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Abstract. Enabling private database queries is an important and chal-
lenging research problem with many real-world applications. The goal
is such that the client obtains the results of its queries without learn-
ing anything else about the database, while the outsourced server learns
nothing about the queries or data, including access patterns. The secure-
computation-over-ORAM architecture offers a promising approach to
this problem, permitting sub-linear time processing of the queries (after
pre-processing) without compromising security.

In this work we examine the feasibility of this approach, focus-
ing specifically on secure-computation protocols based on somewhat-
homomorphic encryption (SWHE). We devised and implemented secure
two-party protocols in the semi-honest model for the path-ORAM pro-
tocol of Stefanov et al. This provides access by index or keyword, which
we extend (via pre-processing) to limited conjunction queries and range
queries. The SWHE schemes we consider allow easy batching or “SIMD”
operations, and also let us vary the plaintext space in use. These capa-
bilities let us devise many sub-protocols that are interesting in their own
right, for tasks such as encrypted comparisons, blinded permutations,
and the really expensive ORAM eviction step.

We implemented our protocols on top of the HElib homomorphic
encryption library. Our basic single-threaded implementation takes about
30 min to process a query on a database with 222 records and 120-bit long
keywords, providing a cause for optimism about the viability of this direc-
tion, and we expect a better optimized implementation to be much faster.

Keywords: Comparison protocols · Homomorphic encryption ·
ORAM · PIR · Private queries · Secure computation

1 Introduction

The recent explosive growth of data outsourcing raises the issue of privacy guar-
antees for the outsourced data. While encryption can protect the content of the
outsourced data, it remains a challenging problem to access the data privately.
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Since it is often possible to deduce important information from the access pat-
tern alone (see e.g., [17] for some examples), it is important to even hide the
access pattern from the server.

Solutions for hiding the access pattern include the oblivious RAM (ORAM)
of Goldreich and Ostrovsky [12] and private information retrieval (PIR) of Chor
et al. [4]. Recent years saw a surge in the level of interest and volume of new
work in this area, addressing better efficiency, increased functionality, new threat
models, and more. Roughly speaking, solutions can be categorized as either PIR-
like protocols that inherently work in linear time in the size of the database,
or ORAM-based solutions that have linear-time pre-processing but sub-linear
access time (at the price of keeping some secret storage at the client). The
current work is of the latter type.

The problem of private queries becomes even harder in situations where the
client is not the data-owner and we need to ensure that the client also does not
learn too much. Below we sometimes refer to this setting as symmetric private
queries (borrowing the terminology from symmetric-PIR). For example, consider
an organization that wants to maintain its internal access-control policy for the
data that it outsourced to the cloud. In this case it is not enough to require
that the cloud provider does not learn anything about the data. We must also
ensure that an individual client from the organization who queries the database
only gets the data that it asked for (and was authorized to obtain1), and the
access protocol does not inadvertently leak anything else about the data. Similar
concerns arise for a government organization setting up an encrypted server with
need-based access for its clients2.

1.1 Previous and Concurrent Work

A promising direction for addressing (symmetric) private-query is the secure-
computation-over-ORAM architecture of Ostrovsky and Shoup [22] and Gordon
et al. [13]. Here the client and server use secure two-party protocols to simulate
the actions of an underlying ORAM protocol. This way we can keep the sub-
linear access time of the underlying ORAM, while ensuring that the parties do
not learn anything beyond the output of the original protocol, i.e., the server
learns nothing and the client only learns the answer to its query.

In [13,22], this architecture was proposed as a solution for generic multi-party
computation in RAM complexity, i.e., without having to transform the original
insecure RAM computation into a binary circuit. The first implementation of a
system along this line was due to Gordon et al. [13], using Yao-circuit-type two
party protocols over the tree-ORAM of Shi et al. [25]. Gentry et al. later proposed
a few optimizations for the underlying ORAM scheme [8], and also suggested to
utilize low-degree homomorphic encryption for the two-party protocols over this
ORAM, but did not implement any of these protocols.
1 This report only covers the implementation of the private query protocols themselves,

we briefly comment on the related authorization issue in Appendix B of the full
version [9].

2 Such was the requirement of a recent IARPA SPAR program [16].
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Very recently, Liu et al. [21] developed an automated compiler for secure
two-party computation, using the Gordon et al. architecture of Yao-based pro-
tocols over tree-ORAM (with many optimizations). Also, Keller and Scholl [19]
extended the secure-computation-over-ORAM architecture to handle any num-
ber n ≥ 2 of parties. They use the SPDZ framework [7] (with protocols based
on algebraic-black-box approach with preprocessing) and use both tree-ORAM
and path-ORAM as the underlying ORAM schemes. (Path-ORAM was recently
proposed by Stefanov et al. [26] and is a variant of tree-ORAM with better
asymptotic efficiency. As we will see later, our work utilizes Path-ORAM. The
work of Keller and Scholl is concurrent to ours.)

Along a different direction, many recent works have aimed at achieving
extremely high speed by somewhat compromising privacy, leaking a small
amount of information about the access pattern. Some notable examples of work
along this direction is the CryptDB system of Popa et al. [24], and recent works
on searchable symmetric encryption due to Pappas et al. [23] Cash et al. [3], and
Jarecki et al. [18].

1.2 This Work

In this work we designed and implemented a system for symmetric private queries
in the semi-honest adversary model, supporting private database access by either
index or keyword. We focus on exploring the feasibility of the direction advocated
by Gentry et al. [8], of using secure-computation protocols based on low-degree
homomorphic encryption over the tree-ORAM scheme. Specifically, we used for
the underlying ORAM a slight modification of the Path-ORAM protocol of
Stefanov et al. [26], and implemented our two-party computation protocols based
on the HElib homomorphic-encryption library [15].

