Zero-Knowledge Authenticated Order Queries
and Order Statistics on a List

Esha Ghosh!®) Olga Ohrimenko?, and Roberto Tamassia'

! Department of Computer Science, Brown University, Providence, USA
{esha_ghosh,roberto_tamassia}@brown.edu
2 Microsoft Research, Cambridge, UK

oohrim@microsoft.com

Abstract. An order query takes as input a set of elements from a list
(ordered sequence) L, and asks for this set to be ordered using the
total order induced by L£. We introduce two formal models for answer-
ing order queries on a list in a verifiable and private manner. Our first
model, called zero-knowledge list (ZKL), generalizes the standard two-
party model of membership queries on a set to order queries on a list
in zero-knowledge. We present a construction of ZKL based on zero-
knowledge sets and a homomorphic integer commitment. Our second
model, privacy-preserving authenticated list (PPAL), extends authenti-
cated data structures by adding a zero-knowledge privacy requirement.
This is a three-party model, where a list is outsourced by a trusted
owner to an untrusted cloud server, which answers order queries issued by
clients and returns proofs of the answers. PPAL supports data integrity
against a malicious server and privacy protection against a malicious
client. Though PPAL can be implemented using our ZKL construction,
this construction is not as efficient as desired in cloud applications. We
present an efficient PPAL construction based on our novel technique of
blinded bilinear accumulators and bilinear maps. Both our models are
provably secure in the Random Oracle model and are zero-knowledge
(e.g., hiding even the size of the list). We also show that the ZKL and
PPAL frameworks can be extended to support fundamental statistical
queries efficiently and in zero-knowledge.

1 Introduction

Releasing verifiable partial information while maintaining privacy is a require-
ment in many practical scenarios where the data being dealt with is sensitive. A
basic case is releasing a subset of a set and proving its authenticity in a privacy-
preserving way (referred to as zero-knowledge property) [10,12,26,29]. However,
in many other cases, the information is stored in data structures to support richer
type of queries. In this paper, we consider order queries on two or more elements
of a list, where the answer to the query returns the elements rearranged accord-
ing to their order in the list. Order queries lie at the heart of many practical
applications where the order between queried elements is revealed and proved
but the rank of the queried elements in the list and information about other
elements in the list should be protected.

© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 149-171, 2015.
DOI: 10.1007/978-3-319-28166-7_-8

150 E. Ghosh et al.

In an auction with a single winner (e.g., online ad auction for a single ad spot)
every participant submits her secret bid to the auction organizer. After the top
bidder is announced, a participant wishes to verify that her bid was inferior. The
organizer would then provide a proof without revealing the amount of the top bid,
the rank of the participant’s bid, or any information about other bids.

Lenders often require an individual or a couple to prove eligibility for a loan
by providing a bank statement and a pay stub. Such documents contain sensitive
information beyond what the lender is looking for: whether the bank account bal-
ance and salary are above given thresholds. A desirable alternative would be to
provide a proof from the bank and employer that these thresholds are met without
revealing exact figures and even hiding who of the two spouses earns more.

The above examples can be generalized using order queries on an ordered set,
aka list, that return the order of the queried elements as well as a proof of this
order but without revealing anything more than the answer itself. We address
this problem by introducing two different models: zero knowledge lists (ZKL)
and privacy-preserving authenticated lists (PPAL).

ZKL considers two party model and extends zero knowledge sets [12,29] to
lists. In ZKL a prover commits to a list and a verifier queries the prover to learn
the order of a subset of list elements. The verifier should be able to verify the
answer but learn no information about the rest of the list, e.g., the size of the list,
the order of other elements of the list or the rank of the queried element(s). Here
both the prover and the verifier can act as malicious adversaries. While the prover
may want to give answers inconsistent with the initial list he committed to, the
verifier may try to learn information beyond the query answer or arbitrarily
deviate from the protocol.

PPAL considers three parties: the owner of the list, the server who answers list
queries on behalf of the owner, and the client who queries the server. The privacy
guarantee of PPAL is the same as in ZKL. For authenticity, PPAL assumes that
the owner is trusted while the server and the client could be malicious. This trust
model allows for a much more efficient construction than ZKL, as we will see later
in the paper. PPAL has direct applications to outsourced services where the server
is modeling the cloud service that the owner uses to interact with her clients.

We note that PPAL can be viewed as a privacy-preserving extension of
authenticated data structures (ADS) (see, e.g., [19,20,28,36]), which also oper-
ate in a three party model: the server stores the owner’s data and proves to the
client the answer to a query. However, privacy properties have not been studied
in this model and as a consequence, known ADS constructions leak information
about the rest of the data through their proofs of authenticity. For example, the
classic Merkle hash tree [28] on a set of n elements proves membership of an
element via a proof of size logn, thus leaking information about the size of the
set. Also, if the elements are stored at the leaves in sorted order, the proof of
membership of an element reveals its rank.

In this paper, we define the security properties for ZKL and PPAL and
provide efficient constructions for them. The privacy property against the verifier
in ZKL and the client in PPAL is zero knowledge. That is, the answers and
the proofs are indistinguishable from those that are generated by a simulator

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 151

that knows nothing except the previous and current queries and answers and,
hence, cannot possibly leak any information beyond that. While we show that
PPAL can be implemented using our ZKL construction, we also provide a direct
PPAL construction that is considerably more efficient thanks to the trust that
clients put in the list owner. Let n be the size of the list and m be the size of
the query, i.e., the number of list elements whose order is sought. Our PPAL
construction uses proofs of O(m) size and allows the client to verify a proof in
O(m) time. The owner executes the setup in O(n) time and space. The server uses
O(n) space to store the list and related authentication information, and takes
O(min(mlogn,n)) time to answer a query and generate a proof. In contrast, in
the ZKL construction, the time and storage requirements have an overhead that
linearly depends on the security parameter. Note that ZKL also supports (non-)
membership queries. The client in PPAL and the verifier in ZKL require only one
round of communication for each query. Our ZKL construction is based on zero
knowledge sets and homomorphic integer commitments. Our PPAL construction
uses a novel technique of blinding of accumulators along with bilinear aggregate
signatures. Both are secure in the random oracle model.

2 Problem Statement, Models, Related Work,
and Contributions

In this section, we state our problem, outline our models, review related work,
and summarize our contributions. Formal definitions and constructions are in
the rest of the paper. Detailed proofs and construction that are omitted due to
space restrictions are available in the full version [17].

2.1 Problem Statement and Models

Let £ be a totally ordered list of distinct elements. An order query on L is
defined as follows: given a set of elements of £, return these elements rearranged
according to their order in £ and a proof of this order. Both models we intro-
duce, PPAL and ZKL, support this query. ZKL, in addition to order queries,
supports provable membership and non-membership queries. Beside providing
authenticity, the proofs are required not to leak any information beyond the
answer.

ZKL: This model has two parties: prover and verifier. The prover initially com-
putes a commitment to a list £ and reveals the commitment to the verifier. Later
the verifier asks membership and order queries on £ and the prover responds
with a proof. Both the prover and the verifier can be malicious:

— The prover may try to give answers inconsistent with the initial commitment.

