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Abstract. In this paper, we introduce a new concept that we call fuzzy
signature, which is a signature scheme that uses a noisy string such as bio-
metric data as a private key, but does not require auxiliary data (which is
also called helper string in the context of fuzzy extractors), for generating
a signature. Our technical contributions are three-fold: (1) We first give
the formal definition of fuzzy signature, together with a formal definition
of a “setting” that specifies some necessary information for fuzzy data.
(2) We give a generic construction of a fuzzy signature scheme based on
a signature scheme with certain homomorphic properties regarding keys
and signatures, and a new tool that we call linear sketch. (3) We specify
a certain setting for fuzzy data, and then give concrete instantiations of
these building blocks for our generic construction, leading to our pro-
posed fuzzy signature scheme.

We also discuss how fuzzy signature schemes can be used to realize a
biometric-based PKI that uses biometric data itself as a cryptographic
key, which we call the public biometric infrastructure (PBI).

Keywords: Fuzzy signature · Public biometric infrastructure

1 Introduction

1.1 Background and Motivation

The public key infrastructure (PKI), which enables authentication and crypto-
graphic communication, plays a significant role as an infrastructure for infor-
mation security, and is expected to be used for personal use (e.g. national ID,
e-government service) more and more widely. In the PKI, private and public keys
are generated for each user at the time of registration, and a certificate author-
ity (CA) guarantees the link between the public key and the user’s identity by
issuing a public key certificate. The user can publish his/her digital signature
by using the private signing key. However, since the user has to manage his/her
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private key in a highly secure manner [6], it is not very convenient in some situ-
ations. For example, the user is required to possess a hardware token (e.g. smart
card, USB token) that contains his/her private key, and memorize a password
to activate the key. Such limitations reduce usability, and especially, carrying a
dedicated device can be a burden to users. This becomes more serious for elderly
people in an aging society.

A feasible approach for solving this problem fundamentally is to use biometric
data (e.g. fingerprint, iris, and finger-vein) as a cryptographic key. Namely, since
biometric data is a part of human body, it can offer a more usable way to
link the private key and the individual. Moreover, a multibiometric sensor that
simultaneously acquires multiple biometric information (e.g. iris and face [1];
fingerprint and finger-vein [15]) has been recently developed to obtain enough
entropy at one time, and we can also expect that longer strings will be produced
from various biometric data in the near future.

However, since biometric data is noisy and fluctuates each time it is captured,
it cannot be used directly as a key. Intuitively, it seems that this issue can be
immediately solved by using a fuzzy extractor [4], but this is not always the
case. More specifically, for extracting a string by a fuzzy extractor, an auxiliary
data called a helper string is necessary, and therefore, the user is still enforced
to carry a dedicated device that stores it. (We discuss the limitations of the
approaches with helper data (i.e. the fuzzy-extractor-based approaches) in more
detail in Appendix A.) Hence, it is considered that the above problem cannot be
straightforwardly solved by using the fuzzy extractor, and another cryptographic
technique by which noisy data can be used as a cryptographic private key without
relying on any auxiliary data, is necessary.

Fuzzy Signature: A Signature Scheme with a Fuzzy Private Key. In this paper,
we introduce a new concept of digital signature that we call fuzzy signature.
Consider an ordinary digital signature scheme. The signing algorithm Sign is
defined as a function that takes a signing key sk and a message m as input, and
outputs a signature σ ← Sign(sk,m)1. Thus, it is natural to consider that its
“fuzzy” version Sign should be defined as a function that takes a noisy string x
and a message m as input, and outputs σ ← Sign(x,m). In this paper, we refer
to such digital signature (i.e. digital signature that allows to use a noisy string
itself as a signing key) as fuzzy signature. It should be noted that some studies
proposed a fuzzy identity based signature (FIBS) scheme [7,20,21,23,24], which
uses a noisy string as a verification key. However, fuzzy signature is a totally
different concept since it does not allow a fuzzy verification key, but allows a
fuzzy signing key (i.e. fuzzy private key).

Figure 1 shows the architecture of fuzzy signature in the left, and that of
digital signature using a fuzzy extractor in the right. In fuzzy signature, the
key generation algorithm KGFS takes a noisy string (e.g. biometric feature) x
as input, and outputs a verification key vk.; The signing algorithm SignFS takes

1 Strictly speaking, in this paper we adopt the syntax in which Sign also takes a public
parameter as input (see Sect. 2.2). In this section, we omit it for simplicity.
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another noisy string x′ and a message m as input, and outputs a signature σ.;
The verification algorithm VerFS takes vk, m, and σ as input, and verifies whether
σ is valid or not. If x′ is close to x, σ is verified as valid (the formal definitions
of these algorithms are given in Sect. 3). We emphasize that a fuzzy signature
scheme cannot be constructed based on a fuzzy extractor, since it requires a
helper string P along with a noisy string x′ to make a signature σ on a message
m. Hence, to date, the realization of fuzzy signature has been an open problem.
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KGFS
x

x'
SignFS VerFS

m m

vk

or

Fuzzy Signature (Our Proposal)

Fig. 1. Architecture of fuzzy signature (our proposal) (left), and that of digital signa-
ture using a fuzzy extractor (right) (x, x′: noisy string, sk: signing key, vk: verification
key, σ: signature, m: message, �: valid, ⊥: invalid).

1.2 Our Contributions

In this paper, we show that under the assumption that a noisy string is uniform
and has enough entropy, a secure fuzzy signature scheme can be indeed realized.
More specifically, our technical contributions are three-fold:

1. Formal Definition of Fuzzy Signature (Sect. 3): We first formalize a
fuzzy key setting that specifies some necessary information for fuzzy data
(e.g. a metric space to which fuzzy data belongs, and a distribution of fuzzy
data over it, etc.). We then give a formal definition of a fuzzy signature scheme
that is associated with a fuzzy key setting.

2. Generic Construction (Sect. 4): In order to better understand our ideas
and the security arguments for our proposed scheme clearly and in a modular
manner, we give a generic construction of a fuzzy signature from an ordinary
signature scheme with certain homomorphic properties regarding keys and
signatures (which is formally defined in Sect. 2.2), and a new technical tool
that we call linear sketch that incorporates a kind of encoding and error
correction processes. (We explain how it works and is used informally in
Sect. 1.3, and give a formal definition in Sect. 4.1.)

3. Concrete Instantiation (Sect. 5): We specify a concrete fuzzy key setting
in which fuzzy data is distributed uniformly over some metric space, and
then show how to realize the underlying signature scheme and a linear sketch
scheme that can be used in the generic construction for this fuzzy key setting.
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Our signature scheme is based on the Waters signature scheme [22], which we
modify so that it satisfies the homomorphic property required in our generic
construction. Our linear sketch scheme is based on the Chinese reminder
theorem and some form of linear coding and error correction.

In Sect. 1.3, we give an overview of how our proposed fuzzy signature scheme is
constructed.