Our results show cause for optimism regarding the feasibility of this direc-
tion: Our single-threaded implementation can query a moderate-size database
with 222 records on a 120-bit keyword in just over 30 min. This indicates that
SWHE-based protocols are not as slow as commonly believed. Moreover there
is a wide range of further optimizations that can be applied (both algorithmic
and implementation-level), and we expect a better optimized system to be one
to three orders of magnitude faster (see discussion in Sect. 5). In this report
we describe all the sub-protocols that went into our implementation, and also
describe some extensions of the basic system to support range queries, autho-
rization, and even provide limited support for conjunctions via pre-processing.

Our work is similar in many ways to the concurrent work of Keller and
Scholl [19]. In particular they also developed secure-computation-over-ORAM
protocols for arrays (access-by-index) and dictionaries (access-by-keyword).
Some important differences between our work and [19] include the following:

– Keller and Scholl target generic multiparty secure computation rather than data
outsourcing. In particular in their system all the parties need to keep state as
large as all of the data (since they use secret-sharing to share the entire state).
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Also the current work includes extensions that are more specific for data out-
sourcing such as range queries, conjunctive queries, and authorization.

– The protocols in [19] are all in the “algebraic black-box model” (using the
SPDZ framework) while ours use SWHE as the basic tool. As we discuss below,
introducing new SWHE-based secure protocols is one of the contributions of
the current work.

We also note that our performance numbers cannot be directly compared to those
from [19], since they only report the online numbers and not the “expensive”
offline computations that are done by the SPDZ framework.

SWHE-Based Secure Computation. Beyond the specific application of private
queries, another contribution of the current work is in developing several new
SWHE-based secure computation protocols that are interesting on their own.
In particular, the SWHE schemes we consider allow ciphertext packing and
agility in the choice of the underlying plaintext space, which leads to surprisingly
efficient sub-protocols for important tasks.

Encrypted Equal-to-Zero and Comparisons. Comparing encrypted num-
bers is a common low-level task in many cryptographic protocols, and significant
effort was invested in optimizing it, see e.g., [5,20,27,28]. In our context, we need
the result to be encrypted, i.e. we want the end result to be an encryption of the
answer bit, zero or one.

In the simplest setting, we would like to transform an encryption of an n-bit
value x into an encryption of a bit b such that b = 0 if x = 0 and b = 1 if
x �= 0. Computing b homomorphically from x without any interaction requires
homomorphic degree roughly 2n, or we can use a single communication round
to get an encryption of the individual bits of x, and then can use degree-n
homomorphism to compute the answer. But we can actually do much better. In
Sect. 3.1 we describe a protocol that uses only additive homomorphism, works in
log∗ n communicating rounds, and requires O(n) homomorphic addition oper-
ations. Moreover using batching techniques, this protocol can be implemented
with only O(log n) additions and shifts. The end result has complexity Õ(n+ k)
(with k the security parameter), which is asymptotically more efficient than
previous protocols in the literature.

Our protocol relies on the flexibility of contemporary lattice-based encryp-
tion schemes that enable additive homomorphism relative to arbitrary moduli.
The core of our new equal-to-zero protocol is a one-message sub-protocol that
transforms the encryption of the n-bit x into an encryption of a log n-bit y such
that y = 0 if and only if x = 0. This size-reduction protocol uses the fact that
an n-bit value is equal to zero if and only if the sum of its bits is zero, when
using homomorphism modulo m > n. Applying the size-reduction protocol log∗ n
times reduces the problem to a constant-size instance, which we can solve using
any of the existing techniques.

We also describe in Sect. 3.2 a protocol for comparing encrypted numbers,
where on inputs x, y we obtain an encryption of a bit b such that b = 1 if y > x
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and b = 0 otherwise. This protocol uses n parallel executions of the equal-to-
zero protocol on log n-bit values, and some local computation using additive
homomorphism. Hence, it too takes log∗ n rounds, and using ciphertext-packing
can be made to run in complexity quasi-linear in n + k (with k the security
parameter).

The basic comparison protocol from Sect. 3.2 requires that we have encryp-
tions of the separate bits of the numbers that we compare, but in our application
one of these numbers comes from long-term storage and storing its encrypted bits
would entail a somewhat large plaintext-to-ciphertext expansion ratio. Hence,
we also describe in Sect. 3.2 another optimization that allows us to encrypt this
number as a single integer (or a sequence of integer digits), so long as the inte-
ger(s) are stored in reverse bit order (this is not to be confused with big-endian
format, as we actually do integer operations on this reversed integer).

Blinded Permutation. This protocol, described in Sect. 3.3, allows two par-
ties to shuffle obliviously an array. The input to this protocol is an encrypted
array a and an encrypted permutation p, and the output is the encryption of
the permuted array, namely a′ such that a′[p[i]] = a[i]. The main idea of this
protocol is that the server can “blind” the permutation p by permuting it ran-
domly with another random permutation q that it knows, then send it to the
client for decryption. The client decrypts and gets q ◦ p, uses it to permute the
array a and returns it to server, who now permutes by q−1 to get the final result.
(Of course, more blinding is needed also to hide a from the client.)

Homomorphic Path-ORAM Eviction. While the homomorphic ORAM
eviction protocol which is central to secure-computation-over-ORAM may not be
considered interesting in its own right, the linear time protocol we design using
the batching feature of SWHE (as opposed to a quadratic-time naive approach)
displays the rich capabilities of SWHE based approach to secure computation.
This particular protocol may be considered the highlight of this work, and we
describe it in detail in Sect. 4.2.

Security. The security property of all these protocols (in the semi-honest model)
asserts that neither party learns anything during the execution of these protocols.
That is, the view of each party consists only of ciphertexts under the other
party’s key and of random plaintext elements that are encrypted under its own
key. (Hence the entire view can be simulated without knowledge of the encrypted
values.)

Different Flavor of Protocols. Our equal-to-zero and comparison protocols
are in some ways quite different than existing protocols in the literature: almost
all HE-based protocols in the literature can be described in the arithmetic black-
box model [6]. In that model there is an algebraic ring which is shared among
parties, and sub-protocols for operations in the ring as used as the basis for
everything else. (Usually the overriding complexity measure is the number of
invocations of the ring operations.)