— The verifier may try to learn from the proofs additional information about
L beyond what he has inferred from the answers. E.g., if the verifier has
performed two order queries with answers z < y and = < z, he may want to
find out whether y < z or z < y.

152 E. Ghosh et al.

The security properties of ZKL, completeness, soundness and zero-knowledge,
guarantee security against malicious prover and verifier. Completeness mandates
that honestly generated proofs always satisfy the verification test. Soundness
states that the prover should not be able to come up with a query, and cor-
responding inconsistent (with the initial commitment) answers and convincing
proofs. Finally, zero-knowledge means that each proof reveals the answer and
nothing else. In other words, there must exist a simulator, that given only ora-
cle access to L, can simulate proofs for membership and order queries that are
indistinguishable from real proofs.

PPAL: This model has three parties: owner, server and client. The owner gen-
erates list £ and outsources it to the server. The owner also sends (possibly
different) digest information with respect to £ to the server and the client.
Given an order query from the client, the server, using the server digest, builds
and returns to the client the answer and its proof, which is verified by the client
using the client digest. Both the server and the client can be malicious:

— The server may try to forge proofs for incorrect answers to (order) queries,
e.g., prove an incorrect ordering of a pair of elements of L.

— The client, similar to the verifier in ZKL, may try to learn from the proofs
additional information about list £ beyond what he has inferred from the
answers.

Note that in typical cloud database applications, the client is allowed to have
only a restricted view of the data structure and the server enforces an access
control policy that prevents the client from getting answers to unauthorized
queries. This motivates the curious, possibly malicious, behavior from the client
where he tries to ask ill-formed queries or queries violating the access control
policy. However, we assume that the server enforces client’s legitimate behavior
by refusing to answer illegal queries. Hence, the security model for PPAL is
defined as follows.

The properties of PPAL, Completeness, Soundness and Zero-Knowledge,
guarantee security against malicious server and client. They are close to the
ones of ZKL except for soundness. For PPAL it enforces that the client does
not accept proofs forged by the server for incorrect answers w.r.t. owner’s list.
PPAL’s owner and server together can be thought of as a single party in ZKL,
the prover. Hence, ZKL soundness protects against the prover who tries to give
answers inconsistent with her own initial commitment. In the PPAL model, the
owner and the server are separate parties where the owner is trusted and sound-
ness protects against a malicious server only.

To understand the strength of the zero-knowledge property, let us illustrate to
what extent the proofs are non-revealing. This property guarantees that a client,
who adaptively queries a static list, does not learn anything about ranks of the
queried elements, the distance between them or even the size of £. The client is
not able to infer any relative order information that is not inferable by the rule
of transitivity from the previously queried orders. It is worth noting that in the
context of leakage-free redactable signature schemes, privacy property has been

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 153

defined using game-based definitions in transparency [6,34] and privacy [11,23].
However, our definition of simulatability of the query responses, or the zero-
knowledge property, is a simpler and more intuitive way to capture the property
of leakage-freeness.

Efficiency: We characterize the ideal efficiency goals of our models as follows,
where L is a list of n items and m is the query size. The space for storing list
L and the auxiliary information for generating proofs should be O(n). As in
related work, a multiplicative factor for element size of O(poly(k)), where k is
the security parameter, is not shown in O(-). The setup to preprocess list £
should take O(n) time. The proof of the answer to a query should have O(m)
size. Processing a query to generate the answer and its proof should take O(m)
time. Verifying the proof of an answer should take O(m) time.

Applications of Order Queries to Order Statistics: Our PPAL order queries can
be used as a building block to answer efficiently and in zero knowledge (i.e.,
the returned proofs should be simulatable) many interesting statistical queries
about a list £ with n elements. Let a pair order proof denote the proof of the
order of two elements from L£. Then a PPAL client can send the server a subset
S of m list elements and request the server to return the mazimum, minimum,
or the median element of S w.r.t. the order of the elements in the list. This can
be done by providing m pair order proofs. Order queries also can be extended
to return the top ¢ elements of S by means of ¢(m — t) pair order proofs, or only
m — 1 pair order proofs if the order between the top ¢ elements can be revealed,
where ¢t < m. Finally, given an element a in £, the server can return the elements
of S that are above (or below) the threshold value a by means of m pair order
proofs. It is important to note that neither of these queries reveal anything more
than the answer itself. Moreover, the size of the proof returned for each query
is proportional to the query size and is optimal for the threshold query where
the proof size is proportional to the answer size. We note that these statistical
queries are also supported by ZKL.

2.2 Related Work

First, we discuss work on data structures that answer queries in zero knowl-
edge. Our ZKL is the first extension of this work to lists and order queries.
We then mention signature schemes that can be used to instantiate outsourced
data structures that require privacy and integrity to be maintained. However,
such instantiations are not efficient since they are based on different models of
usage and underlying data. Finally, we outline leakage-free redactable signature
schemes for ordered lists and other structured data. These signature schemes
are not as efficient as our construction and their definitions are game-based as
opposed to our intuitive zero-knowledge definition. Finally we discuss follow-up
work on PPAL.

154 E. Ghosh et al.

Zero Knowledge Data Structures: Zero-knowledge dictionary and range queries
have received considerable attention in literature [10,12,26,29,32]. Our proposed
ZKL model is the first generalization of this line of work that supports order
queries.

The model of zero knowledge set (ZKS) was introduced by Micali et al. [29]
where a prover commits to a finite set S in such a way that, later on, she
will be able to efficiently (and non-interactively) prove statements of the form
x € S orx ¢ S without leaking any information about S beyond what has
been queried for, not even the size of S. The prover should not be able to
prove contradictory statements about an element. Chase et al. [12] abstracted
the above solution and described it in terms of a mercurial commitment, which
was later generalized to ¢-trapdoor mercurial commitments in [10,26] and a
closely related notion of vector commitments was proposed in [9]. Kate et al. [22]
suggested a weaker primitive called nearly-zero knowledge set where the set size
is not private. Ostrovsky et al. [32] generalized (non-)membership queries to
orthogonal range queries on multidimensional dataset and considered adding
privacy to their protocol. However, the use of NP-reductions and probabilistically
checkable proofs makes their generic construction expensive.

We note that a recent work on DNSSEC zone enumeration by Goldberg
et al. [18] uses a model related to our PPAL model and is independently devel-
oped. The framework supports only set (non-)membership queries and answers
them in f-zero knowledge. This property ensures that the information leaked to
the verifier is in terms of a function f on the set, e.g., f is the set size in [18].

Signature Schemes: A three party model where the owner digitally signs a data
document and outsources it to the server and the server discloses to the client
only part of the signed document along with a legitimately derived signature on
it (without the owner’s involvement), can be instantiated with a collection of
signature schemes, namely, content extraction, quotable, arithmetic, redactable,
homomorphic, sanitizable and transitive signatures [7,21,30,31,35,38]. Addition-
ally, if the signatures reveal no information about the parent document, then this
approach can be used to add privacy. However the generic instantiation, with
signature schemes that do not specifically address structured data, is inefficient
for most practical purposes.