It is expected that our fuzzy signature scheme can be used to realize a
biometric-based PKI that uses biometric data itself as a cryptographic key, which
we call the public biometric infrastructure (PBI). We discuss it in Sect. 6 in more
detail. We would like to emphasize that although so far we have mentioned bio-
metric feature as a main example of noisy data, our scheme is not restricted to
it, and can also use other noisy data such as the output of a PUF (physically
unclonable function) [12] as input, as long as it satisfies the requirement of a
fuzzy key setting.

x'

Signm

Step 2

Step 1

Step 3

Sketch

x Sketch

Fig. 2. An overview of our generic construction of a fuzzy signature scheme. The box
“Sketch” indicates one of the algorithms of a primitive that we call “linear sketch,”
which is formalized in Sect. 4.1.

1.3 Overview of Our Fuzzy Signature Scheme

Our proposed fuzzy signature scheme ΣFS is constructed based on an ordinary
signature scheme (let us call it the “underlying scheme” Σ for the explanation
here). In Fig. 2, we illustrate an overview of our construction of a fuzzy signature
scheme. Our basic strategy is as follows: In the signing algorithm SignFS(x′,m)
(where x′ is a noisy string and m is a message to be signed), we do not extract
a signing key sk (for the underlying scheme Σ) directly from x′ (which is the
idea of the fuzzy-extractor-based approach), but use a randomly generated key
pair (˜vk, ˜sk) of Σ, generate a signature σ̃ using ˜sk, and also create a “sketch” c̃
(via the algorithm denoted by “Sketch” in Fig. 2), which is a kind of “one-time
pad” ciphertext of the signing key ˜sk using x′ as a “one-time pad key”2, and let
2 The procedure “Sketch” is actually not the one-time pad encryption, but more like

a (one-way) “encoding,” because we do not need to decrypt c̃ to recover ˜sk. This is
the main reason why we call c̃ “sketch” (something that contains the information of
˜sk), not “ciphertext”.
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a signature σ consist of (˜vk, σ̃, c̃). This enables us to generate a fresh signature
σ̃ without being worried about the fuzziness of x′. Here, however, since σ̃ is a
valid signature only under ˜vk, in order to generate a signature next time, we
need to somehow carry the “encrypted” signing key c̃. To avoid it, in the key
generation algorithm KGFS(x) (where x is also a noisy string measured at the
key generation), we also generate a “sketch” c of another fresh signing key sk
using x as the “one-time pad key”, and put it as a part of a verification key of
our fuzzy signature scheme. Hence, a verification key V K in our fuzzy signature
scheme ΣFS consists of a verification key vk (corresponding to the signing key
sk generated at the key generation) of the underlying scheme Σ, and the sketch
c generated from sk and x. Here, by using some kind of error correction method
with which we can remove “noise” from c and c̃, and comparing them, we can
calculate the “difference” Δsk between sk and ˜sk, similarly to what we can do
for one-time pad ciphertexts.3 Thus, if the underlying scheme Σ has the property
that “given two verification keys (vk, ˜vk) and a (candidate) difference Δsk, one
can verify that the difference between the secret keys sk and ˜sk (corresponding to
vk and ˜vk, respectively) is indeed Δsk”, we can verify the signature σ = (˜vk, σ̃, c̃)
of ΣFS under the verification key V K = (vk, c) by first checking the validity of
σ̃ under ˜vk (Step 1), then recovering Δsk from c and c̃ (Step 2), and finally
checking whether the difference between vk and ˜vk indeed corresponds to Δsk
(Step 3). The explanation so far is exactly what we do in our generic construction
in Sect. 4.

To concretely realize the above strategy, we propose a variant of the Waters
signature scheme [22] (which we call modified Waters signature (MWS)) that sat-
isfies all our requirements. We also formalize the methods for “one-time padding
secret keys (sk and ˜sk) by noisy strings” and “reconstructing the difference
between two secret keys”, as a tool that we call linear sketch, and show how to
realize a linear sketch scheme that can be used together with the MWS scheme
to realize our fuzzy signature scheme ΣFS.

2 Preliminaries

In this section, we review the basic notation and the definitions of primitives.

Basic Notation. N, Z, and R denote the sets of all natural numbers, all integers,
and all real numbers, respectively. If n ∈ N, then we define [n] := {1, . . . , n}. If
a, b ∈ N, then “GCD(a, b)” denotes the greatest common divisor of a and b, and
if a ∈ R, then “�a�” denotes the maximum integer which does not exceed a.

3 Recall that the original one-time pad encryption c = m ⊕ K (where c, m, and K
are a ciphertext, a message, and a key, respectively) has “linearity” in the sense
that given two ciphertexts c1 = m ⊕ K1 and c2 = m ⊕ K2 of the same message m
under different keys K1 and K2, we can calculate the difference ΔK = K1 ⊕ K2 by
computing c1 ⊕ c2.
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If S is a finite set, then “|S|” denotes its size, and “x ←R S” denotes that
x is chosen uniformly at random from S. If Φ is a distribution (over some set),
then x ←R Φ denotes that x is chosen according to the distribution Φ. “x ← y”
denotes that y is (deterministically) assigned to x. If x and y are bit-strings,
then |x| denotes the bit-length of x, and “(x||y)” denotes the concatenation of
x and y. “(P)PTA” denotes a (probabilistic) polynomial time algorithm.

If A is a probabilistic algorithm, then “y ←R A(x)” denote that A computes
y by taking x as input and using an internal randomness that is chosen uniformly
at random, and if we need to specify the randomness, we denote by “y ← A(x; r)”
(in which case the computation of A is deterministic that takes x and r as input).
If furthermore O is a (possibly probabilistic) algorithm or a function, then “AO”
denotes that A has oracle access to O. Throughout the paper, “k” denotes a
security parameter. A function f(·) : N → [0, 1] is said to be negligible if for all
positive polynomials p(·) and all sufficiently large k, we have f(k) < 1/p(k).

2.1 Bilinear Groups and Computational Problems

We say that BG = (p,G,GT , g, e) constitutes (symmetric) bilinear groups if p is
a prime, G and GT are cyclic groups with order p, g is a generator of G, and
e : G × G → GT is an efficiently (in |p|) computable mapping satisfying the
following two properties: (Bilinearity :) For all g′ ∈ G and a, b ∈ Zp, it holds that
e(g′a, g′b) = e(g′, g′)ab, and (Non-degeneracy :) for all generators g′ of G, e(g′, g′)
is not the identity element of GT .

For convenience, we denote by BGGen an algorithm (referred to as a bilinear
group generator) that, on input 1k, outputs a description of bilinear groups BG.

Definition 1. We say that the computational Diffie-Hellman (CDH) assump-
tion holds with respect to BGGen if for all PPTAs A, AdvCDHBGGen,A(k) := Pr[BG ←
BGGen(1k); a, b ←R Zp : A(BG, ga, gb) = gab] is negligible.

