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Abstract. We formalize the security notions of non-malleability under
selective opening attacks (NM-SO security) in two approaches: the
indistinguishability-based approach and the simulation-based approach.
We explore the relations between NM-SO security notions and the known
selective opening security notions, and the relations between NM-SO
security notions and the standard non-malleability notions.
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1 Introduction

Non-malleability. The basic goal of public-key encryption (PKE) schemes is
to guarantee the privacy of messages. The universally accepted formalization for
this is semantic security proposed in [9], which requires that it be infeasible to
learn any useful information of the message from the ciphertext. However, some
cryptographic applications in a complex setting suggest that non-malleability
is necessary. Non-malleability (NM), introduced by Dolev, Dwork and Naor [8]
in 1991, requires that given a challenge ciphertext, it be infeasible to gener-
ate ciphertexts whose decryptions are related to the decryption of the challenge
ciphertext. Nowadays, two main kinds of formalizations (indistinguishability-
based [5] and simulation-based [8]) of non-malleability are widely accepted,
especially the first one. (Actually, there is another formalization of non-
malleability, comparison-based non-malleability [1,5]). Similar to semantic secu-
rity, the formal security definitions of indistinguishability-based non-malleability
(IND-NM) and simulation-based non-malleability (SIM-NM) consider all the
three kinds of standard attacks: chosen-plaintext attacks (CPA), non-adaptive
chosen-ciphertext attacks (CCA1) [16] and adaptive chosen-ciphertext attacks
(CCA2) [8,18]. The combination of SIM-NM, IND-NM and CPA, CCA1, CCA2
gives six specific security notions (e.g., IND-NM-CPA security). The relations
among these six security notions were figured out in [5,17].
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Selective Opening Security (Under Sender Corruptions). In Eurocrypt
2009, Bellare et al. [4] introduced the notion of selective opening security (SOA
security) under sender corruptions. Roughly speaking, selective opening attack
(for sender corruptions) is as follows: n senders encrypt their own messages with
the public key of a single receiver. The adversary can corrupt some of these
senders, by opening their ciphertexts, i.e., obtaining their messages and the ran-
dom coins which were used during the encryption. The goal of SOA security is
to guarantee the privacy of the unopened messages. In [4], Bellare et al. pre-
sented two SOA security notions, the indistinguishability-based one (IND-SO)
and the simulation-based one (SIM-SO). Later, Hemenway et al. [12] introduced
the notions of IND-SO-CCA1/CCA2 security and SIM-SO-CCA1/CCA2 secu-
rity. Over the years, several PKE schemes were proposed and proved to possess
SOA security [10–13]. The relations between IND-SO-CPA security and SIM-
SO-CPA security were clarified by Böhl et al. [3]. Bellare et al. [2] separated
IND-CPA (even IND-CCA2) and SIM-SO-CPA security. Recently, Hofheinz and
Rupp [15] showed a separation between IND-CCA2 and IND-SO-CCA2 security,
and a “partial” equivalence between IND-CPA and IND-SO-CPA security.

To the best of our knowledge, how to formalize non-malleability under
selective opening attacks remains elusive. Very recently, Hofheinz and Rupp
referred to “NM-SO-CPA security” in [15]. But they did not present any formal
definition.
Our Contributions. This paper focuses on security notions and their relations.
We first formalize the notion of simulation-based non-malleability under selec-
tive opening attacks (SIM-NM-SO), and the notion of indistinguishability-based
non-malleability under selective opening attacks (IND-NM-SO). We figure out
the relations among SIM-NM-SO-CPA(/CCA1/CCA2) security, IND-NM-SO-
CPA(/CCA1/CCA2) security, SIM/IND-SO-CPA(/CCA1/CCA2) security and
non-malleability security SIM/IND-NM-CPA(/CCA1/CCA2). Specifically, our
results are as follows (see Fig. 1). Below, we use SEC1 ⇒ SEC2 to indicate that
SEC1 implies SEC2, and SEC1 � SEC2 to indicate the existence of some PKE
scheme achieving SEC1 but not SEC2, for any two security notions SEC1 and
SEC2.