Ahn et al. [1] present a unified framework for computing on authenticated
data where a third party can derive a signature on an object 2’ from a signature
on a parent object x as long as P(z,2’) = 1 for some predicate P that captures
the authenticatable relationship between x and z’. Additionally, a derived signa-
ture reveals no extra information about the parent x. This line of work was later
refined in [2,37]. The authors in [1] propose a computationally expensive scheme
based on the RSA accumulator and predicates for specific data structures are not
considered. A related notion of malleable signature scheme was proposed in [13],
where given a signature ¢ on a message x, it is possible to efficiently derive a
signature ¢’ on a message a’ such that o’ = T'(z) for an allowable transformation
T without access to the secret key. The privacy definition of [13] (simulation con-
text hiding) is stronger than that of [1] as it allows for adversarially-generated

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 155

keys and signatures. However, the owner is a trusted party in our PPAL setting
and therefore the stronger notion of simulation context hiding is not relevant in
this framework. Moreover, in our PPAL model, given a quote from a document
and a proof of the quote, the client should be able to verify that the quote is
indeed in the document, this is inverse of the notion of unlinkability in [13].

Leakage-Free Signature Schemes for Structural Data: A leakage-free redactable
signature scheme (LRSS) allows a third party to remove, or redact, parts of a
signed document without signer’s involvement. The verifier only sees the remain-
ing redacted document and is able to verify that it is valid and authentic.
Leakage-freeness property ensures that the redacted document and its signa-
ture do not reveal anything about the content or position of the removed parts.
We discuss LRSSs that specifically look at structural data and ordered lists.
In Table 1 we show that PPAL outperforms known LRSS constructions. Another
significant difference of our work is the definition of privacy. The zero-knowledge
property is more intuitive and simple in capturing the leakage-freeness property
compared to the game based definitions in the LRSS literature [6,34].

Kundu and Bertino [24] introduced the idea of structural signatures for
ordered trees (subsuming ordered lists) that support public redaction of sub-
trees by third-parties. This work was later extended to undirected graphs and
DAGs [25]. The notion was later formalized as LRSS for ordered trees in [6]
and subsequently several attacks on [24] were also proposed in [6,33]. The basic
idea of the LRSS scheme presented in [6] is to sign all possible ordered pairs of
elements of an ordered list. So both the computation cost and the storage space
are quadratic in the number of elements of the list.

Building on the work of [6,34] proposed a LRSS for lists that has quadratic
time and space complexity. Poehls et al. [33] presented a LRSS scheme for a list
that has linear time and space complexity but assumes an associative non-abelian
hash function, whose existence has not been formally proved. Kundu et al. [23],
presented a construction that uses quadratic space at the server. Chang et al. [11]
presented a leakage-free redactable signature scheme for a string (which can be
viewed as a list) that hides the location of the redacted or deleted portions of the
string at the expense of quadratic verification cost. None of the constructions
of [11,23,24] satisfy our definition of zero-knowledge.

Follow-up Work: Finally we note that in recent work [16], Ghosh et al. have gen-
eralized the models introduced in this paper to general abstract data types that
support both query and update operations. Also, they have presented efficient
constructions for dynamic lists and partially-ordered sets of bounded dimension.

2.3 Contributions and Organization of the Paper

Our contributions are novel models and efficient constructions. After reviewing
preliminary concepts and cryptographic primitives, in Sect. 3, we introduce the
zero-knowledge list (ZKL) model. We describe our ZKL construction, its security

E. Ghosh et al.

156

IHagu 04 ‘VS4S Ta| vsd HVHU UOTSIAL(T

‘NOY | ' AHYD ‘NOY | 'AHYD | ‘WOY | AHVUV | ‘WOY | VINDNH | ‘VSYS| VSYd VSH uondumssy
w yus YU U w LU L u | u 3oy Uk w 971s JOOo1q
owIIr) UOIYed

yul yul -gueA IoquIdA-(UON)

w yus w w, LU LU W | wBopws | w So[u SO wh | W) UOIFEIYLIdA I9PIQ
out}

YU Yy A1onb 1equIOIN-(UON)

(u ‘u Sop w)urw yuL U u w UL u | uIoru w awr) Arenb Isp1Q)
U yu YU U U U v U U U ooeds o3r101g

u yu yu u u v U u u u3o[u awry dnjeg

N N N ! N N 93pa[mouN-0197,

[11] [1e] €]

L,

Tvdd I7Z [e1]| [eg] [ee] | [vel [

(THagu) vondumssy
UOTSIOAU] WRWI[[9]] SIFI(] Teaul[rg-u (D) osodwoo e Suriojoeg () wondwmssy Sor 9301081 ¢(JHYD) TOTIOUN] SR JURISISIY UOIS
-I[0) {[paepuesls-uou] (JHYUY) UOIOUN] ST URI[DR-UOU dAIJRID0SSY ‘(Y HU) uondunssy uoroei)xy 9130188y juewa-u (INOY)
[9POIAl 9[oRI() WwopuryY ‘owelds sInjeusis Surdropun ayj Jjo (VINDNH) ORIy 98esso\ Uasoy)) Iopun Afiqeadioju) [erpuelsxy (VSYs)
uorpdumssy Sy Suorg :suondumssy “[[00 AI9Ad UT 9zIS Juaws[e 10J (%) JO 1092e] aATIedIdI)[NUI ® JIWIO oM ‘UOTIUSATIOD PIRPURIS S}
SUIMO[[0,] SUO[J1q ¥ oI SHUSWIS[d ISI[dWNSS® om H()TA\ "IojeowrIed A1moss o) St Y ‘0zIs A1enb o) St wi ‘9zIs)SI[Y ST U :UOIYRION
onojdurdse ore soryxe[dwon ooeds pue owil) oY} [[Y "SIom snomoid M SUOIONIISU0d Tydd PUe 37 Ino jo uostredwo)) *T o[qe],

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 157

and efficiency in Sect. 4. In Sect. 5, we introduce the privacy-preserving authen-
ticated list (PPAL) model. An efficient PPAL construction based on bilinear
maps, its performance and security properties are given in Sect. 6. In Table 1, we
compare our ZKL and PPAL construction with previous work in terms of per-
formance and assumptions. We specifically indicate which constructions satisfy
the zero-knowledge property. Our PPAL construction outperforms all previous
work based on widely accepted assumptions [6,34] (the construction of [33] is
based on a non-standard assumption).

3 Preliminaries

3.1 Data Type

We consider a linearly ordered list L as a data structure that the owner wishes
to store with the server. A list is an ordered set of elements £ = {x1,z2,...,2,},
where each x; € {0,1}*,Vo1, 29 € L,21 # o and either z; < x9 or o < 7.
Hence, < is a strict order on elements of £ that is irreflexive, asymmetric and
transitive.

We denote the set of elements of the list £ as Elements(L£). A sublist of L, §,
is defined as: § = {« | © € Elements(£)}. Note that the order of elements in §
may not follow the order of £. We denote with mw,(§) the permutation of the
elements of § under the order of £. £(z;) denotes the membership of element x;
in £, ie., L(x;) =true if z; € £ and L(x;) = false if x; ¢ L. For all z; such that
L(x;) = true, rank(L, x;) denotes the rank of element z; in the list, £.