2.2 Signature

Syntax and Correctness. We model a signature scheme Σ as a quadruple of the
PPTAs (Setup,KG,Sign,Ver) that are defined as follows: The setup algorithm
Setup takes 1k as input, and outputs a public parameter pp.; The key genera-
tion algorithm KG takes pp as input, and output a verification/signing key pair
(vk, sk).; The signing algorithm Sign takes pp, sk, and a message m as input,
and outputs a signature σ.; The verification algorithm Ver takes pp, vk, m, and
σ as input, and outputs either � or ⊥. Here, “�” (resp. “⊥”) indicates that σ
is a valid (resp. invalid) signature of the message m under the key vk.

We require for all k ∈ N, all pp output by Setup(1k), all (vk, sk) output by
KG(pp), and all messages m, we have Ver(pp, vk,m,Sign(pp, sk,m)) = �.

EUF-CMA Security. Here, we recall the definition of existential unforgeability
against chosen message attacks (EUF-CMA security).
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For a signature scheme Σ = (Setup,KG,Sign,Ver) and an adversary A, con-
sider the following EUF-CMA experiment ExptEUF-CMAΣ,A (k):

ExptEUF-CMAΣ,A (k) : [ pp ←R Setup(1k); (vk, sk) ←R KG(pp);

Q ← ∅; (m′, σ′) ←R AOSign(·)(pp, vk);
If m′ /∈ Q ∧ Ver(pp, vk,m′, σ′) = � then return 1 else return 0 ],

where OSign is the signing oracle which takes a message m as input, updates Q
by Q ← Q ∪ {m}, and returns a signature σ ←R Sign(pp, sk,m).

Definition 2. We say that a signature scheme Σ is EUF-CMA secure if for all
PPTA adversaries A, AdvEUF-CMAΣ,A (k) := Pr[ExptEUF-CMAΣ,A (k) = 1] is negligible.

Homomorphic Properties of Keys and Signatures. For our fuzzy signature scheme,
we will utilize a signature scheme that has certain homomorphic properties regard-
ing keys and signatures, and thus we formalize the properties here.

Definition 3. Let Σ = (Setup,KG,Sign,Ver) be a signature scheme. We say
that Σ is homomorphic if it satisfies the following properties:

– For all parameters pp output by Setup, the signing key space constitutes a
cyclic abelian group (Kpp,+), and the key generation algorithm KG can be
described by using the deterministic PTA KG′ as follows:

KG(pp) : [sk ←R Kpp; vk ← KG′(pp, sk); Return (vk, sk).]. (1)

– There exists a deterministic PTA Mvk that takes a public parameter pp (output
by Setup), a verification key vk (output by KG(pp)), and a “shift” Δsk ∈ Kpp

as input, and outputs the “shifted” verification key vk′.
We require that for all pp output by Setup and all sk,Δsk ∈ Kpp, it holds that

KG′(pp, sk + Δsk) = Mvk(pp,KG′(pp, sk),Δsk). (2)

– There exists a deterministic PTA Msig that takes a public parameter pp (output
by Setup), a verification key vk (output by KG(pp)), a message m, a signature
σ, and a “shift” Δsk ∈ Kpp as input, and outputs a “shifted” signature σ′.
We require that for all pp output by Setup, all messages m, all sk,Δsk ∈ Kpp,
the following two distributions are identical:

{σ′ ←R Sign(pp, sk + Δsk,m) : σ′}, and
{σ ←R Sign(pp, sk,m); σ′ ← Msig(pp,KG′(pp, sk),m, σ,Δsk) : σ′}. (3)

Furthermore, we require that for all pp output by Setup, all sk,Δsk ∈ Kpp,
and all (m,σ) satisfying vk = KG′(pp, sk) and Ver(pp, vk,m, σ) = �, it holds
that

Ver(pp,Mvk(pp, vk,Δsk),m,Msig(pp, vk,m, σ,Δsk)) = �. (4)
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On “Weak” Distributions of Signing Keys. Let Σ = (Setup,KG,Sign,Ver) be
a signature scheme with the homomorphic property (as per Definition 3) with
secret key space Kpp for a public parameter pp, and thus there exists the algo-
rithm KG′ such that KG can be written as in Eq. (1). Let u : N → N be any

function. For an EUF-CMA adversary A attacking Σ, let ˜Adv
EUF-CMA

Σ,A (k) be the
advantange of A in the experiment that is the same as ExptEUF-CMAΣ,A (k), except
that a secret key sk is chosen by sk ←R

˜Kpp (instead of sk ←R Kpp) where ˜Kpp

denotes an arbitrary (non-empty) subset of Kpp satisfying |Kpp|/|˜Kpp| ≤ u(k).
We will use the following fact, which is obtained as a corollary of the lemma

shown by Dodis and Yu [5, Lemma 1].

Lemma 1. (Corollary of [5, Lemma 1]) Under the above setting, for any

PPTA adversary A, it holds that ˜Adv
EUF-CMA

Σ,A (k) ≤ u(k) · AdvEUF-CMAΣ,A (k).

Waters Signature Scheme. Our fuzzy signature scheme is based on the Waters
signature scheme [22], and thus we recall it here. (We consider the version where
the setup and the key generation (for each user) is separated.)

Let � = �(k) be a positive polynomial, and let BGGen be a bilinear group
generator (as defined in Sect. 2.1). Then, the Waters signature scheme ΣWat for
�-bit messages are constructed as in Fig. 3. ΣWat is known to be EUF-CMA secure
if the CDH assumption holds with respect to BGGen [22].

SetupWat(1
k) :

BG := (p,G,GT , g, e) BGGen(1k)
h, u , u1, . . . , u R G

pp (BG, h, u , (ui)i∈[ ])
Return pp.

KGWat(pp) :
sk R Zp

vk gsk

Return (vk, sk).

SignWat(pp, sk, m) :

Parse m as (m1 . . . m ) ∈ {0, 1} .
r R Zp

σ1 hsk · (u i∈[ ] u
mi
i )r; σ2 gr

Return σ (σ1, σ2).

VerWat(pp, vk, m, σ) :
(σ1, σ2) σ

Parse m as (m1 . . . m ) ∈ {0, 1} .
If e(σ2, u · i∈[ ] u

mi
i ) · e(vk, h) = e(σ1, g)

then return else return ⊥.

Fig. 3. The Waters signature scheme ΣWat [22].

3 Definitions for Fuzzy Signature

In this section, we introduce the definitions of Fuzzy Signature (FS).
As mentioned in Sect. 1, to define FS, we need to define some “setting” that

models a space to which a fuzzy data (used as a signing key of FS) belongs, a
distribution from which fuzzy data is sampled, etc. We therefore first formalize
it as a fuzzy key setting in Sect. 3.1, and then define FS that is associated with
a fuzzy key setting in Sect. 3.2.
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3.1 Formalization of Fuzzy Key Setting

Consider a typical biometric authentication scheme, in which a “fuzzy” biometric
feature x ∈ X (where X is some metric space) is measured and extracted from a
user at the registration phase.; At the authentication phase, a biometric feature
x′ is measured and extracted from a (possibly different) user, and this user is
considered the user who generated the biometric data x and thus authentic if x
and x′ are sufficiently “close” according to some metric.