1. NM-SO versus SO :
(a) Simulation-based (Sect. 4):

i. “SIM-NM-SO-ATK ⇒
�

SIM-SO-ATK”, for any ATK ∈ {CPA,
CCA1,CCA2}.

ii. For those PKE schemes having an invertible decryption algorithm
(Definition 8), if the range of its decryption algorithm is recognizable,
“SIM-SO-CCA2 ⇔ SIM-NM-SO-CCA2”.

(b) Indistinguishability-based (Sect. 5):
i. “IND-NM-SO-CPA �

�
IND-SO-CCA1”.

ii. “IND-NM-SO-CCA1/CPA ⇒
�

IND-SO-CCA1/CPA”, but “IND-
NM-SO-CCA2 ⇔ IND-SO-CCA2”.

2. NM-SO versus NM :
(a) Simulation-based (Sect. 6):
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i. “SIM-NM-SO-ATK ⇒
�

SIM-NM-ATK”, for any ATK ∈ {CPA,
CCA1,CCA2}. In fact, we have a stronger result: “SIM-NM-
CCA2 � SIM-NM-SO-CPA”, which suggests “SIM-NM-ATK′

�

SIM-NM-SO-ATK′′”, for any ATK′,ATK′′ ∈ {CPA,CCA1,CCA2}.
(b) Indistinguishability-based (Sect. 7):

i. “IND-NM-SO-ATK ⇒ IND-NM-ATK”, for any ATK ∈ {CPA,
CCA1,CCA2}.

ii. “IND-NM-CCA2 � IND-NM-SO-CCA2”, and “IND-NM-SO-CPA
� IND-NM-CCA1”.

3. SIM-NM-SO versus IND-NM-SO (Sect. 8):
“IND-NM-SO-ATK � SIM-NM-SO-ATK”, for any ATK ∈ {CCA1,CCA2}.
In fact, we have a stronger result: “IND-NM-SO-CCA2 � SIM-NM-SO-
CCA1”.

Based on the relations that we obtained, (in Sect. 9) we conclude that some
known PKE schemes have already obtained SIM-NM-SO-CCA2 or IND-NM-
SO-CCA2 security. More specifically, the NC-CCA2 secure encryption scheme
proposed by Fehr et al. [10] is SIM-NM-SO-CCA2 secure; Any IND-SO-CCA2
secure encryption scheme (e.g., [11,12]) is IND-NM-SO-CCA2 secure.

SIM-SO-CPA SIM-SO-CCA1 SIM-SO-CCA2 SIM-NM-CPA SIM-NM-CCA1 SIM-NM-CCA2

SIM-NM-SO-CPA SIM-NM-SO-CCA1 SIM-NM-SO-CCA2 SIM-NM-SO-CPA SIM-NM-SO-CCA1 SIM-NM-SO-CCA2

IND-NM-SO-CPA IND-NM-SO-CCA1 IND-NM-SO-CCA2 IND-NM-SO-CPA IND-NM-SO-CCA1 IND-NM-SO-CCA2

IND-SO-CPA IND-SO-CCA1 IND-SO-CCA2 IND-NM-CPA IND-NM-CCA1 IND-NM-CCA2
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Fig. 1. Relations among SO-NM securities, SO securities and NM securities.

Techniques for the Implications. For two main non-trivial implication
results, we provide their high-level descriptions of the reasonings here.

– For our contribution 1. (a).ii., the key point is how to construct a SIM-NM-SO-
CCA2 simulator SNS from a SIM-SO-CCA2 simulator S. Given S’s output
outS , if it is a valid message, SNS can simply generate a ciphertext by encrypt-
ing it, such that the decryption of SNS ’s output equals outS . The barrier is
that when outS is not a valid message, this method doesn’t work. To overcome
this issue, we apply the idea from [17], assuming that there is an algorithm F
recovering ciphertexts from decrypted messages. Under this assumption, SNS

can use F to recover a ciphertext from outS , if outS falls into the range of
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decrypted messages. However, this method fails if outS does not belong to the
range of the decryption algorithm Dec. This problem can be solved by assum-
ing that the range of the decryption algorithm Dec is recognizable. With the
recognizable property of Dec, SIM-SO-CCA2 security ensures that S’s out-
put outS is almost always in the range of Dec as long as the SIM-SO-CCA2
adversary’s final output is in the range.