3.2 Cryptographic Primitives

We now describe the cryptographic primitives that are used in our construction
and cryptographic assumptions that underlie the security of our method. In par-
ticular, our zero knowledge list construction relies on homomorphic integer com-
mitments, zero knowledge protocol to prove a number is non-negative and zero
knowledge sets, while the construction for privacy preserving lists relies on bilin-
ear aggregate signatures and n-Bilinear Diffie Hellman Inversion assumption.

Homomorphic Integer Commitment Scheme: We use a homomorphic integer
commitment scheme HomIntCom that is statistically hiding and computationally
binding [5,14]. The latter implies the existence of a trapdoor and, hence, can be
used to “equivocate” a commitment (i.e., open the commitment to any message
using the trapdoor). We denote a commitment to z as C(z;r) where r is the
randomness used for the commitment. For simplicity, we sometimes drop r from
the notation and use C(z) to denote the commitment to . The homomorphism
of the scheme is defined as C(x + y) = C(x) x C(y).

158 E. Ghosh et al.

Proving an Integer is Non-negative in Zero-Knowledge: We use the following
(interactive) protocol between a prover and a verifier: the prover sends a com-
mitment ¢ to an integer z > 0 to the verifier and proves in zero-knowledge that
the committed integer is non-negative, without opening c. We denote this pro-
tocol as P < V(z,r : ¢ = C(z;7) Ax > 0). As a concrete construction we use
the protocol of [27] which is a ¥ protocol, i.e., honest verifier zero knowledge
and can be made non-interactive zero-knowledge (NIZK) in the random oracle
model using Fiat-Shamir heuristic [15].

Zero Knowledge Set Scheme: Let D be a set of key value pairs. If (z,v) is a key,
value pair of D, then we write D(x) = v to denote v is the value corresponding to
the key x. For the keys that are not present in D, x ¢ D, we write D(x) = L. A
Zero Knowledge Set scheme (ZKS) [29] consists of three probabilistic polynomial
time algorithms, ZKS = (ZKSSetup, ZKSProver = (ZKSP1, ZKSP5), ZKSVerifier),
and queries are of the form “is key x in D?7”. The ZKSSetup algorithm takes the
security parameter as input and produces a public key for the scheme that both
the prover (ZKSProver) and the verifier (ZKSVerifier) take as input. The prover,
Prover, is a tuple of two algorithms: ZKSP; takes the security parameter, the
public key, and the set D and produces a short digest commitment com for
D. ZKSP, takes a query x and produces the value v = D(z), and the corre-
sponding proof of (non-)membership, proof .. The verifier, ZKSVerifier, takes the
security parameter, the public key, com, a query z, an answer D(x), and proof,,
and returns a bit b, where b = ACCEPT/REJECT. For our construction of zero
knowledge lists we pick a ZKS construction of [12] that is based on mercurial
commitments.

Bilinear Aggregate Signature Scheme: Our PPAL scheme relies on bilinear aggre-
gate signature scheme of Boneh et al. [4]. Given signatures o1, ...,0, on distinct
messages My, ..., M, from n distinct users uq, ..., u,, it is possible to aggregate
these signatures into a single short signature o such that it (and the n messages)
convince the verifier that the n users indeed signed the n original messages (i.e.,
user ¢ signed message M;). We use the special case where a single user signs n
distinct messages My, ..., M,. The security requirement of an aggregate signa-
ture scheme guarantees that the aggregate signature o is valid if and only if the
aggregator used all o;’s to construct it.

3.3 Hardness Assumption

Let p be a large k-bit prime where £ € N is a security parameter. Let n € N
be polynomial in k, n = poly(k). Let e : G x G — G; be a bilinear map where
G and G are groups of prime order p and g be a random generator of G. We
denote a probabilistic polynomial time (PPT) adversary A as an adversary who
is running in time poly(k). We use A8("Put-) to show that an adversary A has
an oracle access to an instantiation of an algorithm alg with first argument set
to input and ... denoting that A can give arbitrary input for the rest of the
arguments.

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 159

Definition 1 (n-Bilinear Diffie Hellman Inversion (n-BDHI) [3]). Let s
be a random element of Z, and n be a positive integer. Then, for every PPT
adversary A there exists a negligible function v(.) such that:

8 * s 5 s™ <
Pr[s < Ziy — A({g,9°%. 9% ,....g°")) ry = e(g,9)*] < v(k).

4 Zero Knowledge List (ZKL)

We generalize the idea of consistent set membership queries [12,29] to support
membership and order queries in zero-knowledge on a list with no repeated ele-
ments. More specifically, given a totally ordered list of unique elements £ =
{y1,Y2,---,Yn}, Wwe want to support non-interactively and in zero-knowledge,
(proofs reveal nothing beyond the query answer, not even the size of the list)
queries of the following form:

~Isy; € Lory; &L, ie., L(y;) =true or L(y;) = false?
— For two elements y;,y; € £, what is their relative order, i.e., y; < y; or y; < u;
in £?

We adopt the same adversarial model as in [12,29,32]. There are two parties:
the prover and the verifier. The prover initially commits to a list of elements
and makes the commitment public. We now formally describe the model and the
security properties.

4.1 Model

A Zero Knowledge List scheme (ZKL) consists of three probabilistic polynomial
time algorithms: (Setup, Prover = (P1, P2), Verifier). The queries are of the form
(3, flag) where § = {z1,...,2m}, 2; € {0,1}*, is a collection of elements, flag =0
denotes a (non-)membership query and flag = 1 denotes an order query. In the
following sections, we will use state to represent a variable that saves the current
state of the algorithm (when it finishes execution).

PK « Setup(1*) The Setup algorithm takes the security parameter as input and
produces a public key PK for the scheme. The prover and the verifier both
take as input the string PK that can be a random string (in which case, the
protocol is in the common random string model) or have a specific structure
(in which case the protocol is in the trusted parameters model).

(com, state) « Py (1%, PK, £) P; takes the security parameter, the public key PK
and the list £, and produces a short digest commitment com for the list.
(member, proof ,,, order, proof ;) < P2(PK, state, §, flag) where § = {z1,...,2m}
and flag denotes the type of query. Py produces the membership information
of the queried elements, member = {L(z1),...,L(zy)} and the proof of
membership (and non-membership), proof ;. proof, is set depending on flag:
flag = 0: P4 sets order and proof, to L and returns (member, proof,,, L, 1).
flag = 1: Let § = {2; | i € [1,m] A L(2;) = true}. Py produces the correct

list order among the elements of §, order = 1~(§), and the proof of the
order, proof.

160 E. Ghosh et al.

b « Verifier(1¥, PK, com, §, flag, member, proof ,,, order, proof ,) Verifier takes the
security parameter, the public key PK, the commitment com and a query
(3, flag) and member, proof,,, order, proof, and returns a bit b, where b =
ACCEPT/REJECT.