We abstract out this typical setting for “identifying fuzzy objects” as a “fuzzy
key setting”, and formalize it here. Roughly, a fuzzy key setting specifies (1) the
metric space to which fuzzy data (such as biometric data) belongs (X in the
above example), (2) the distribution of fuzzy data sampled at the “registration
phase” (x in the above example), and (3) the error distribution that models
“fuzziness” of the fuzzy data (the relationship between x and x′ in the above
example).

We adopt what we call the “universal error model”, which assumes that for
all objects U that produce fuzzy data that we are interested in, if U produces
a data x at the first measurement (say, at the registration phase), if the same
object is measured next time, then the measured data x′ follows the distribution
{e ←R Φ;x′ ← x + e : x′}. That is, the error distribution Φ is independent
of individual U . (We also assume that the metric space constitutes an abelian
group so that addition is well-defined.)

Formally, a fuzzy key setting F consists of ((d,X), t,X , Φ, ε), each of which
is defined as follows:

(d,X): This is a metric space, where X is a space to which a possible fuzzy
data x belongs, and d : X2 → R is the corresponding distance function. We
furthermore assume that X constitutes an abelian group.

t: (∈ R) This is the threshold value, determined by a security parameter k. Based
on t, the false acceptance rate (FAR) and the false rejection rate (FRR) are
determined. We require that the FAR := Pr[x, x′ ←R X : d(x, x′) < t] is
negligible in k.

X : This is a distribution of fuzzy data over X.
Φ: This is an error distribution (see the above explanation).
ε: (∈ [0, 1]) This is an error parameter that represents FRR. We require that for

all x ∈ X, FRR := Pr[e ←R Φ : d(x, x + e) ≥ t] ≤ ε.

3.2 Fuzzy Signature

A fuzzy signature scheme ΣFS for a fuzzy key setting F = ((d,X), t,X , Φ, ε)
consists of the four algorithms (SetupFS,KGFS,SignFS,VerFS):

SetupFS: This is the setup algorithm that takes the description of the fuzzy key
setting F and 1k as input (where k determines the threshold value t of F),
and outputs a public parameter pp.

KGFS: This is the key generation algorithm that takes pp and a fuzzy data x ∈ X
as input, and outputs a verification key vk.
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SignFS: This is the signing algorithm that takes pp, a fuzzy data x′ ∈ X, and a
message m as input, and outputs a signature σ.

VerFS: This is the (deterministic) verification algorithm that takes pp, vk, m,
and σ as input, and outputs either � (“accept”) or ⊥ (“reject”).

Correctness. We require a natural correctness requirement: For all k ∈ N, all pp
output by SetupFS(F , 1k), all x, x′ ∈ X such that d(x, x′) < t, and all messages
m, it holds that VerFS(pp,KGFS(pp, x),m,SignFS(pp, x′,m)) = �.

EUF-CMA Security. For a fuzzy signature scheme, we consider EUF-CMA security in a
similar manner to that for an ordinary signature scheme, reflecting the universal
error model of a fuzzy key setting.

For a fuzzy signature scheme ΣFS for a fuzzy key setting F = ((d,X), t,X , Φ, ε)
and an adversary A, consider the following experiment ExptEUF-CMAΣFS,F,A(k):

ExptEUF-CMAΣFS,F,A(k) : [ pp ←R SetupFS(F , 1k); x ←R X ; vk ← KGFS(pp, x);

Q ← ∅; (m′, σ′) ←R AOSignFS
(·)(pp, vk) :

If m′ /∈ Q ∧ VerFS(pp, vk,m′, σ′) = � then return 1 else return 0 ],

where OSignFS is the signing oracle that takes a message m as input, and operates
as follows: It updates Q by Q ← Q∪{m}, samples e ←R Φ, computes a signature
σ ←R SignFS(pp, x + e,m), and returns σ.

Definition 4. We say that a fuzzy signature scheme ΣFS is EUF-CMA secure if for
all PPTA adversaries A, AdvEUF-CMAΣFS,F,A(k) := Pr[ExptEUF-CMAΣFS,F,A(k) = 1] is negligible.

4 Generic Construction

In this section, we show a generic construction for a fuzzy signature scheme. This
construction is based on a new tool that we call linear sketch and a signature
scheme with the homomorphic property (as per Definition 3). We introduce a
linear sketch scheme in Sect. 4.1, and then in Sect. 4.2, we show the generic
construction.

4.1 Linear Sketch

Definition 5. Let F = ((d,X), t,X , Φ, ε) be a fuzzy key setting. We say that a
pair of deterministic PTAs S = (Sketch,DiffRec) is a linear sketch scheme for
F , if it satisfies the following three properties:

Syntax and Correctness: Sketch is the “sketching” algorithm that takes the
description Λ of an abelian group (K,+), an element s ∈ K, and a fuzzy
data x ∈ X as input, and outputs a “sketch” c.; DiffRec is the “difference
reconstruction” algorithm that takes Λ and two values c, c′ (supposedly output
by Sketch) as input, and outputs the “difference” Δs ∈ K.
It is required that for all x, x′ ∈ X such that d(x, x′) < t, and for all s,Δs ∈
K, it holds that

DiffRec(Λ,Sketch(Λ, s, x),Sketch(Λ, s + Δs, x′)) = Δs. (5)
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Linearity: There exists a deterministic PTA Mc satisfying the following: For
all x, e ∈ X such that d(x, x + e) < t, and for all s,Δs ∈ K, it holds that

Sketch(Λ, s + Δs, x + e) = Mc(Λ,Sketch(Λ, s, x),Δs, e). (6)

Simulatability: There exists a PPTA Sim such that for all s ∈ K, the following
two distributions are statistically indistinguishable (in the security parameter
k that is associated with t in F):

{x ←R X ; c ← Sketch(Λ, s, x) : c} and {c ←R Sim(Λ) : c}. (7)

4.2 Generic Construction

Let F = ((d,X), t,X , Φ, ε) be a fuzzy key setting, and let Σ = (Setup,KG,Sign,
Ver) be a signature scheme. We assume that Σ has the homomorphic prop-
erty (Definition 3), namely, its secret key space (given pp) is a cyclic abelian
group (Kpp,+), and has the additional algorithms KG′, Mvk, and Msig. Let
S = (Sketch,DiffRec) be a linear sketch scheme for F . Using Σ and S, we
construct a fuzzy signature scheme ΣFS = (SetupFS,KGFS,SignFS,VerFS) for the
fuzzy key setting F as in Fig. 4.