– For our contribution 2. (a).i., the key point is constructing a SIM-NM-ATK
simulator SN from a SIM-NM-SO-ATK simulator SNS . Note that SNS has the
ability, which SN doesn’t, to ask an opening query. To overcome this issue, we
consider a special “half-uniform” message distribution, which consists of two
independent distributions and the second is a uniform one. Correspondingly,
the challenge message vector generated from this specific distribution also
consists of two parts. If SNS outputs a “half-uniform” distribution and asks
to open the uniform part, SN can always answer it on its own by returning
a uniformly chosen message vector. However, SN still cannot deal with a
misbehaved SNS which outputs other distributions or it does not open the
uniform part. To solve this problem, we construct a behaved SIM-NM-SO-
ATK adversary ANS , which always outputs a half-uniform distribution and
asks to open the uniform part, and then SIM-NM-SO-ATK security guarantees
SNS is behaved, except with negligible probability.

Observations for the Separations. Some of our separation results can be
seen as extensions of [1,17]. Most of these separations are based on the follow-
ing observations. Let’s look at the SIM-based notions first. A SIM-NM security
notion requires that the decryptions of both of the adversary’s and the simu-
lator’s outputs be indistinguishable. Note that a non-NM security notion only
requires that their outputs be indistinguishable. We can provide a uniformly dis-
tributed string, which leads to a special ciphertext (e.g., decrypted to sk), to the
adversary through the decryption oracle. It is hard for any SIM-NM simulator
to generate such a ciphertext, since it has no access to the decryption oracle.
This feature can be used to separate some SIM-based NM and non-NM security
notions (in a SOA or non-SOA setting). For the IND-based notions, note that
even under CPA attacks, an IND-NM adversary can make a one-time parallel
decryption query after receiving the challenge ciphertext. This feature can be
used to separate some IND-based NM and non-NM security notions (in a SOA
or non-SOA setting).
Open Question. The primary open question is to figure out the rela-
tions between SIM-NM-SO and IND-NM-SO security notions. The barriers we
encounter are as follows. For NM security notions, there is always a parallel
decryption process after the adversary receiving the challenge ciphertext. This
fact makes the relation between these two notions (even under CPA attacks)
similar to that between SIM-SO-CCA2 and IND-SO-CCA2 security. Besides
that, we also need to deal with the aforementioned issue, i.e., the SIM-NM-SO
simulator’s output always contains a ciphertext vector.
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2 Preliminaries

Notations. Throughout this paper, we use κ as the security parameter, and ε as
the empty string. For n ∈ N

+, let [n] denote the set {1, 2, · · · , n}. For a finite set
S, let s ← S denote the process of sampling an element s uniformly at random
from S. For a probabilistic algorithm A, let RA denote the randomness space of
A. We let y ← A(x;R) denote the process of running A on input x and inner
randomness R ∈ RA, and outputting y. We write y ← A(x) for y ← A(x;R)
with uniformly chosen R ∈ RA. If A’s running time is polynomial in κ, we say
that A is a probabilistic polynomial-time (PPT) algorithm. For two sequences
of random variables X = {Xκ}κ∈N and Y = {Yκ}κ∈N, if for any PPT algorithm
D, |Pr[D(Xκ, 1κ) = 1]−Pr[D(Yκ, 1κ) = 1]| is negligible in κ, we say that X and
Y are computationally indistinguishable (denoted by X

c≈ Y ).
We use boldface letters for vectors. For a vector m (resp. a finite set S), we

let |m| (resp. |S|) denote the length of the vector (resp. the size of the set). For a
set I = {i1, i2, · · · , i|I|} ⊆ [|m|], let m[I] = (m[i1],m[i2], · · · ,m[i|I|]). We write
m ∈ m to denote m ∈ {m[i]|i ∈ [|m|]}, extending the set membership notation
to vectors.