Our equal-to-zero protocol is different: while only using additive homomor-
phism, it does not fit in the algebraic black-box model since it relies on an
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interplay between different algebraic rings to get better efficiency. This app-
roach, coupled with the ability to compute locally low-degree functions (not just
linear), makes SWHE a very useful tool for designing efficient protocols.

Building secure-computation protocols based on SWHE is a new research
direction, whereas protocols based on Yao circuits or additive-HE schemes have
been investigated and optimized for over two decades. This work helps lay the
groundwork for SWHE-based protocols, which are sure to find more uses.

Our Implementation. We implemented our private query solution with all its
sub-protocols over the HElib software library [15]. We built our implementation
to handle a moderate-size database of a few million entries. Specifically, our
choice of parameters for this implementation can handle a database of up to 224

records, with keywords of up to 120 bits.3

We tested it on the equivalent of a 222-record database with 120-bit keywords,
running on a five-year-old IBM BladeCenter HS22/7870, with two Intel X5570
(4-core) processors, running at 2.93 GHz. However, one consequence of using
HElib is that our implementation is inherently single-threaded (since HElib is
not thread-safe), so we only utilized one of the eight cores available on that
machine. Processing a single access-by-keyword request took over 32 min, of
which just under three minutes were devoted to obtaining the information itself,
and the rest for maintenance operations (i.e., updating the ORAM trees and run-
ning the eviction protocol). As we said above, we expect that a better-optimized
implementation would be able to do much better (even if we don’t count the 8×
speedup that one could get from just using all eight cores). We describe some
possible optimizations in Appendix E of the full version [9].

2 Background

2.1 The Path-ORAM Protocol

In the basic path-ORAM protocol [26], the server keeps an N -element database in
a complete binary tree of height h = log N , where each node in the tree contains
a bucket large enough to store a small constant number Z of data elements. In
addition there is also a moderate-size stash of S entries to keep elements that
do not fit elsewhere (we think of the stash as being kept at the root of the tree).
The content of all the buckets is encrypted under the client’s key, in particular
the server does not know how many elements are actually stored in each bucket.

Each database element with logical address v ∈ [N ] is associated with a
random leaf Lv, and the client keeps an N -entry table of the mapping v �→ Lv.
(I.e., entry v in the table contains the leaf number Lv.)

Denote by dv the data corresponding to logical address v. The protocol main-
tains the invariant that the triple (Lv, v, dv) is stored in one of the buckets on
the path from the root to the leaf Lv. Access to logical address v consists of two
3 Both of these restrictions eventually stem from working with packed ciphertexts over

the 6361’st cyclotomic field, which have 120 plaintext slots.
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subroutines, one for doing the actual access and another one to clean up after
the access.

Access. To access the data in logical address v, the client looks up Lv in its table
and asks the server for the entire path from the root to leaf Lv. Upon receiving
all the buckets in this path, the client decrypts them, finds a triple of the form
(Lv, v, dv) in one of the buckets, and this value dv is the requested data.

The client either leaves the data unchanged (if the operation is a read) or
overwrites it with a new value (if it is a write). We denote the resulting data
by d′

v. In either case, it chooses a new random leaf L′
v ∈ [N ] and updates its

table with the new L′
v value. The client then removes the triple (Lv, v, dv) from

the bucket where it was found, and puts the triple (L′
v, v, d′

v) in the root bucket.
Finally it re-encrypts all the buckets and send them back to the server, who
replaces all the buckets on the path to Lv by the new encrypted buckets. Since
the new triple is placed at the root, this operation maintains the tree invariant
of the scheme.

Eviction. To prevent the root bucket from overflowing, the client and server
run a “maintenance” subroutine whose goal is to evict triples from their current
buckets and push them lower down the tree: The client and server agree on some
“eviction path” (in [26] this is the same as the read path), and each entry in
that path ei = (Li, vi, di) is pushed as far down that path as it can go toward its
target leaf Li. The stash is used to avoid over-filling the buckets (with conflicts
resolved greedily).

It is easy to see that as long as the stash does not overflow, the view of
the server is computationally independent of the access pattern (assuming the
security of the encryption scheme). Stefanov et al. proved in [25] that when
using the read path for eviction and setting S = O(log N), the probability of
the stash overflowing is negligible. In our implementation we instead use the
deterministic eviction strategy that was proposed by Gentry et al. in [8]. We ran
experiments and found that this deterministic strategy allows us to use smaller
buckets, namely only Z = 2 as opposed to Z = 4 which is needed when evicting
along the read-path.

Putting it Together. In the complete construction, the ORAM also stores the
mapping v �→ Lv. Specifically, the server keeps � = �log(N)	 complete binary
trees as above, with the level-i tree having 2�−i leaves. In the largest tree (i = 0),
each entry corresponds to one logical address v ∈ {0, . . . , N −1}, and it contains
the user data for that logical address. For the next tree (i = 1), each entry
corresponds to two consecutive logical addresses, and it contains the two leaf-
numbers in the largest tree that are currently assigned to those logical addresses.
More generally, each entry in the tree at level i + 1 corresponds to the union of
two level-i intervals (which is altogether a size-2i+1 interval of logical addresses),
and that entry contains two leaf-numbers of the level-i tree, namely the leaves
that are currently assigned to the entries of those two level-i intervals. With each
entry in every tree we store also the first logical address of the interval of that
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entry, as well as the leaf that is currently assigned to that entry (in the current
tree). Thus each entry is of the form

level 0 :
(
L∗, v,user-data

)

level > 0 :
(
L∗, v, L1, L2

)

where L∗ is the leaf currently assigned to that entry, [v, v + 2i) is its interval,
and (L1, L2) are the leafs in the next tree that are currently assigned to the two
sub-intervals [v, v + 2i−1), [v + 2i−1, v + 2i). Of course, all of the buckets in all
of the trees are encrypted under a key known to the client.