Fig. 4. A generic construction of a fuzzy signature scheme ΣFS for a fuzzy key setting
F based on a signature scheme Σ with the homomorphic property and a linear sketch
scheme S for F .

The security of the fuzzy signature scheme ΣFS is guaranteed as follows.

Theorem 1. If Σ is EUF-CMA secure and S is a linear sketch scheme, then the
fuzzy signature scheme ΣFS is EUF-CMA secure.

Proof Sketch of Theorem 1. The formal proof of Theorem1 is given in the full
version due to the lack of space, and here we give an overview of the proof.

Let A be any PPTA adversary that attacks the EUF-CMA security of the fuzzy
signature scheme ΣFS. Note that in the original EUF-CMA experiment
ExptEUF-CMAΣFS,F,A(k), the verification key V K is generated as follows:

[x ←R X ; sk ←R Kpps
; vk ← KG′(pps, sk); c ← Sketch(Λ, sk, x); V K ← (vk, c)].



116 K. Takahashi et al.

Then, consider a “simulated process” for generating V K, which is the same as
above except that the step with the underline is replaced with “c ←R Sim(Λ)”.
Then, by the simulatability of the linear sketch scheme S, the distribution of
V K generated in the original process and that of the simulated process are
statistically indistinguishable.

Furthermore, note also that the signing oracle OSignFS(m) in the original
EUF-CMA experiment ExptEUF-CMAΣFS,F,A generates a signature σ as follows:

[e ←R Φ; ˜sk ←R Kpps
; ˜vk ← KG′(pps, ˜sk); σ̃ ←R Sign(pps, ˜sk,m);

c̃ ← Sketch(Λ, ˜sk, x + e); σ ← (˜vk, σ̃, c̃)].

By the homomorphic property of the underlying signature scheme Σ, and the
linearity property of the linear sketch scheme S, the following process generates
a signature σ whose distribution is exactly the same as σ generated as above.

[e ←R Φ;Δsk ←R Kpps
; ˜sk ← sk + Δsk; ˜vk ← Mvk(pps, vk,Δsk);

σ̂ ←R Sign(pps, sk,m); σ̃ ← Msig(pps, vk,m, σ̂,Δsk);

c̃ ← Mc(Λ, c,Δsk, e); σ ← (˜vk, σ̃, c̃)]. (8)

Now, notice that an EUF-CMA adversary B for the underlying signature scheme
Σ, who is given (pps, vk) and has access to the signing oracle OSign(·) := Sign(pps,
sk, ·), can perform the simulated process for generating V K (as explained above)
and also simulate the process in Eq. (8) for A. Furthermore, in the full proof,
we show that if A outputs a successful forgery pair (m′, σ′ = (˜vk

′
, σ̃′, c̃′)) such

that VerFS(pp, V K,m′, σ′) = �, then we can “extract” a successful forgery pair
(m′, σ̂′) such that Ver(pps, vk,m′, σ̂′) = � by using the algorithms DiffRec and
Msig. (Roughly speaking, we can calculate the difference Δsk′ that corresponds

to the difference between vk and ˜vk
′
from c and c̃′ via DiffRec, and use Δsk′ to

calculate σ̂′ via Msig.) This enables us to turn A into an adversary (reduction
algorithm) B attacking the EUF-CMA security of Σ. ��

5 Instantiation

In this section, we first specify a concrete fuzzy key setting F for which our
proposed fuzzy signature scheme is constructed in Sect. 5.1. Next, in Sect. 5.2,
we provide some mathematical preliminaries used for our concrete linear sketch
scheme and signature scheme. Armed with them, in Sects. 5.3 and 5.4, we show
the concrete linear sketch scheme S for F and the signature scheme ΣMWS,
respectively, that can be used in our generic construction given in Sect. 4, which
results in our proposed fuzzy signature scheme.

Our proposed fuzzy signature scheme for the fuzzy setting F (introduced in
Sect. 5.1) is obtained straightforwardly from our generic construction in which S
and ΣMWS shown in this section are used. Though somewhat redundant, for the
reader’s convenience, we give a full description of the scheme in Appendix B.
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On the Treatment of Real Numbers. Below, we use real numbers to represent
and process fuzzy data. We assume that a suitable representation with sufficient
accuracy is chosen to encode the real numbers whenever they need to be treated
by the algorithms considered below. (If an algorithm takes a real number as
input, its running time is according to the encoded version of input.)

5.1 Fuzzy Key Setting

Here, we specify a concrete fuzzy key setting F = ((d,X), t,X , Φ, ε) for which
our FS scheme is constructed.

Metric space (d,X): We define the space X by X := [0, 1)n ⊂ R
n, where n is

a parameter specified by the context (e.g. an object from which we measure
fuzzy data). We use the L∞-norm as the distance function d : X × X → R.
Namely, for x = (x1, . . . , xn) ∈ X and x′ = (x′

1, . . . , x
′
n) ∈ X, we define

d(x,x′) := ‖x − x′‖∞ := maxi∈[n] |xi − x′
i|. Note that X forms an abelian

group with respect to coordinate-wise addition (modulo 1).
Threshold t: For a security parameter k, we define the threshold t ∈ R so that

k = �−n log2(2t)�. (9)

Looking ahead, this guarantees that the algorithm “WGen” that we introduce
in the next subsection, is a PTA in k. We do not show that FAR is negligible
here, because it is indirectly implied by the EUF-CMA security of our proposed
fuzzy signature scheme.

Distribution X : The uniform distribution over [0, 1)n. (Regarding how to relax
this requirement, see the discussion in Sect. 6.)

Error distribution Φ and Error parameter ε: Φ is any efficiently samplable
(according to k) distribution over X such that FRR ≤ ε for all x ∈ X.

5.2 Mathematical Preliminaries

Group Isomorphism Based on Chinese Remainder Theorem. Let n ∈ N. Let
w1, . . . , wn ∈ N be positive integers with the same bit length (i.e. �log2 w1� =
· · · = �log2 wn�), such that

∀i ∈ [n] : wi ≤ 1/(2t), and ∀i �= j ∈ [n] : GCD(wi, wj) = 1, (10)

and W =
∏

i∈[n] wi = Θ(2k), where k is defined as in Eq. (9).
We assume that there exists a deterministic algorithm WGen that on input

(t, n) outputs w = (w1, . . . , wn) satisfying the above.
For vectors v = (v1, . . . , vn) ∈ Z

n and w = (w1, . . . wn) ∈ Z
n, we define

v mod w := (v1 mod w1, . . . , vn mod wn). (11)

For vectors v1,v2 ∈ Z
n, we define the equivalence relation “∼” by v1 ∼ v2

def⇔
v1 mod w = v2 mod w, and let Z

n
w := Z

n/ ∼ be the quotient set of Zn by ∼.
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(Note that (Zn
w,+) constitutes an abelian group, where the addition is modulo

w as defined in Eq. (11).)
Consider the following system of equations: given v,w ∈ Z

n, find V such that
V mod wi = vi (i ∈ [n]). According to the Chinese remainder theorem (CRT),
the solutoin V is determined uniquely modulo W . Thus, for a fixed w ∈ Z

n, we
can define a mapping CRTw : Zn

w → ZW such that CRTw(v) = V ∈ ZW . We
denote by CRT−1

w the “inverse” procedure of CRTw.
Note that CRTw satisfies the following homomorphism: For all v1,v2 ∈ Z

n
w,

it holds that CRTw(v1 + v2) = CRTw(v1) + CRTw(v2) mod W . Since CRTw is
bijective between Z

n
w and ZW , CRTw is an isomorphism.