Example: Let us illustrate the above functionality with a small example. Let
L ={A, B,C} and (§,flag) = ({B, D, A}, 1) be the query. Given this query P,
returns member = {L£(B), L(D), L(A)} = {true, false, true}, the corresponding
proofs of membership and non-membership in proof,,, order = {A, B} and the
corresponding proof of order between A and B in proof,.

4.2 Security Properties

Recall that the security properties of ZKL, Completeness, Soundness and Zero-
Knowledge, guarantee security against malicious prover and verifier. Complete-
ness mandates that honestly generated proofs always satisfy the verification test.
Soundness states that the prover should not be able to come up with a query, and
corresponding inconsistent (with the initial commitment) answers and convine-
ing proofs. Finally, zero-knowledge ensures that each proof reveals the answer
and nothing else.

Definition 2 (Completeness). For every list L, every query § and every flag,

Pr[PK « Setup(1%);

(com, state) — P (1%, PK, £);

(member, proof ;, order, proof ;) < P2(PK, state, 3, flag) :

Verifier(1%, PK, com, §, flag, member, proof ,,, order, proof ;) = ACCEPT] = 1
Definition 3 (Soundness). For every PPT malicious prover algorithm, Adv,
for every query § and for every flag there exists a negligible function v(.) such
that:

Pr[PK « Setup(1%);

(com, member!, proof}w, order!, proof}), member?,

proof;, order?, proofg,) «— Adv(1*, PK) :

Verifier(1¥, PK, com, §, flag, member?, proof}\/[7 order?, prooflo) = ACCEPTA

Verifier(1%, PK, com, 3, flag, member?, proof2,, order?, proofzo) = ACCEPTA

((member' # member?) v (order’ # order?))] < v(k)

Definition 4 (Zero-Knowledge). There exists a PPT simulator Sim =
(Simq, Simg, Simz) such that for every PPT malicious wverifier Adv =

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 161

(Advy, Advs), there exists a negligible function v(.) such that:

| Pr[PK « Setup(1%); (£, state4) «— Advy (1%, PK);
(com, statep) — P1(1%,PK, L) :
AdvE?(PKster) (com state 1) = 1]—

Pr[(PK, stateg) < Sim; (1%); (£, state4) « Adv; (1%, PK);
(com, stateg) « Simy (1", stateg) :

s Lok
Advy™s (1sttes) (com state) = 1]] < v(k),

where Simg has oracle access to L, that is, given a query (8, flag), Simg can query
the list L to learn only the membership/non-membership of elements in § and,
if flag = 1, learn the list order of the elements of § in L.

4.3 ZKL Construction

The construction uses zero knowledge set scheme, homomorphic integer com-
mitment scheme, zero-knowledge protocol to prove non-negativity of an inte-
ger and a collision resistant hash function H : {0,1}* — {0,1}!, if the ele-
ments of the list £ are larger that [bits. In particular, given an input list
L the prover Py creates a set D where for every element y; € £ it adds a
(key,value) pair (H(y;), C(j)). H(y;) is a hash of y; and C(j) is a homomorphic
integer commitment of rank(L,y;) (assuming rank(L,y;) = j, wlog). Py sets
up a zero knowledge set on D using ZKSP; from a zero-knowledge set scheme
ZKS = (ZKSSetup, ZKSProver = (ZKSP1, ZKSP5), ZKSVerifier) [12]. The output
of ZKSP; is a commitment to D, com, that P; sends to the verifier.

P5 operates as follows. Membership and non-membership queries of the form
(3, 0) are replied in the same fashion as in zero knowledge set, by invoking ZKSP4
on the hash of every element of sublist §. Recall that as a response to a member-
ship query for a key, ZKSP5 returns the value corresponding to this key. In our
case, the queried key is H(y;) and the value returned by ZKSPy, D(H(y,)), is the
commitment C(j) where j is the rank of element y; in the list £, if y; € £. If
y; ¢ L, the value returned is L. Hence, the verifier receives the commitments to
ranks for queried member elements. These commitments are never opened but
are used as part of order proofs.

For a given order query (3,1), for every adjacent pair of elements in the
returned order, order, Py gives a proof of order. Recall that order contains
the member elements of §, arranged according to their order in the list £. Ps
proves the order between two elements y; and y; as follows. Let rank(L,y;) =
i,rank(L,y;) = j, and C(i), C(j) be the corresponding commitments and, wlog,
let i < j. As noted above, C(i) and C(j) are already returned by Py as part of
the membership proof. Additionally, Py returns a commitment to 1, C(1), and
its opening information p. Note that, the verifier can compute C(1) himself, but
then the prover needs C'(1) computed by the verifier, to be able to generate proof

162 E. Ghosh et al.

for non-negativity of C'(j —i —1). To avoid this interaction, we make the prover
send C(1) and its opening.

The verification of the query answer proceeds as follows. Verifier computes
C(ij—i—1):=C(j)/(C(#)C(1)) using the homomorphic property of the integer
commitment scheme. Py uses the zero knowledge protocol P « V(z,r : ¢ =
C(x;r) Ax > 0) to convince Verifier that C(j —i — 1) is a commitment to value
> 0. Note that we use the non-interactive general zero-knowledge version of the
protocol as discussed in Sect.3. Hence, the query phase proceeds in a single
round.

We note that we require Verifier to verify that j —¢—1 > 0 and not j —i >
0 since otherwise a cheating prover Adv can do the following: store the same
arbitrary non-negative integer as a rank for every element in the list, hence,
C(j —4) and C(i — j) are commitments to 0, and Adv can always succeed in
proving an arbitrary order. However, an honest prover can always prove the
non-negativity of C(j —i — 1) as |j —i| > 1 for any rank 4, j of the list.

Also, we note that the commitments to ranks can be replaced by commit-
ments to a strictly monotonic sequence as long as there is a 1:1 correspondence
with the rank sequence. In this case, the distance between two elements will also
be positive and, hence, the above protocol still holds.

Theorem 1. The zero-knowledge list (ZKL) construction of Sect. 4.3 is a non-
interactive two-party protocol that satisfies the security properties of completeness
(Definition 2), soundness (Definition 3) and zero-knowledge (Definition 4) in the
random oracle model (inherited from NIZK). The construction has the following
performance, where n is the list size, m is the query size, each element of the
list is a k-bit (if not, we can use a hash function to reduce every element to a
k-bit string, as shown in the construction).

— The prover executes the commitment phase in O(nk) time and space, where
the multiplicative factor k is inherited from the height of the tree.

— In the query phase, the prover computes the proof of the answer in O(mk)
time.

— The verifier verifies the proof in O(mk) time and space.

The soundness of the ZKL scheme follows from the soundness of the ZKS scheme,
the binding property of the commitment scheme, and the correctness of protocol
P V(z,r:c=C(z;r) ANz > 0) (see Sect.3.2). For the zero-knowledge prop-
erty, we write a simulator that uses the ZKS simulator and the trapdoor of the
commitment scheme to equivocate commitments. The formal proof of Theorem 1
is omitted due to space restrictions and is presented in [17].