The “tree at the last level �”, which has a single node, is kept by the client.
That tree has just a single entry, corresponding to the interval [0, 2�), and con-
taining two leaf-numbers of the tree at level � − 1 that are currently assigned to
the entries of the sub-intervals [0, 2�−1), [2�−1, 2�).

ORAM Access Query. To access the logical address v, the client looks in its
level-� “tree” and determines the level-(� − 1) sub-interval containing v, namely
j such that (j − 1)2�−1 ≤ v < j2�−1. The client sets v�−1 = (j − 1)2�−1 and
L(�−1) = L

(�−1)
j , chooses at random a new leaf L̂(�−1) and replaces L

(�−1)
j by

this new value in the list. Then the client proceeds iteratively for i = �− 1 down
to 0:

1. Request from the server all the buckets on the path from the root of the
level-i tree down to the leaf L(i). Decrypt them and find in them an entry of
the form (L(i), vi, data).

2. If i > 0 do the following:
(a) Parse data = (L(i−1)

1 , L
(i−1)
2 ), choose a new random leaf in the next tree,

L̂(i−1).
(b) Determine the level-(i − 1) sub-interval containing v, namely j = 1 if

v < vi +2i−1 and j = 2 otherwise. If j = 1 then set vi−1 = vi +2i−1 and
otherwise vi−1 = vi, and also set L(i−1) = L

(i−1)
j .

(c) Replace L
(i−1)
j by L̂(i−1) inside data, denoting the result by data′.

Else (i = 0), if this is a write operation then set data′ to be the new value.
Otherwise (read), set data′ = data.

3. Remove the entry (L(i), vi, data) from the bucket where it was found, and
place in the root bucket the entry (L̂(i), vi, data

′). Re-encrypt all the buckets
and send to the server.

Finally, the client and server run the Eviction subroutine for each of the trees
i = 0, 1, . . . , � − 1. If this was a read operation then the return value is the data
value from the last level i = 0.

Access by Keyword. Gentry et al. described in [8] how to extend this protocol
to access elements by keyword rather than by index, when the database itself is
sorted by that keyword: In an entry corresponding to an interval [v, v + 2i) we
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keep not only the two leaf values L1, L2 for the next tree, but also the keyword
value K of the database record at the middle of this interval (i.e., at index
v + 2i−1). The access procedure is then modified so that in Step 2b above we
choose the sub-interval by comparing the keyword K∗ that we seek to the value
K that is stored with the current entry, setting j = 1 if K∗ < K and j = 2
otherwise.

Note that even if the keyword K∗ that we search for is not in the ORAM,
we will still return some data at the end of the access protocol, Namely the data
corresponding to the smallest keyword K ′ ≥ K∗ in the ORAM. Jumping ahead,
in our private-query protocol we handle this matter by multiplying the data with
the indicator bit χ(K = K∗).

2.2 Somewhat Homomorphic Encryption (SWHE)

Our implementation of the private database search protocol relies on the HElib
library for implementing homomorphic encryption [14,15]. One of the features
of this library that we utilize is the ability to choose freely the plaintext space.
In particular, we often mix homomorphic operations modulo different moduli
(e.g., 2,16,128) in the same protocol. We denote homomorphic addition and
multiplication by � and �, respectively.

Another feature of HElib that we rely on is the ability to “pack” many
plaintext elements in a single ciphertext and apply to them operations in a
SIMD manner. We refer to the different plaintext values in a single ciphertext
as the “plaintext slots” of that ciphertext. (For the specific parameters that we
chose for our implementation we get 120 plaintext slots per ciphertext.) Our
protocols use in particular the HElib procedures for computing total sums and
partial sums of the plaintext slots, and the efficient implementation of permuting
the slots as described in [14]. We also use the ability to homomorphically extract
the bits in the binary representation of the plaintext elements when the plaintext
space is a power of two, as described in [11] and [1, Appendix B].

3 Main Building Blocks

Below we describe the main low-level protocols that we use in our implementa-
tion, for things like comparing numbers, permuting arrays, etc. These protocols
could be useful in many other settings as well.

In all the protocols below we use encryption schemes that support at
least additive homomorphism with function privacy (in the honest-but-curious
model). Below we assume for simplicity that they all operate over plaintext space
R = Zm for some integer m.4 We assume that we can instantiate the cryptosys-
tem relative to an arbitrary plaintext space R = Zm, and we use several different
instances with different plaintext spaces. As mentioned in Sect. 2, contemporary
4 Essentially the same protocols apply also to more complex plaintext spaces, such as

vectors over rings and polynomial rings.
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lattice-based cryptosystems indeed support additive homomorphism (and more)
with a free choice of the plaintext space.

In terms of security, all the sub-protocols below have the property that the
view of each player consists only of ciphertexts relative to keys of the other player,
and ciphertext under its own keys that encrypt uniformly random plaintext
elements (independent of the input and output of the protocol). Although we
do not argue here the security of the sub-protocols in isolation, we use that
property when proving that the high-level protocol that uses them is secure
(in the honest-but-curious model).

3.1 Equal-to-Zero Protocol

The server has an input ciphertext c = HEC(x), encrypting some x ∈ R under
the client key. The goal of the protocol is for the server to obtain an encryption
of a single bit b under the client key, such that b = 0 if x = 0, and b = 1
otherwise. Let n be the number of bits that it takes to represent an element
in R, so |R| ≤ 2n.

The protocol consists of multiple rounds, where in each round we transform
an equal-to-zero instance with plaintext space of some size S into another equal-
to-zero instance with plaintext space of size O(log S). After log∗ n such rounds
we arrive at an instance relative to a small constant plaintext-space, and then use
standard protocols (e.g., a secure computation of the AND function) to compute
the final bit encryption. The plaintext-space reduction protocol consists of only
a single message flow (i.e., half a round) and it is described next.