Coding and Error Correction. Let w = (w1, . . . , wn) ∈ N
n be the n-dimensional

vector satisfying the requirements in Eq. (10). Similarly to Z
n
w, we define R

n
w :=

R
n/ ∼ be the quotient set of real vector space R

n by the equivalence relation
∼, where for a real number y ∈ R, we define r = y mod wi by the number such
that ∃n ∈ Z : y = nwi + r and 0 ≤ r < wi.

Let Ew : Rn → R
n
w be the following function:

Ew(x) := (w1x1, . . . , wnxn) ∈ R
n
w. (12)

Note that Ew(x + e) = Ew(x) + Ew(e) (mod w) holds. Therefore, Ew can be
viewed as a kind of linear coding.

Let Cw : Rn
w → Z

n
w be the following function:

Cw((y1, . . . , yn)) := (�y1 + 0.5�, . . . , �yn + 0, 5�). (13)

We note that the round-off operation �yi + 0.5� in Cw can be regarded as a
kind of error correction. Specifically, by the conditions in Eq. (10), the following
properties are satisfied: For any x,x′ ∈ X, if ‖x − x′‖∞ < t, then we have

‖Ew(x) − Ew(x′)‖∞ < t · max
i∈[n]

{wi} ≤ 0.5.

Therefore, for such x,x′, it always holds that

Cw

(

Ew(x) − Ew(x′)
)

= 0. (14)

Additionally, for any x ∈ R
n and s ∈ Z

n
w, the following holds:

Cw(x + s) = Cw(x) + s (mod w). (15)

5.3 Linear Sketch

Let F = ((d,X), t,X , Φ, ε) be the fuzzy key setting defined in Sect. 5.1, and
let w = (w1, . . . , wn) = WGen(t, n), where n is the dimension of X, and let
W =

∏

i∈[n] wi. We consider the linear sketch scheme S = (Sketch,DiffRec) for
F and the additive group (ZW ,+) (=: Λ), as described in Fig. 5 (left).
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Fig. 5. The linear sketch scheme S = (Sketch, DiffRec) for the fuzzy key setting F
(left), and the auxiliary algorithms Mc and Sim for showing the linearity property and
the simulatability property, respectively (right).

We remark that although a sketch c = Sketch(Λ, s,x) leaks some information
of x (in particular, it leaks wixi mod 1 for every i ∈ [n]) even if s ∈ ZW is
chosen uniformly at random, it does not affect the EUF-CMA security of our fuzzy
signature scheme.

Lemma 2. The linear sketch scheme S in Fig. 5 (left) satisfies Definition 5.

Proof of Lemma 2. Correctness follows from the properties of the functions
CRTw, Ew, and Cw. Specifically, let x,x′ ∈ X be such that d(x,x′) = ‖x −
x′‖∞ < t. Let s,Δs ∈ ZW , and let s = CRT−1

w (s) and Δs = CRT−1
w (Δs). Fur-

thermore, let c = Sketch(Λ, s,x) = (s + Ew(x)) mod w and c′ = Sketch(Λ, s +
Δs,x′) = (s + Δs + Ew(x′)) mod w. Then, we have

Cw(c − c′) = Cw

(

s + Ew(x) − (s + Δs + Ew(x′))
)

(∗)
= Δs + Cw

(

Ew(x) − Ew(x′)
)

(†)
= Δs,

where (*) is due to Eq. (15) (we omit to write “mod w”), and (†) is due to Eq. (14)
and ‖x − x′‖∞ < t. Thus, DiffRec(Λ,Sketch(Λ, s,x),Sketch(Λ, s + Δs,x′)) =
CRTw(Cw(c − c′)) = CRTw(Δs) = Δs, satisfying Eq. (5).

Regarding linearity, we consider the algorithm Mc as described in Fig. 5
(upper-right). To see that Mc satisfies linearity, let x, e ∈ R

n
w and s,Δs ∈ ZW ,

and let s = CRT−1
w (s) and Δs = CRT−1

w (Δs). Then, note that Sketch(Λ, s,x) =
(s+Ew(x)) mod w and CRT−1

w (s+Δs) = (s+Δs) mod w. Thus, it holds that

Mc(Λ,Sketch(Λ, s,x),Δs, e) =
(

s + Ew(x) + Δs + Ew(e)
)

mod w

=
(

s + Δs + Ew(x + e)
)

mod w = Sketch(Λ, s + Δs,x + e),

satisfying Eq. (6).
Regarding simulatability, note that by our requirement that X is the uni-

form distribution over [0, 1)n, if x ←R X , then the output of Sketch(Λ, s,x)
is uniformly distributed over R

n
w, no matter what s ∈ ZW is. Therefore, the

probabilistic algorithm Sim(Λ) described in Fig. 5 (bottom-right) that outputs a
uniformly distributed value c over Rn

w satisfies the simulatability. This completes
the proof of Lemma 2. ��
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5.4 Modified Waters Signature Scheme

Here, we show a variant of the Waters signature [22], which we call the modified
Waters signature (MWS) scheme ΣMWS.

Specific Bilinear Group Generator BGGenMWS. In the MWS scheme, we use a
(slightly) non-standard way for specifying bilinear groups, namely, the order p
of (symmetric) bilinear groups is generated based on an integer W =

∏

i∈[n] wi,
where w = (w1, . . . , wn) ∈ Z

n satisfies the conditions in Eq. (10), so that p is the
smallest prime satisfying W |p − 1. More concretely, we consider the following
algorithm PGen for choosing p from W : On input W ∈ N, for i = 1, 2, . . . check
if p = iW + 1 is a prime and return p if this is the case. Otherwise, increment
i ← i + 1 and go to the next iteration.

According to the prime number theorem, the density of primes among the
natural numbers that are less than N is roughly 1/ ln N , and thus, for i’s that
are exponentially smaller than W , the probability that iW + 1 is a prime can
be roughly estimated as 1/ ln W . Therefore, by using the above algorithm PGen,
one can find a prime p satisfying W |p − 1 by performing the primality testing
for O(ln W ) = O(k) times on average (recall that W = Θ(2k)). Furthermore, if
PGen(W ) outputs p, then it is guaranteed that p/W = O(k). (This fact is used
for security).

