera can reset
and readout the sensor with no delay. This means there is always dark current
present in the picture. One way is to set the integration time to the minimum
value and cover the lens, as one would taking a dark frame. The captured image
should contain only readout noise and very little dark current. We found that
the cameras we have access to don’t allow a integration time of zero and even
very small values were not applied correctly.
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Fig. 2. The image (a) can be preprocessed by estimating the readout noise (c¢) and
subtracting it from the input.

Another way is to estimate a pixel value with zero integration time by linear
regression. This is only possible if the camera response curve is fairly regular
i.e., the digital value should change with the same factor as the integration time
(Fig.1). For a single pixel j the same scene point is captured with different
exposure times t1, ¢, ..., t,, so the pixel values are

y ) "
v o te ;

=0+ (3)
¥ tn

where r, and 7, can be estimated by linear regression e.g., least mean square.
To get more accurate results, the temporal noise can be reduced by averaging
multiple exposures or the number of integration times can be increased. Note
that it is not necessary to know the signal X () or any of the other variables in
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Fig. 3. The mean absolute error (MAE) to the ground truth of the Xenics Bobcat for
different step sizes.

Eq. 1, since the parameters
r) = (a9 X9 4 b)), and

: (4)
’I"l()j) = NR

already comprise them. It is essential that none of the values Yi(j ) is saturated.

We can now simply remove the readout noise by subtracting rlgj ) from the
pixel value YY) (see Fig. 2).

Readout noise is classified as temporal noise, which means it should not have
a different average for different pixels. This means either that there is also a
spatial non-uniformity in readout noise, or that the non-uniformity we found is
caused by a noise source which our camera model does not contain.

6 Evaluation

Our readout noise compensation (RNC) has been evaluated on two common
SBNUC algorithms: neural nets (Scribner et al. [8]) and constant range (Hayat
et al. [4]). Both algorithms were implemented on a graphics card with the fol-
lowing improvements:



Scene-Based Non-Uniformity Correction with Readout Noise Compensation 327

_10—3
’ 5 19 ~\C
2 )
[ (o)
8 5
= )
2 3
= <
T - " 3]
£ 03756 g
0 200 400 600 800 1,000 0 200 400 600 800 1,000
image number image number
(a) NN (b) NN with RNC
5 5
£ £ 02 /
[} [}
E E 7
2 2
< < 0.1
- / c ——0.005
e _ 3 - 0.003
() — Q —
g TN g - 0.002
0.1 ple—t— ——0.001
0 200 400 600 800 1,000 0 200 400 600 800 1,000 | 00005
image number image number Step size
(¢c) CR (d) CR with RNC

Fig. 4. The mean absolute error to the evaluation data of the Xenics Bobcat for dif-
ferent step sizes.

— The neural net algorithm was implemented with the adaptive learning rate
from Torres et al. [12].

— The constant range approach was implemented according to Redlich et al. [6].
The minimum and maximum of the range were set per pixel to the lowest and
highest value of the frames processed.

A Xenics Bobcat-640-CL and a Raptor Photonics OWL 640 Cameralink
were used for the evaluation. The sequences used were captured with the cameras
mounted behind the (uncoated) windshield of a car. Due to the different frame
rates, the length of the sequences differ from each other, so we took the first
1000 frames of each sequence. The images were processed in the order they were
captured in to simulate an online calibration.

The results are heavily depending on the chosen step size. If it is too small, the
algorithm would take longer than needed; if they are too big the algorithm would
produce ghosting (overfitting). In general it is advisable to decrease the learning
rate over time, which is called annealing (see Zeiler [13]), but for comparison it
is sufficient to use a fixed step size.

6.1 Comparison to Ground Truth

The error was measured in mean absolute error (MAE) to a ground truth. The
ground truth is the image corrected by flatfielding and dark frame subtraction.
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Fig. 5. The mean absolute error to the evaluation data of the Raptor OWL for different
step sizes.

For each camera several 50 flatfields and 50 dark frames at operating temperature
were acquired. The mean flatfield ff and mean dark frame b are used to calculate
the per-pixel gain (similar to [2])

A9 — )
Y ST, (49 b0))

The ground truth is then computed according to Eq.2. Since it is not used in
any of the evaluation algorithms, the global gain is not corrected for. For a
valid ground truth it is absolutely necessary to capture dark frames. This is only
possible with cameras sensitive to reflected and not thermal light, which is why
we used short-wave infrared cameras for the evaluation.

o —

(®)

6.2 Comparison to Evaluation Data Set

The result of each frame is also compared to a random (but fixed) set of 30 images
from other sequences. This tests the generality of the current gain and offset.
The overfitting to pixels that change only slightly is penalized when choosing
uncorrelated images to compute the MAE.
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Fig. 6. The mean absolute error to the evaluation data of the Xenics Bobcat for dif-
ferent step sizes.

6.3 Longer Sequence

To make sure we do not stop the evaluation before the algorithms could exploit
their full potential, we used a 4235 frame sequence of the Xenics Bobcat (Fig. 6).
Also we used a wider range of step sizes with higher values to give the NN the
chance to take bigger steps towards a smooth image and smaller values to let
the algorithms with RNC slowly decrease the MAE even more.

6.4 Results

As Figs. 3,4 and 5 show, without RNC the algorithms could not achieve an MAE
even close to the error of the pictures with RNC after 1000 frames. The MAE
achieved with RNC is around 0.16 %, whereas the lowest MAE achieved without
RNC is 9.1% (CR to ground truth), or 11.7% (CR to evaluation data). As Fig. 6
shows, even after 4235 frames none of the algorithms could decrease the MAE
significantly under the initial error of RNC. The lowest MAE to the evaluation
data was achieved by NN with RNC with a step size of 0.002 after 164 frames.
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Fig. 7. Frame 1000 of the sequence. The results with RNC (b) and (d) have both an
MAE of < 0.002. The NN algorithm (a) shows ghosting and the CR approach (c)
still has visible FPN. For displazing purposes, the brightness of (b) and (d) has been
increased.

7 Conclusion

We showed that the proposed RNC gives the actual SBNUC algorithm a way
better starting point. Figure7 shows that the remaining non-uniformity after
1000 frames is - with both tested algorithms - hard to see and the MAE is
smaller than 0.2 %. Since the RNC is independent from the SBNUC it can be
also used with other algorithms than NN and CR. Even without SBNUC the
RNC reduces the FPN considerably. Although, for long sequences we recommend
to use SBNUC with a low step size, which can smooth out changes in dark current
noise that is common in thermal cameras. In theory, once the parameters are
known they can be reused unlimited, but this has not been researched and the
parameters can be updated every time the camera is not moving.
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