Plaintext-Space Reduction. We begin by turning the encryption of x into
encryption of (roughly) the bits of x. Namely, the server proceeds as follows:

S1. Choose a random a ∈ R and use homomorphism to compute c′ ← c � a =
HEC(x + a).

S2. Denote the bit representation of a by an−1 . . . a1a0. Encrypt the bits ai

under the server’s key, but relative to plaintext space Zn+1, getting ci =
HES(ai) for i = 0, . . . , n − 1.

The server sends to the client both c′ and all the ci’s. The client then proceeds
as follows:

C3. Decrypt c′ to obtain the value x′ = x + a ∈ R, and let x′
n−1 . . . x′

0 be the
bit representation of this value. Note that x′ = a iff x = 0.

C4. Use the homomorphism to XOR the bit x′
i into a new ciphertext c′

i for all i,
by setting c′

i = ci if x′
i = 0 and c′

i = 1 � ci if x′
i = 1.

Let yi = ai ⊕ x′
i be the value encrypted in the ciphertext c′

i, and observe
that the yi’s are all zero if and only if x = 0.

C5. Use homomorphism to sum up all the c′
i’s, thus getting a ciphertext c′′ ←

�ic
′
i = HES(

∑
i yi).
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The crux of the protocol is that since the scheme HES is homomorphic relative
to the plaintext space Zn+1, and since c′′ is the sum of n bits, then it encrypts
zero if and only if all the yi’s are zeros, namely if and only if x = 0. Thus we
reduced the original ciphertext c (which was relative to the plaintext space R of
size up to 2n), to a ciphertext c′′ relative to the plaintext space Zn+1, so that
c′′ encrypts a zero if and only if the original c encrypts a zero.

Equal-to-Zero. Our equal-to-zero protocol repeats the above plaintext-space
reduction protocol for log∗ n rounds, switching the client and server roles for
each round, until we arrive at a plaintext space of constant size (which can be
made as small as Z3, but no smaller).

In the last step of the protocol, however, we replace the step C5 by a secure
encrypted-AND protocol. (If the cryptosystem supports multiplicative homo-
morphism then we can use it directly. Otherwise, we can use any standard
secure-computation protocol, e.g., based on OT.) In our implementation we stop
at plaintext space Z8, and then use multiplicative homomorphism to complete
the protocol.

Once we have an encryption of the target bit relative to some small plain-
text space, we can convert it to an encryption relative to the original plaintext
space R (or any other desirable plaintext space), e.g., by a one-round protocol
of blind/encrypt/re-encrypt/unblind.

We note that the original scheme (that determines the input and output to
the protocol) need not even support full additive homomorphism: it is enough
for it to be blindable, and indeed in our implementation we sometime apply
this protocol to AES in counter mode. The intermediate schemes with smaller
plaintext space, however, must be (at least) additively homomorphic, and for
those we use lattice-based encryption schemes.

We also note that we can use essentially the same protocol to compute an
encrypted bit b which is zero if the lowest � bits of x are zero and one otherwise
(for any value of � ≤ n known to the client). The only difference is that in the
first invocation of the plaintext reduction sub-protocol the client only computes
the c′

i’s for i = 0, . . . �−1 in step C4 (rather than all of them). We use this variant
in our sub-protocol for computing the encrypted permutation during eviction,
see Sect. 4.2.

3.2 Comparison Protocol

This protocol builds on the equal-to-zero protocol from above. For our basic
protocol, we have the client holding an n-bit number y in the clear, and also
holding the bit-wise encryption of another number x under the server’s key. The
goal of the protocol is for the client to obtain an encryption of a single bit b
under the client key, such that b = 0 if x ≥ y and b = 1 if y > x. Later in this
subsection we discuss some optimizations that we use when transforming our
actual setting that we have in our implementation to the one needed for this
protocol.
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Input. The client holds a plaintext element y ∈ Z2n and n ciphertexts ci =
HES(xi) under the server key that encrypt the bits of the integer x =∑n−1

i=0 xi2i, relative to plaintext space Zn+1.
C1. The client XORs the bits of y into the ci’s, setting c′

i = ci if yi = 0 and
c′
i = 1 � ci if yi = 1. Denote by bi = yi ⊕ xi the bits that are encrypted

in the c′
i’s.

At this point we note that if x = y then all the bi’s are zero, and if x �= y
then some of the bi’s are ones. Moreover, the largest index i∗ for which
bi = 1 corresponds to the top bit where x, y differ.

C2. The client uses additive homomorphism to compute the partial sums, i.e.
for all i its sets c′′

i ← �i′≥ic
′
i = HES(si), where si =

∑b
j=i bi.

Note that if x = y then all the si’s are zero, and if the top bit in which
x, y disagree has index i∗ then we have si = 0 for all i > i∗ and si �= 0
for all i ≤ i∗ (since each of the latter si’s is a sum of ≤ n bits, not all of
them zero).

EQ.3. The client and server apply the equal-to-zero protocol from Sect. 3.1 to
each of the ciphertexts c′′

i . At the conclusion of these protocols the client
holds ĉi, i = 0, . . . , n−1, where ĉi = HES(0) for i > i∗ and ĉi = HES(1)
for i ≤ i∗.

C4. Subtracting ĉi+1 from ĉi for all i < n yield ciphertexts c̃i, all of which
encrypt the bit 0 except c̃i∗ = HEC(1). (If x = y then all the c̃i’s encrypt
zeros.)

C5. The client multiplies c∗
i = yi � c̃i.

Clearly we still have c∗
i = HES(0) for i �= i∗, but for i = i∗ we now have

c∗
i∗ = HES(1) if yi∗ = 1 and c∗

i = EncS(0) if yi∗ = 0. Recalling that i∗ is
the top bit where x, y disagree (if any), we have that y > x if and only if
yi∗ = 1. Hence all the c∗

i ’s are encryption of 0’s if c ≥ y, and one of them
is an encryption of 1 if y > x.