Let BGGenMWS denote an algorithm that, given 1k, runs w ← WGen(t, n)
where t and n are the parameters from the fuzzy data setting F corresponding
the security parameter k, computes W ← ∏

i∈[n] wi, p ← PGen(W ), and outputs
a description of bilinear groups BG = (p,G,GT , g, e), where G and GT are cyclic
groups with order p and e : G × G → GT is a bilinear map.

Construction. Using BGGenMWS and the algorithms in the original Waters sig-
nature scheme ΣWat (see Fig. 3), the MWS scheme ΣMWS = (SetupMWS,KGMWS,
SignMWS,VerMWS) is constructed as in Fig. 6 (left). Note that the component
ppWat in a public parameter pp (generated by SetupMWS) is distributed identi-
cally to that generated in the original Waters scheme ΣWat in which the bilin-
ear group generator BGGenMWS is used. Therefore, ΣMWS can be viewed as the
original Waters scheme ΣWat, except that (1) we specify how to generate the
parameter of bilinear groups by BGGenMWS, and (2) we use a secret key sk′ (for
the Waters scheme) of the form sk′ = zsk mod p, thereby we change the signing
key space from Zp to ZW .

In the following, we show that ΣMWS satisfies EUF-CMA security (based on the
CDH assumption with respect to BGGenMWS) and the homomorphic property
(Definition 3), and thus can be used as the underlying signature scheme for
our generic construction of a fuzzy signature scheme. (One might suspect the
plausibility of the CDH assumption with respect to BGGenMWS due to our specific
choice of p. We discuss it in Appendix C.)

Lemma 3. If the CDH assumption holds with respect to BGGenMWS, then the
MWS scheme ΣMWS is EUF-CMA secure.
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Fig. 6. The modified Waters signature (MWS) scheme ΣMWS (left), and the auxiliary
algorithms (KG′, Mvk, Msig) for showing the homomorphic property (right).

Proof of Lemma 3. Let pp = (ppWat, z) be a public parameter output by
SetupMWS, let D

(1)
pp = {sk ←R ZW ; sk′ ← zsk mod p : sk′} and D

(2)
pp = {sk′ ←R

Zp : sk′}. Note that the support of D
(1)
pp is a strict subset of that of D

(2)
pp .

Now, let A be any PPTA that attacks the EUF-CMA security of the MWS
scheme. Let Expt1 be the original EUF-CMA experiment, i.e. ExptEUF-CMAΣMWS,A(k), and
let Expt2 be the experiment that is defined in the same manner as Expt1, except
that sk′ is sampled according to the distribution D

(2)
pp . For both i ∈ {1, 2},

let Advi be the advantage of A (i.e. the probability of A outputting a successful
forgery) in Expti. Then, by Lemma 1, we have Adv1 ≤ (p/W )·Adv2 = O(k)·Adv2.
Furthermore, it is straightforward to see that succeeding in forging in Expt2 is
as difficult as succeeding in breaking the EUF-CMA security of the original Waters
scheme ΣWat (in which the bilinear group generator BGGenMWS is used), and
thus Adv2 is negligible if ΣWat is EUF-CMA secure.

Finally, due to Waters [22], if the CDH assumption holds with respect to
BGGenMWS, then the Waters scheme ΣWat (in which BGGenMWS is used,) is
EUF-CMA secure. Combining all the explanations proves the lemma. ��
Lemma 4. The MWS scheme ΣMWS is homomorphic (as per Definition 3).

Proof of Lemma 4. Consider the algorithms (KG′,Mvk,Msig) that are described
in Fig. 6 (right). It is easy to see that using KG′, KGMWS can be rewritten with
the process in Eq. (1), where the secret key space is ZW .

Moreover, it should also be easy to see that Mvk satisfies the requirement
in Eq. (2). Indeed, let pp = (ppWat, z) be a public parameter, and let sk,Δsk ∈
ZW . Then, it holds that Mvk(pp,KG′(pp, sk),Δsk) = (gzsk

)zΔsk

= gzsk+Δsk

=
KG′(pp, sk + Δsk), satisfying Eq. (2).

Finally, we observe that Msig satisfies the requirements in Eqs. (3) and (4).
Let pp = (ppWat, z) and sk,Δsk ∈ ZW as above, and m = (m1‖ . . . ‖m�) ∈ {0, 1}�
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be a message to be signed. Let (σ1, σ2) be a signature on the message m that is
generated by SignMWS(pp, sk,m; r), where r ∈ Zp is a randomness. By definition,
σ1 and σ2 are of the form σ1 = hzsk · (u′ ∏

i∈[�] u
mi
i )r and σ2 = gr, respectively.

Thus, if σ′ = (σ′
1, σ

′
2) is output by Msig(pp, vk,m, σ,Δsk), then it holds that

σ′
1 = σzΔsk

1 = hzsk+Δsk · (u′ ∏
i∈[�] u

mi
i )r·zΔsk

, and σ′
2 = σzΔsk

2 = gr·zΔsk

. This
implies σ′ = (σ′

1, σ
′
2) = SignMWS(pp, sk + Δsk,m; r · zΔsk). Note that for any

Δsk ∈ ZW , if r ←R Zp, then ((r · zΔsk) mod p) is uniformly distributed in Zp.
This implies that the distributions considered in Eq. (3) are identical. Further-
more, by the property of the MWS scheme (which is inherited from the original
Waters scheme), any signature σ′ = (σ′

1, σ
′
2) satisfying VerMWS(pp, vk,m, σ′) = �

must satisfy the property that there exists r′ ∈ Zp such that SignMWS(pp, sk,m;
r′) = σ′. Putting everything together implies that for any sk,Δsk ∈ ZW , any
message m ∈ {0, 1}�, any signature σ such that VerMWS(pp, vk,m, σ) = �, if
vk = KG′(pp, sk), vk′ = Mvk(pp, vk,Δsk), and σ′ = Msig(pp, vk,m, σ,Δsk), then
it holds that VerMWS(pp, vk′,m, σ′) = �. Therefore, the requirement regarding
Eq. (4) is satisfied as well. This completes the proof of Lemma 4. ��

6 Towards Public Biometric Infrastructure

As one of the promising applications of our fuzzy signature scheme ΣFS, we
discuss how it can be used to realize a biometric-based PKI that we call the
public biometric infrastructure (PBI).

The PBI is a biometric-based PKI that allows to use biometric data itself
as a private key. Since it does not require a helper string to extract a private
key, it does not require users to carry a dedicated device that stores it. Like
the PKI, it provides the following functionalities: (1) registration, (2) digital
signature, (3) authentication, and (4) cryptographic communication. At the time
of registration, a user presents his/her biometric data x, from which the public
key pk is generated. A certificate authority (CA) issues a public key certificate
to ensure the link between pk and the user’s identify (in the same way as the
PKI). It must be sufficiently hard to restore x or estimate any “acceptable”
biometric feature (i.e. biometric feature x̃ that is sufficiently close to x) from
pk. This requirement is often referred to as irreversibility [8,19]. Note that the
irreversibility is clearly included in the unforgeability, since the adversary who
obtains x or x̃ can forge a signature σ for any message m. Since our fuzzy
signature scheme ΣFS is EUF-CMA secure, it also satisfies the irreversibility.