5 Privacy Preserving Authenticated List (PPAL)

In the previous section we presented a model and a construction for a new prim-
itive called zero knowledge lists. As we noticed earlier, ZKL model gives the
desired functionality to verify order queries on lists. However, the corresponding

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 163

construction does not provide the efficiency one may desire in cloud computing
setting where the verifier (client) has limited memory resources as we discuss in
Sect. 5.3. In this section we address this setting and define a model for privacy
preserving authenticated lists, PPAL, that is executed between three parties.
This model, arguably, fits cloud scenario better and, as we will see, our con-
struction is also more efficient.

5.1 Model

PPAL is a tuple of three probabilistic polynomial time algorithms
(Setup, Query, Verify) executed between the owner of the data list £, the server
who stores £ and answers queries from the client and the client who issues queries
on the elements of the list and verifies corresponding answers. We note that this
model assumes that the query is on the member elements of the list, i.e., for
any query, §, Elements(§) C Elements(L£). In other words, this model does not
support proofs of non-membership, similar to other data structures that support
only positive membership proofs, e.g., [6,8,9,11,23,24,33].

(digest, digestg) « Setup(1*, £) This algorithm takes the security parameter
and the source list £ as input and produces two digests digest and digestg
for the list. This algorithm is run by the owner. digest, is sent to the client
and digestg is sent to the server.

(order, proof) « Query(digestg, £,3) This algorithm takes the server digest gen-
erated by the owner, digestg, the source list, £, and a queried sublist, §, as
input, where a sublist of a list £ is defined as: Elements(3) C Elements(L).
The algorithm produces the list order of the elements of £, order = 7, (3),
and a proof, proof, of the answer. This algorithm is run by the server. Wlog,
we assume |§| > 1. In the trivial case of |§| = 1, the server returns an empty
proof, i.e., (order = §, proof =).

b «— Verify(digest, §, order, proof) This algorithm takes digest, a queried sublist
8, order and proof and returns a bit b, where b = ACCEPT iff Elements(§) C
Elements(£) and order = m.(3). Otherwise, b = REJECT. This algorithm is
run by the client.

5.2 Security Properties

A PPAL has three important security properties. Recall that the properties
of PPAL, Completeness, Soundness and Zero-Knowledge, guarantee security
against malicious server and client. They are close to the ones of ZKL except for
soundness. For PPAL it enforces that the client does not accept proofs forged
by the server for incorrect answers w.r.t. owner’s list. We describe each security
definition formally below.

The first property is Completeness. This property ensures that for any list £
and for any sublist § of £, if digest, digestg, order, proof are generated honestly,
i.e., the owner and the server honestly execute the protocol, then the client will
be always convinced about the correct list order of 3.

164 E. Ghosh et al.

Definition 5 (Completeness). For all lists L and all sublists § of L

Pr|[(digest, digestg) « Setup(1*, £); (order, proof) < Query(digestg, £,) :
Verify(digest, 8, order, proof) = ACCEPT A order = . (3)] = 1

The second security property is Soundness. This property ensures that once
an honest owner generates a pair (digest, digestg) for a list £, even a malicious
server will not be able to convince the client of an incorrect order of elements
belonging to the list £. This property ensures integrity of the scheme.

Definition 6 (Soundness). For all PPT malicious query algorithms Adv, for
all lists £ and all query sublists § of L, there exists a negligible function v(.) such
that:

Pr[(digest,, digestg) « Setup(1”, £); (order, proof) « Adv(digestg, £) :
Verify(digest, §, order, proof) = ACCEPT A order # m.(3)] < v(k)

The last property is Zero-Knowledge. This property captures that even a mali-
cious client cannot learn anything about the list (and its size) beyond what the
client has queried for. Informally, this property involves showing that there exists
a simulator such that even for adversarially chosen list £, no adversarial client
(verifier) can tell if it is talking to a honest owner and honest server who know £
and answer w.r.t. £, or to the simulator that only has oracle access to the list L.

Definition 7 (Zero-Knowledge). There exists a PPT simulator Sim =
(Simy, Simz) such that for all PPT malicious verifiers Adv = (Advy, Advy), there
exists a negligible function v(.) such that:

| Pr[(L, state) < Adv (1%);(digest, digestg) « Setup(1¥, L) :

Advguery(digEStSvL')(digestc,StateA) = 1]*

Pr[(£, states) < Adv;(1¥);(digest, stateg) « Simy(1%)

s Lk
Advy™z (17 59ts) (digest . statey) = 1]| < v(k)

Here Simy has oracle access to £, that is given a sublist § of £, Simy can query

the list £ to learn only the correct list order of the sublist § and cannot look
at L.

5.3 Construction of PPAL via ZKL

We show how a PPAL can be instantiated via a ZKL in Theorems?2 and 3 and
then discuss that the resulting construction does not yield the desired efficiency.

Theorem 2. Given a non-interactive ZKL scheme ZKL = (Setup,Prover =
(P1,P2), Verifier), which supports queries of the form (§,flag) on a list L, we
can instantiate o PPAL scheme for the list L, PPAL = (Setup, Query, Verify),
which supports queries of the form §, where § is a sublist of L, as follows:

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 165

PPAL.Setup(1%, £): Invoke PK « ZKL.Setup(1*) and (com,state) « ZKL.
P, (1%, PK, L). Return (digest, = (PK,com), digestg = (PK,com, state)).
PPAL.Query(digestg, £,8): Invoke (member,proof,,,order, proof,) «— ZKL.

P2(PK,state, §,1). Return (order, proof = (proof ,;, proof,)).
PPAL.Verify(digest, §, order, proof ,,;, proof 5): Set member = {1,1,...,1}

such that |member| = |8 = |order|. Return bit b where b —

ZKL.Verifier(1¥, PK, com, §, 1, member, proof ,,, order, proof).

Theorem 3. A PPAL scheme instantiated using a ZKL scheme, ZKL =
(Setup, Prover = (P, P3), Verifier) has the following performance:

— The owner’s runtime and space are proportional to the runtime and space of
ZKL.Setup and ZKL.P1, respectively.

— The server’s runtime and space are proportional to the runtime and space of
ZKL.Ps.

— The client’s runtime and space are proportional to the runtime and space of
ZKL.Verifier.

The correctness of Theorems 2 and 3 follow from the definition of PPAL and
ZKL models. In a PPAL instantiated with the ZKL construction of Sect. 4, the
owner runs in time and space O(kn) and the server requires space O(kn), where
n is the list size and each element of the list is k-bits long. To answer a query of
size m, the server runs in time O(km) and the verification time of the client is
O(km).

As we see, this generic construction is not very efficient due to the multi-
plicative factor O(k) and heavy cryptographic primitives. In Sect. 6, we present
a direct PPAL construction which is a factor of O(k) more efficient in space and
computation requirements as compared to an adaptation of our ZKL construc-
tion from Sect. 4.

6 PPAL Construction

We start by presenting the intuition behind our construction of a privacy pre-
serving authenticated list (PPAL). Next, we give more details on the algorithms
and analyze the security and efficiency of the construction.