C6. Summing up the c∗
i ’s yields c∗ = HES(b) where b = 1 if y > x and b = 0

if x ≥ y, as needed.

Encrypting Integers in Reverse Bit-Order. In our implementation, we use
the encrypted comparison protocol to compare the keyword held by the client
to the pivots that are stored encrypted on disk as part of the path-ORAM
structure. This means that at the beginning of the protocol the server has the
value x (pivot) encrypted under the client key, and the client has the value y
(keyword) in the clear.

If the pivot value x is encrypted bitwise in the ORAM structure then trans-
forming it to the starting state needed for the protocol above would be a straight-
forward one-flow blind-decrypt-unblind protocol. However, to save on bandwidth
in other parts of the protocol we would prefer to encrypt the pivot as either a
single integer or a sequence of integer digits, which makes it harder to extract
the bits. To handle this issue without resorting to higher-degree homomorphism
we note that if we encrypt the integer x in reverse bit order then a much simpler
comparison protocol can be obtained. Due to space limitations, this protocol is
described only in the full version (see [9]).
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3.3 Blinded Permutations

As input to this protocol, the server has an encryption under the client key of a
size-� array a and another size-� array p containing a permutation of the index
set {1, 2, . . . , �} (over some plaintext space Zm with m ≥ �). The output of the
server is an encrypted array a′ which is obtained by permuting a according to p.
Namely, a′[p[i]] = a[i] for all i.

The basic idea of the protocol is the following: The server blinds the encrypted
permutation p by permuting it with a new random permutation q; the net effect
of this is that when the client receives this (packed) ciphertext and decrypts
it, then it comprises of the permutation p ◦ q−1. The server also blinds the
array a with a random vector r. It further encrypts r under its own HE key to
obtain R. Next, it permutes both the blinded a and R using q, and sends these
two ciphertexts along with the blinded permutation. As mentioned earlier, the
client obtains p◦ q−1, and applies this permutation to the other two ciphertexts,
(homomorphically) blinds them both using a same fresh random array, and sends
them back to the client. The client now only needs to decrypt the permuted
blinding array r, and subtract it (homomorphically) from the permuted (and
still encrypted) a.

The protocol is described in Fig. 1 in the full version [9].

4 Protocols for Private Queries

Below we describe at a high level the main protocols in our implementation.
More detailed description is available in the full version [9]. At a high-level,
every database access proceeds tree by tree, and processing each tree is done in
two phases. First the server reads the root-leaf “read-path” from the tree and the
client and server engage in a Read-and-Update protocol. Then the server reads
a (potentially different) root-leaf “evict path” from the tree, and the client and
server engage in an Eviction protocol.

We logically use additive two-out-of-two secret sharing to share the ORAM
state between the client and server, but rely on an optimization that allows the
client to hold just a single AES key instead of a long share. Namely, the ORAM
trees themselves are stored at the server, encrypted using AES-CTR under the
client’s key.

4.1 ORAM Read and Update

The read-phase protocols are used to read a path from one tree in the encrypted
ORAM structure, extract from it the information that we need in order to read
the next tree, and update the read path. At the beginning of the read phase, the
server is holding a single root-leaf path, with each entry encrypted separately
using AES-CTR under the client’s key. In addition the server is also holding an
AES-CTR encryption of a tag t∗, identifying the entry to extract from this path,
and the client is holding in the clear the keyword that it is looking for (which
should be compared to the pivot in that entry).

This phase consists of four parts:
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Extract. Extract a single entry from the path containing the information that
we seek. More details on this step are given in Appendix D.1 of the full
version [9].

Compare. Compare the pivot in the extracted entry against the keyword that
we are searching for. Compute a single encrypted bit that contains the
result of that comparison. This is done using the comparison protocol from
Sect. 3.2. The low-level details are described in Appendix D.2 of the full
version [9].

Oblivious-Transfer. Extract one of the two data-items in the entry, depending
on the value of the encrypted bit, getting in the clear the path to read in
the next tree, and also an encryption of the identifier tag to seek in that
path. This is a fairly standard 1-of-2 OT protocol, details are provided in
Appendix D.3 of the full version [9].

Update. Update the path in the current tree, marking the entry that was
extracted as “empty”, and copying its content to an available empty slot
in the root bucket. Also update the leaf value for that entry to a new ran-
dom leaf. This protocol is fairly standard on a high level, but uses some
HE-specific optimizations to speed up low-level operations, see details in
Appendix D.4 of the full version [9].

When processing the largest tree (that contains the data itself), then in the
OT step we also execute an equality protocol to check that the keyword matches
the one that we search for, and multiply the returned data by the resulting bit,
thus zero-ing it out if the keyword does not exist in the database.

4.2 ORAM Eviction

Eviction consists of first computing (an encryption of) the permutation to apply
to the entries along the eviction path, and then applying it using the protocol
from Sect. 3.3. At the beginning of the eviction phase, the client and server
agree on the eviction path, and the server has the content of all the buckets
along that path, which are all encrypted under the client AES key. Each entry of
every bucket contains a target-leaf field, we begin the protocol with one round
of blind/decrypt/re-encrypt/unblind that converts these AES ciphertexts to HE
ciphertexts and also packs them in the slots of a single HE ciphertext.

For a height-h tree with Z-size buckets and S-size stash, we therefore have
hZ + S plaintext elements packed in one HE ciphertext, each of them an h-bit
string. In our implementation we use Z = 2, h ≤ 22 and S = 24, and use 120-
slot ciphertexts, so a single ciphertext can hold (more than) 2hZ + S target-leaf
fields. We will need the extra hZ slots to hold “dummy entries” in the protocol
below. The eviction phase consists of several sub-protocols, as described below.