It is well-known that a digital signature scheme can be used to realize authen-
tication and cryptographic communication, as standardized in [9]. Firstly, a
challenge-response authentication protocol can be constructed based on a dig-
ital signature scheme (refer to [18] for details). Secondly, an authenticated key
exchange (AKE) protocol can also be constructed based on a digital signature
scheme and Diffie-Hellman Key Exchange protocol. In the same way, we can con-
struct an authentication protocol and a cryptographic communication protocol
in the PBI using our fuzzy signature scheme ΣFS.
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Remaining Challenges and Future Work. In Sect. 5, we showed an EUF-CMA secure
FS scheme ΣFS. However, we proved this under the assumption that a noisy
string is uniform and has enough entropy. Thus, when using a biometric feature
as a noisy string in ΣFS, its EUF-CMA security is, for now, guaranteed only in the
case where a biometric feature is uniform and has enough entropy.

A well-known approach to measure the biometric entropy is Daugman’s dis-
crimination entropy [2]. He considered a distribution of a Hamming distance
m between two iriscodes (well-known iris features [3]) that are extracted from
two different irises, and showed that it can be quite well approximated using
the binomial distribution B(n, p), where n = 249 and p = 0.5. He referred to
the parameter n (= 249) as a discrimination entropy. The probability that two
different iriscodes exactly match can be approximated to be 2−249. However, it
does not mean that a fuzzy signature scheme using the iriscode x is as secure
as an ordinary signature scheme with a 249-bit private key, since the adversary
does not have to estimate the original iriscode x, but only has to estimate an
iriscode x̃ that is sufficiently close to x.

If a single biometric feature does not have enough entropy, we can use a
multibiometric fusion scheme [16] that combines multiple sources of biometric
information (e.g. fingerprint, face, and iris; left iris and right iris) to increase
entropy. A multibiometric sensor that simultaneously acquires multiple biomet-
rics (e.g. iris and face [1]; fingerprint and finger-vein [15]) has also been widely
developed in recent years. Thus, we consider that using multiple biometrics is
one possible direction to increase entropy without affecting usability.

Also, a biometric feature is non-uniform in general. The relation between the
security in the uniform key setting (ideal model) and the one in the non-uniform
key setting (real model) has been studied in several works in cryptography, e.g. [5].
As future work, we plan to prove the security of our fuzzy signature scheme in the
non-uniform case, by applying (or extending) the techniques from them.

Acknowledgement. The authors would like to thank the anonymous reviewers of
ACNS 2015 for their invaluable comments and suggestions.

A More on the Limitations of Fuzzy-Extractor-Based
Approaches

The right of Fig. 1 shows an example of a digital signature system using the fuzzy
extractor. Assume that the client generates a signature on a message, and the
server verifies it. At the time of registration, a signing key sk and a helper string
P are generated from a noisy string (e.g. biometric feature) x, and a verification
key vk corresponding to sk is generated and stored in a server-side DB. At the
time of signing, the client generates a signature σ on a message m using P and
another noisy string x′, and sends σ to the server. The server verifies whether
σ is a valid signature on m under vk. If x′ is close to x, it outputs “�” (valid).
Otherwise, it outputs “⊥” (invalid). The important point here is that the helper
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string P has to be stored in some place so that the client can retrieve it at the
time of signing.

There are three possible models for storing the helper string: Store-on-Token
(SOT), Store-on-Client (SOC), and Store-on-Server (SOS). In the SOT, the
helper string is stored in a hardware token (e.g. smart card, USB token). Since
this model requires each user to possess a token, it reduces usability. In the SOC,
the helper string is stored in a client device. Although this model can be applied
to the applications where each user has his/her own client device, it cannot be
employed if the client device is shared by general public (e.g. bank ATM, POS,
and kiosk terminal). In the SOS, the helper string is stored in a server-side DB,
and the client queries for the helper string to the server at the time of signing.
However, it cannot be used in an offline environment (i.e. a user generates a
signature, which is sent to the server later, offline).

To sum up, the SOT reduces usability, and the SOC/SOS limit the client
environment. Although a digital signature scheme using biometrics is proposed
in [10,11] and an extended version of the PKI based on biometrics is discussed
in [17], all of them require additional data like the helper string and suffer from
this kind of problem.

B Full Description of the Proposed Fuzzy
Signature Scheme

Let � = �(k) be a positive polynomial that denotes the length of messages. Let
F = ((d,X), t,X , Φ, ε) be the fuzzy key setting defined in Sect. 5.1, where t
(and n) are determined according to the security patameter k. Let BGGenMWS

be the bilinear group generator defined in Sect. 5.4. Then, our proposed fuzzy
signature scheme ΣFS = (SetupFS,KGFS,SignFS,VerFS) for the fuzzy key setting
F is constructed as in Fig. 7.

It should be straightforward to see that ΣFS is a straightforward combination
of the linear sketch scheme S for F shown in Sect. 5.3 and the MWS scheme
ΣMWS shown in Sect. 5.4.

C On the Plausibility of the CDH Assumption
with Respect to BGGenMWS

For the security of the MWS scheme ΣMWS constructed in Sect. 5.4, we need to
assume that the CDH assumption holds with respect to BGGenMWS. One might
suspect the plausibility of this assumption because of our specific choice of the
order p. However, to the best of our knowledge, there is no effective attack on
the discrete logarithm assumption in the groups G and GT , let alone the CDH
assumption.

Actually, the discrete logarithm problem for the multiplicative group (Z∗
p, ·)

is easy because W |p − 1 and W =
∏

i∈[n] wi, and thus we can apply the Pohlig-
Hellman algorithm [13] to reduce an instance of the discrete logarithm problem
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Fig. 7. The full description of the proposed fuzzy signature scheme ΣFS.

in Z
∗
p to instances of the discrete logarithm problems in Zwi

. However, it does not
mean that the Pohlig-Hellman algorithm is applicable to the discrete logarithm
problem in G or GT , whose order is a prime.

Note that a verification/signing key pair (vk, sk) of the MWS scheme ΣMWS

is of the following form (vk, sk) = (gzsk

, sk), where sk ←R ZW , and z and W
are in a public parameter pp. In fact, due to the existence of the bilinear map
e : G×G → GT , a variant of Pollard’ ρ-algorithm [14] is applicable, and one can
recover sk from vk (and pp) with O(

√
W ) steps. However, this is exponential

time in a security parameter k. (Recall that W = Θ(2k).) This also does not
contradict the EUF-CMA security of the MWS scheme shown in Lemma 3.
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