Intuition: FEvery element of the list is associated with a member witness where
a member witness is a blinded component of the bilinear accumulator public
key. This allows us to encode the rank of the element in the member witness and
then “blind” rank information with randomness. Every pair of (element, member
witness) is signed by the owner and the signatures are aggregated using bilinear
aggregate signature scheme [4], to compute the list digest signature. Signatures
and digest are sent to the server, who can use them to prove authenticity when
answering client queries. The owner also sends the list digest signature and the
public key of the bilinear aggregate signature scheme to the client. The advantage
of using an aggregate signature is for the server to be able to compute a valid

166 E. Ghosh et al.

digest signature for any sublist of the source list by exploiting the homomorphic
nature of aggregate signatures, that is without owner’s involvement. Moreover,
the client can verify the individual signatures in a single invocation to aggregate
signature verification.

The owner also sends to the server linear (in the list size) number of random
elements used in the encoding of member witnesses. These random elements
allow the server to compute the order witnesses on queried elements, without
the owner’s involvement. The order witness encodes the distance between two
elements, i.e., the difference between element ranks, without revealing anything
about it. Together with member witnesses, the client can later use bilinear map
to verify the order of the elements.

Construction: Our construction for PPAL is presented in Fig. 1. We denote mem-
ber witness for x; € L as tg,cr. For two elements z;, x; € £, such that z; < z; in
L, te;<x; 18 an order witness for the order between x; and x;. The construction
works as follows.

In the Setup phase, the owner generates secret key (v, s) and public key g,
where v is used for signatures. The owner picks a distinct random element r; from
the group Z;, for each element z; in the list £, € [1,n]. The element r; is used
to compute the member witness t,,c.. Later in the protocol, together with r;,
it is also used by the server to compute the order witness t;,<.,. The owner also
computes individual signatures, o;’s, for each element and aggregates them into
a digest signature o, for the list. It returns the signatures and member witnesses
for every element of £ in X and the set of random numbers picked for each index
to be used in order witnesses in Q. The owner sends digest~ = (¢”,0.) to the
client and digestg = (9,0, (g,gs,gsz, ooy 9°),82,9Q,) and L to the server.

Given a query §, the server returns a response list order that contains ele-
ments of § in the order they appear in £. The server uses information in ¥, to
compute the digest signature for the sublist, oorder, and its membership verifica-
tion unit A, which are part of the Yo 4er component of the proof. To compute
the Qorder component of the proof, the server uses corresponding blinding val-
ues in 2, and elements gsd where d’s correspond to distances between ranks of
queried elements.

The client first checks that all the returned elements are signed by the owner
using Yorder and then verifies the order of the returned elements using Qoger-
Hence, the client uses bilinear map for two purposes: first for member verifi-
cation and then to verify the order. The query phase has a single round of
communication between client and server.

We now describe the preprocessing step at the server that reduces the query
time for a query of size m on a list of size n from O(n) to O(min{mlogn,n}).
Let ¥; = H(ty,ec|lx;) for x; € L. The server computes and stores a balanced
binary tree over n leaves, where the ith leaf corresponds to z; and stores V.
Each internal node of the tree stores the product of the values at its children.
When answering a query of size m, the server can compute A, by using partial
products that correspond to intervals between elements in the query. There are
m + 1 such partial products. Since each partial product can be computed using

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 167

Notation: k € N is the security parameter of the scheme; G, G| multiplicative cyclic groups
of prime order p where p is large k-bit prime; g: a random generator of G; e: computable
bilinear nondegenerate map e : G x G — Gy; H : {0,1}* — G: full domain hash function
(instantiated with a cryptographic hash function); all arithmetic operations are performed
using mod p. L is the input list of size n = poly(k), where x;’s are distinct and rank(L,x;) =
i. System parameters are (p,G,G1,e,g8,).
(digestc, digestg) < Setup(1¥, £), where
L is the input list of length n;
digeste = (g",0,);
digestg = (¢",0, ,(g,g“',g‘z,...,gsn>,ZL,QL) and
(s & Zy,v & Zy) is the secret key of the owner;
Y = ({tver,Oit1<icp, H(®)) is member authentication information and ® is
the list nonce;
Q= (ri,r,...,m),ri #rj fori # j, is order authentication information;
G is the digest signature of the list L.
These elements are computed as follows:

For every element x; in £ = {xj,...,x,}: Pick r; ﬁ Z;, Compute member witness for

index i as tyc . « (¢*)"" and signature for element x; as 6; < H (ty.cr||x;)".

Pick the nonce, ® <i {0,1}", which should be unique for each list.

Set salt + (H(®))". salt is treated as a list identifier which protects against mix-
and-match attack and also protects from the leakage that the queried result is the
complete list.

The list digest signature is computed as: 6, < salt X [<;<,,Ci-

(order, proof) < Query(digestg, L,d), where o

d={z1,...,zm} st.z; € L, Vi € [1,m], is the queried sublist;

order =7, (8) = {y1.-- sy };

proof = (Zordera Qorder):

Yorder = (Gordeh T, }“L’) where L' = L \ 8;

T= {lyleLv ce 7ty,,,€L};

Qorder = {tw <20 Iyp<yzs - oy <}’m}'
These elements are computed as follows:

The digest signature for the sublist: Gy der < Hy,»eordercrank(L))

The member verification unit: Az/ < H (@) X [Tee o H (e £l [Y)-

Forevery j € [I,m—1]: Let/’ =rank(L,y;) and i’ =rank(L,y;;1),and ¥’ =Q[i'] !

/rl/
and " = Q[i"]. Compute ty, <., + (g“d)r where d = |i —i
b + Verify(digestc, 8, order, proof) where digest., d, order, proof are defined as above.
The algorithm checks the following:

. 2
— Compute & < Hyj€55-[(tyjeL||yj) and check if €(Corder;) = €(E,8").
. ?
- Checkif €(0r,8) = e(Oorder,8) X e(Arr,8").

. ?
— Forevery j € [Il,m—1], e(ty,cr.ty;<y;1) = elty;, er,8)-
Return ACCEPT iff all the equalities of the three steps verify, and REJECT, otherwise.

II‘.

Fig. 1. Privacy-preserving authenticated list (PPAL) construction

168 E. Ghosh et al.

O(logn) precomputed products in the tree, it takes O(mlogn) time to compute
the product of m + 1 of them. The server takes O(n) for preprocessing and the
query time is reduced to O(min{mlogn,n}).

We summarize the properties and efficiency of our PPAL construction in
Theorem 4.

Theorem 4. The privacy-preserving authenticated list (PPAL) construction of
Fig. 1 satisfies the security properties of completeness (Definition 5), soundness
(Definition 6) and zero-knowledge (Definition7) in the random oracle model
(inherited from [4]) and under the n-BDHI assumption (Definition 1). Also, the
construction has the following performance, where n denotes the list size and m
denotes the query size.

— The owner and the server use O(n) space.

— The owner performs the setup phase in O(n) time and goes offline.

— The server performs the preprocessing phase in O(n) time.

— Query phase is a single-round protocol between the server and the client.

— The server computes the answer to a query and its proof in O(min{m logn,n})
time.

— The client verifies the proof in O(m) time and space.