Sub-protocol 1: Position Bits. Denote the target leaf of the i’th entry in the path
by l[i], and denote the leaf at the bottom of the eviction path by l∗. For every
level j = 1 . . . h in the tree (with j = 0 the root and j = h the leaves), we first
want to compute ciphertexts Cj [i] under the client key that encrypt one if l[i]
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and l∗ agree on the first (lowest) j bits, and zero otherwise. This means that
entry i wants to get evicted at least as far down as level j. These bits should be
encrypted w.r.t. plaintext space Zm for m ≥ 2hZ +S, in our implementation we
use m = 128.

To compute the Cj [i]’s, we use additive homomorphism to subtract l∗ from
the l[i]’s, getting encryption of δ[i] = l[i] − l∗, and then apply our equal-to-zero
protocol from Sect. 3.1 h times to each δ[i], each time computing whether the
bottom j bits of δ[i] are zero (for j = 0 . . . h − 1). Note that if the δ[i]’s are
all packed in a single ciphertext then we just need to perform h executions of
the protocol, one per j, and we get packed ciphertexts Cj [0 . . . 119]. Also we
can perform most of the first plaintext-reduction step in the equal-to-zero sub-
protocol only once (rather than for every j separately).

Position Indexes. Once we have the encrypted bits Cj [i], we can sum them up to
get an encryption of the level to which this entry wants to be evicted. Denote
this index by v[i]. Although the protocol below does not use the encryption
of v[i], it is nonetheless convenient to use the v[i]’s to explain the working of
this protocol. Roughly, in this protocol we would want to sort the entries by
their position index.

Sub-protocol 2: Adding Dummy Ciphertexts. Next we add encryption of some
dummy entries, to ensure that for any level below the root j > 0 we have at
least (h − j + 1)Z entries with position indexed v[i] ≥ j. The reason is that we
must ensure that once the entries are sorted by their position index, no entry is
sent further down the path below the level that that it wants to get to. Hence if
we have less than (h − j + 1)Z entries that want to get to level j or below, we
need to fill these levels with dummy entries so that entries that want to go to
higher levels will not get sorted into the lower ones.

We begin by computing encrypted counts Ej of how many entries want to be
evicted to levels j and below, simply by summing Ej = �iCj [i] (each Ej can be
computed in log (2hZ + S) steps by appropriate shifts and additions). Similarly
the number of entries that want to go exactly to level j is E′

j = Ej � Ej+1. Let
ej denote the number encrypted in the ciphertext Ej , and e′

j denote the number
encrypted in the ciphertext E′

j .
Next we use the Ej ’s to compute for each level j how many dummy entries

(between 0 and Z) are needed at that level. I.e., for all j = 1 . . . h and k = 1 . . . Z
we compute an encryption of the bit σj,k which is one if we need to add k or
more dummies to level j and zero otherwise. It can be verified that the condition
we need is

σj,k = 0 iff ∃j′ ≥ j s.t.
( j′
∑

t=j

e′
t

)
> (j′ − j)Z + k. (1)

That is, if there are more than (j′ − j)Z + k entries that want to be evicted to
levels between j and j′ (for some j′), then we need to add less than k dummies
to level j.

Unfortunately we cannot use the comparison protocol from Sect. 3.2 to com-
pute the bits σj,k from the E′

i’s, since the e′
i’s are sum of bits, so they are integers
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which are not encoded in reverse bit order. However, the e′
i’s are relatively small

(at most 2hZ + S = 112) hence even the naive protocol is reasonably efficient.
Specifically for each j′ we subtract (�j′

t=jE
′
t) � ((j′ − j)Z + k), over plaintext

space Z128, and then use homomorphic bit extraction to get the MSB of the
result, which is the indicator bit χ(

∑
t e′

t ≤ (j′ − j)Z + k). Computing the AND
of these indicator bits gives us the bit σj,k that we seek. We can actually pack
these comparisons and run them in a SIMD manner, so that the protocol runs
in linear time instead of quadratic time. Specifically, for each value of j′ we can
compute a ciphertext such that in the j-th slot is the encryption of the value
∑j′

t=j e′
t. We note that this sub-protocol is the most time-consuming part of the

entire ORAM-access procedure. In our implementation it accounts for roughly
35% of the total running time. However, a naive protocol which pushes entries
as far down as possible (limited by Cj [i]), iteratively and starting from level h
upto 0, would have quadratic complexity. Thus, our sub-protocol is already a
major improvement.

Once we have the σj,k’s, we prepare encryption of Zh dummy entries, where
the position index of the (j, k) entry is set as σj,k · j. This means that we get
exactly the right number of dummies with position index v[i] = j, and the rest
of the dummies have position index v[i] = 0. More specifically, we compute the
encrypted bits Cj [i] for these dummies: if we put the (j, k) dummy in some
index i, then for any j′ = 1 . . . h, the bit encrypted in Cj′ [i] is zero if j′ > j, and
it is σj,k if j′ ≤ j.

Sub-protocol 3: Sorting by Position Indexes. All that is left now is to sort by
position indexes. Note that because we added the dummies, then an entry that
wants to go to level j will not be moved to a deeper level j′ > j in the sorted
order, because there are at least (h−j)Z entries that want to go to levels below j.

We update the counts Ej and E′
j , counting the Cj [i]’s of the dummies too.

Also we compute C ′
j [i] = Cj [i] � Cj+1[i] for all i, j, which is 1 if entry i wants

to go exactly to level j. Then for every entry i we compute its position in the
sorted order as

P [i] = �j

(
C ′

j [i] �
((

�i′<i C ′
j [i

′]
)

� Ej+1

) )
.

That is, if entry i wants to be at level j, then before it in the order will come
all the entries that want to go to j′ > j (there are ej+1 such entries) and all the
entries that want to go to level j and have index smaller than i in the current
array.

Sub-protocol 4: Applying the Permutation. Now that we have an encryption
of the permutation that we need to apply to the entries, we use our blinded
permutation protocol from Sect. 3.3 to effect this permutation. This means that
we pack all the data of the entries in a HE ciphertext, then apply the protocol
from Sect. 3.3 to this ciphertext, and then convert these ciphertexts back to AES-
encrypted ciphertext. In our implementation we need two HE ciphertexts to pack
all the data from all the entries in the path so we apply the blinded-permutation
protocol twice.
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Note that, since we initially put the dummy entries at the end of the packed
ciphertext, the last Zh entries after sorting must be dummies, so we can just
ignore them when converting back to AES encryption.