Decryption Oracles. For simplicity, we will use the notations O1(·) and O2(·)
in all the security notions throughout the paper. In a chosen-plaintext attack
(CPA), both the oracles O1(·) and O2(·) always return ε. In a non-adaptive
chosen-ciphertext attack (CCA1), O1(·) = Dec(sk, ·), and O2(·) still returns ε
whatever it is queried. In an adaptive chosen-ciphertext attack (CCA2), both
O1(·) and O2(·) are Dec(sk, ·), with the only exception that O2(·) returns ε when
queried on a ciphertext appeared in the challenge ciphertext vector.

Non-malleability for Encryption. The first definition of non-malleability
for encryption was proposed by Dolev, Dwork and Naor [8] in 1991.
Their definition is simulation-based. Several years later, comparison-based
and indistinguishability-based definitions of non-malleability were pro-
posed [1,5], and their relations were explored in [5,17]. We recall the
simulation/indistinguishability-based definitions in [17] as follows.

Definition 1 (SIM-NM Security). A public-key encryption scheme PKE =
(Gen,Enc,Dec) is SIM-NM-ATK secure, if for any stateful PPT adversary A =
(A1, A2), there is a stateful PPT simulator S = (S1, S2), such that

ExpSIM-NM-ATK-Real
PKE,A (κ)

c≈ ExpSIM-NM-ATK-Ideal
PKE,S (κ),

where ATK ∈ {CPA, CCA1, CCA2}, experiments ExpSIM-NM-ATK-Real
PKE,A (κ) and

ExpSIM-NM-ATK-Ideal
PKE,S (κ) are defined in Table 1.

Definition 2 (IND-NM Security). A public-key encryption scheme PKE =
(Gen,Enc,Dec) is IND-NM-ATK secure, if for any stateful PPT adversary
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A = (A1, A2, A3), its advantage AdvIND-NM-ATK
PKE,A (κ) is negligible, where

ATK ∈ {CPA, CCA1, CCA2}. Here

AdvIND-NM-ATK
PKE,A (κ) := |Pr[ExpIND-NM-ATK-1

PKE,A (κ) = 1]

− Pr[ExpIND-NM-ATK-0
PKE,A (κ) = 1]|,

where experiment ExpIND-NM-ATK-b
PKE,A (κ) (b ∈ {0, 1}) is defined in Table 1, and

we require that in the experiment, |m0| = |m1|, and |m0[i]| = |m1[i]| for any
i ∈ [|m0|].

Remark 1. Note that in Definitions 1 and 2, the ciphertexts contained in y
may be invalid (i.e., ⊥ ∈ x). According to [17], these two definitions are stronger
than the versions which require that y must be valid ciphertexts.

Selective Opening Security for Encryption. Selective opening security
notions were presented by Bellare et al. [4] in Eurocrypt 2009. We follow [3,4,12]
for the definitions.

Definition 3 (SIM-SO Security [3]). A public-key encryption scheme PKE =
(Gen,Enc,Dec) is SIM-SO-ATK secure, if for any stateful PPT adversary A =
(A1, A2, A3), there is a stateful PPT simulator S = (S1, S2, S3), such that

ExpSIM-SO-ATK-Real
PKE,A (κ)

c≈ ExpSIM-SO-ATK-Ideal
PKE,S (κ),

where ATK ∈ {CPA, CCA1, CCA2}, experiments ExpSIM-SO-ATK-Real
PKE,A (κ) and

ExpSIM-SO-ATK-Ideal
PKE,S (κ) are defined in Table 1.

Table 1. SIM-NM, SIM-SO, IND-NM and IND-SO experiments
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For indistinguishability-based selective opening (IND-SO) security notion,
we restrict message distributions to be efficiently re-samplable. In [3], this kind
of security notion is called “weak” IND-SO security.

Definition 4 (Efficiently Re-samplable). A message distribution M is effi-
ciently re-samplable, if there is a PPT algorithm ResampM, such that for any
m sampled from M and any subset I ⊆ [|m|], ResampM(I,m[I]) samples from
M|I,m[I], i.e., m′ ← ResampM(I,m[I]) is sampled from the distribution M,
conditioned on m′[I] = m[I].