The formal proof is omitted due to space restrictions and is available in [17]. Here
we highlight the proof of soundness and zero knowledge. To prove soundness, we
assume that there exists a malicious server Adv, which forges the order on a
non-trivial sublist § = {z1,..., %}, where m > 2, for a list £. Then there exists
at least one inversion pair (z;, ;) whose order is flipped in Adv’s forgery. Wlog
assume that u < v where u = rank(£, ;) and v = rank(£, z;). Then Adv must

w—v) T1Ty
have forged the witness ¢, <;, = (gs()) "? " that passes the verification, where

1,72 € Z;, are the blinded components of elements z; and z;, respectively. We

show that by invoking Adv and using its forged witness ¢, <.,, we can construct

a PPT adversary that successfully breaks the n-BDHI hardness assumption [3]
v — - 1 v—u—

by outputting e<t$j<$i, (g° l)r1 17’2) = e(g,9)7, where g¢* s part of

the input to the n-BDHI problem.

For the zero knowledge property, we write a simulator that can produce
witnesses identically distributed to real witnesses by giving it only oracle access
to the list, and using the fact that our PPAL construction uses witnesses blinded
in their exponents.

Acknowledgment. This research was supported in part by the National Science
Foundation under grant CNS-1228485. Olga Ohrimenko worked on this project in
part while at Brown University. We are grateful to Melissa Chase, Markulf Kohlweiss,
Anna Lysyanskaya, and Claire Mathieu for useful discussions and for their feedback on
early drafts of this work. We would also like to thank Ashish Kundu for introducing us
to his work on structural signatures and Jia Xu for sharing a paper through personal
communication.

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 169

References

10.

11.

12.

13.

14.

15.

16.

Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Com-
puting on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 1-20. Springer, Heidelberg (2012)

Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASTACRYPT
2012. LNCS, vol. 7658, pp. 367-385. Springer, Heidelberg (2012)

Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223-238. Springer, Heidelberg (2004)

Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416-432. Springer, Heidelberg (2003)

Boudot, F.: Efficient proofs that a committed number lies in an interval. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431-444. Springer,
Heidelberg (2000)

Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and
constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
87-104. Springer, Heidelberg (2010)

Camacho, P., Hevia, A.: Short transitive signatures for directed trees. In:
Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 35-50. Springer,
Heidelberg (2012)

Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481-500. Springer, Heidelberg (2009)

Catalano, D., Fiore, D.: Vector commitments and their applications. In: Hanaoka, G.,
Kurosawa, K. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55-72. Springer, Heidelberg
(2013)

Catalano, D., Fiore, D., Messina, M.: Zero-knowledge sets with short proofs. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 433-450. Springer,
Heidelberg (2008)

Chang, E.-C., Lim, C.L., Xu, J.: Short redactable signatures using random trees.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133-147. Springer,
Heidelberg (2009)

Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commit-
ments with applications to zero-knowledge sets. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 422-439. Springer, Heidelberg (2005)

Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
complex unary transformations and delegatable anonymous credentials. TACR
Cryptology ePrint Archive 2013/179 (2013)

Damgard, 1.B., Fujisaki, E.: A statistically-hiding integer commitment scheme
based on groups with hidden order. In: Zheng, Y. (ed.) ASTACRYPT 2002. LNCS,
vol. 2501, pp. 125-142. Springer, Heidelberg (2002)

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186-194. Springer, Heidelberg (1987)

Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Fully-dynamic verifiable
zero-knowledge order queries for network data. IACR Cryptology ePrint Archive
2015/283 (2015)

170

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

E. Ghosh et al.

Ghosh, E., Ohrimenko, O., Tamassia, R.: Verifiable member and order queries on
a list in zero-knowledge. IACR Cryptology ePrint Archive 2014/632 (2014)
Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L., Vasant, S., Ziv, A.: NSEC5:
provably preventing DNSSEC zone enumeration. Cryptology ePrint Archive,
Report 2014/582 (2014)

Goodrich, M.T.,; Nguyen, D., Ohrimenko, O., Papamanthou, C., Tamassia, R.,
Triandopoulos, N., Lopes, C.V.: Efficient verification of web-content searching
through authenticated web crawlers. PVLDB 5(10), 920-931 (2012)

Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: Proceedings of the DARPA
Information Survivability Conference and Exposition II (2001)

Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244-262. Springer,
Heidelberg (2002)

Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477,
pp. 177-194. Springer, Heidelberg (2010)

Kundu, A., Atallah, M.J., Bertino, E.: Leakage-free redactable signatures. In: Pro-
ceedings of the CODASPY (2012)

Kundu, A., Bertino, E.: Structural signatures for tree data structures. PVLDB
1(1), 138-150 (2008)

Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Int.
J. Inf. Sec. 12(6), 467494 (2013)

Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499-517. Springer, Heidelberg (2010)

Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASTACRYPT 2003. LNCS, vol. 2894, pp. 398-415. Springer,
Heidelberg (2003)

Merkle, R.C.: Protocols for public key cryptosystems. In: Proceedings of the IEEE
Symposium on Security and Privacy (1980)

Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: Proceedings of the
FOCS (2003)

Micali, S., Rivest, R.L.: Transitive signature schemes. In: Preneel, B. (ed.) CT-RSA
2002. LNCS, vol. 2271, pp. 236-243. Springer, Heidelberg (2002)

Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme
based on bilinear maps. In: Proceedings of the ASTACCS (2006)

Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs for general-
ized queries on a committed database. In: Diaz, J., Karhumaéki, J., Lepisto, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1041-1053. Springer,
Heidelberg (2004)

Poehls, H.C., Samelin, K., Posegga, J., De Meer, H.: Length-hiding redactable
signatures from one-way accumulators in O(n). Technical report MIP-1201, Faculty
of Computer Science and Mathematics (FIM), University of Passau (2012)
Samelin, K., Pohls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signa-
tures for independent removal of structure and content. In: Ryan, M.D., Smyth, B.,
Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17-33. Springer, Heidelberg
(2012)

Zero-Knowledge Authenticated Order Queries and Order Statistics on a List 171

35.

36.

37.

38.

Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 285-304. Springer, Heidelberg (2002)
Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2-5. Springer, Heidelberg (2003)

Wang, Z.: Improvement on Ahn et al.’s RSA P-homomorphic signature scheme.
In: Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012. LNICST, vol. 106,
pp. 19-28. Springer, Heidelberg (2013)

Yi, X.: Directed transitive signature scheme. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 129-144. Springer, Heidelberg (2006)

	Zero-Knowledge Authenticated Order Queries and Order Statistics on a List
	1 Introduction
	2 Problem Statement, Models, Related Work, and Contributions
	2.1 Problem Statement and Models
	2.2 Related Work
	2.3 Contributions and Organization of the Paper

	3 Preliminaries
	3.1 Data Type
	3.2 Cryptographic Primitives
	3.3 Hardness Assumption

	4 Zero Knowledge List (ZKL)
	4.1 Model
	4.2 Security Properties
	4.3 ZKL Construction

	5 Privacy Preserving Authenticated List (PPAL)
	5.1 Model
	5.2 Security Properties
	5.3 Construction of PPAL via ZKL

	6 PPAL Construction
	References