5 Implementation

We implemented our protocols over the HElib implementation [15] of the BGV
scheme [2], which is currently the only publicly available implementation of
SWHE that supports most of the functionality that we need.

For our target setting, we used a database with 222 records with 120-bit
keywords and only a few bytes worth of data. As explained in Appendix B of
the full version [9], we can handle large records by using a two-tier system,
using a database as above just to get the index of the target record and then
use standard ORAM without the secure-computation layer to get the records
themselves.

In retrospect, the size of the records and keywords does not have much impact
on the performance, indeed over 95 % of the time is spent on sub-protocols which
are not affected by the record/keyword sizes, and the ones that are affected only
have complexity linear in that size. (For example, extrapolating from our timing
results we could have handled keywords of size over 6000 bits with a moderate
change of the implementation and without changing any of the parameters, and
it would have added perhaps two minutes to the query time.)

Parameters and Design Choices. Since the analysis of the parameters for the
bucket size in the path-ORAM constructions is not tight, for the implementation
of our system we ran experiments to find the number of entries needed in the
root (the parameter S from Sect. 2.1) and intermediate nodes (the parameter Z).
We tested two eviction strategies, the one from [26] that uses the read path also
as eviction path, and the one from [8] that deterministically covers all the paths
in reverse-bit order. For each of these two strategies we tried several different
sizes for the non-root nodes, and for each of those we run the ORAM for 224

accesses and recorded the largest size that the stash at the root ever grows to.
Our experiments show that for the eviction strategy from [26] we need Z = 4

entries in the non-root nodes before the stash size stabilizes, whereas Z = 2
entries were enough for the deterministic strategy from [8]. Moreover for the
latter strategy with Z = 2, the stash never grew beyond S = 5 entries, so
we expect that setting S = 24 gives a reasonable security margin. This means
that the entire root-to-leaf path in our largest tree needs to hold hZ + S =
22 ·2+24 = 68 entries. However, our sub-protocol 2 from Sect. 4.2 for computing
permutations requires that we add Z more dummy entries per non-root node,
thus for that sub-protocol we need to handle 2hZ + S = 112 entries.

At this point, our design choices were dictated by the interfaces that are avail-
able (or not) in HElib. HElib is built to provide an effective use of ciphertext-
packing techniques [10], and in particular it provides the ability to view the
multiple plaintext elements encrypted in a single ciphertext as an array and
arbitrarily permute that array.
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The largest circuit depth that we need to handle in our protocols is
�log 112	 = 7 (in Sub-protocol 2 from Sect. 4.2), and the heuristic estimate
provided by HElib indicates that for this depth we have a lower-bound of
φ(m) ≥ 6157 on the m-th cyclotomic ring that we need to use (for security
parameter λ = 80). Adding the constraint that the number of plaintext slots
(which is the order of the quotient group Z∗

m/(2)) must be at least 112, we chose
to work with m = 6361, for which φ(m) = 6360, we have |Z∗

m/(2)| = 120 slots,
and each slot can hold an element of the field GF (253).

Finally, a modulo-2 ciphertext space would have let us pack at most 6360
plaintext bits per ciphertext, but to fit all the relevant information of an entire
root-to-leaf path in the deepest tree into a single ciphertext, we needed to use
plaintext space somewhat larger than that. Hence we chose to encrypt some of
the data relative to plaintext space modulo 24 = 16, which lets us pack four
times more bits in each ciphertext. We also make use of a modulo-128 plaintext
space for some of our sub-protocols.

Performance. With these parameters, a native homomorphic multiplication in
HElib takes roughly 50ms, and permuting the 120-slot arrays takes just under
one second. Our implementation of the entire protocol with these parameters
runs in about 32 min per access (1904 s). Table 1 summarizes the breakout of
this time into the different sub-protocols from Sect. 4. In that table, Extract,
Compare, OT, and Update are the four sub-protocols of the read phase, and
Evict1-4 are the four sub-protocol of the eviction phase.

Table 1. Running times of different sub-protocols in our implementation.

Extract Compare OT Update Total read

38 s 92 s 41 s 70 s =241 s

Evict1 Evict2 Evict3 Evict4 Total evict

91 s 757 s 487 s 331 s =1663 s

As seen in Table 1, the most expensive are Sub-protocols 2 and 3 in the
eviction phase. In particular, computing the bits σj,k from the e′

j ’s as in Eq. (1)
takes 669 s (35 % of the total).

We note that only the first three sub-protocols in the read phase are on
the critical path for obtaining the information, all other sub-protocols can be
executed “off line” after the information was obtained. Hence our current imple-
mentation features a latency of about three minutes per query, but throughput
limitation of 32 min per query.

In terms of the time to process the separate trees, the read-and-update phase
takes roughly 11 s per tree, regardless of the height of that tree (since this imple-
mentation manipulates a single packed ciphertext for any tree up to height 24).
The current implementation of the eviction phase takes about 5h + 18 seconds
to process a height-h tree, so the first tree takes 25 s, and the last (height-22)
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tree takes 130 s. Overall, the running time of this implementation on a size-2h

database (h ≤ 24) would be

Time(2h) ≈ 2.5h2 + 31.5h seconds,

of which only about 8h seconds are on the critical path. As we mentioned above,
the keyword size does not make a big difference in our implementation: shorter
keywords will not save us any time, and longer keywords will not cost us much
(but would require some change in the implementation).

We view these numbers as encouraging; they indicate that SWHE-based pro-
tocols are not as slow as commonly believed. Moreover, this is only a first-step
implementation and there is much room for improvement. In the full version [9]
we list a few promising avenues.
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