Definition 5 (IND-SO Security). A public-key encryption scheme PKE =
(Gen,Enc,Dec) is IND-SO-ATK secure, if for any stateful PPT adversary
A = (A1, A2, A3), its advantage AdvIND-SO-ATK

PKE,A (κ) is negligible, where ATK ∈
{CPA, CCA1, CCA2}. Here

AdvIND-SO-ATK
PKE,A (κ) := |Pr [ExpIND-SO-ATK-1

PKE,A (κ) = 1]

− Pr[ExpIND-SO-ATK-0
PKE,A (κ) = 1]|,

where experiment ExpIND-SO-ATK-b
PKE,A (κ) (b ∈ {0, 1}) is defined in Table 1.

3 Non-malleability Under Selective Opening Attack

In this section, we formalize non-malleability under selective opening attacks
for PKE. We consider simulation-based and indistinguishability-based formal-
izations of this security, which we call SIM-NM-SO security and IND-NM-SO
security, respectively.

Simulation-Based Selective Opening Non-malleability. The simulation-
based notion of non-malleability under selective opening attacks combines SIM-
NM security and SIM-SO security. Informally, a SIM-NM-SO-ATK adversary is
a SIM-NM-ATK adversary being allowed to make an additional selective opening
query. Similarly, the related simulator is also allowed to make an opening query.
The formal definition is as follows.

Definition 6 (SIM-NM-SO Security). A public-key encryption scheme
PKE = (Gen,Enc,Dec) is SIM-NM-SO-ATK secure, if for any stateful PPT
adversary A = (A1, A2, A3), there is a stateful PPT simulator S = (S1, S2, S3),
such that

ExpSIM-NM-SO-ATK-Real
PKE,A (κ)

c≈ ExpSIM-NM-SO-ATK-Ideal
PKE,S (κ),

where ATK ∈ {CPA, CCA1, CCA2}, experiments ExpSIM-NM-SO-ATK-Real
PKE,A (κ)

and ExpSIM-NM-SO-ATK-Ideal
PKE,S (κ) are defined as follows:
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ExpSIM-NM-SO-ATK-Real
PKE,A (κ):

(pk, sk) ← Gen(1κ)

(M, s1) ← A
O1(·)
1 (pk)

m ← M
r ← (REnc)

|m|

c ← Enc(pk,m; r)

(I, s2) ← A
O2(·)
2 (c, s1)

(y, σ) ← A
O2(·)
3 (m[I], r[I], s2)

For i ∈ [|y|],
If y[i] ∈ c, then x[i] := COPY
else, x[i] := Dec(sk,y[i])

return (M,m, I,x, σ)

ExpSIM-NM-SO-ATK-Ideal
PKE,S (κ):

(pk, sk) ← Gen(1κ)
(M, s1) ← S1(pk)
m ← M
(I, s2) ← S2(s1)
(y, σ) ← S3(m[I], s2)
For i ∈ [|y|],

If y[i] = COPY, then x[i] := COPY
else, x[i] := Dec(sk,y[i])

return (M,m, I,x, σ)

Indistinguishability-Based Selective Opening Non-malleability. The
indistinguishability-based notion of non-malleability under selective opening
attacks is also a combination of IND-NM security and IND-SO security. However,
there are some subtleties in this combination. First, as the notion of IND-SO
security, we require that every message distribution outputted by the adversary
should be efficiently re-samplable. Second, in this combination, an adversary
should be allowed to make two special oracle queries, a selective opening query
and a parallel decryption query. In the following formal definition, we allow the
adversary to decide the order of these two oracle queries. More specifically, the
adversary can make these two queries at any time after receiving the vector of
challenge ciphertexts, but only once for each oracle. Note that we require the
adversary has to make these two oracle queries, since the “challenge bit” b is
given through the opening oracle Openb,M,m0,r(·). The formal definition is as
follows.

Definition 7 (IND-NM-SO Security). A public-key encryption scheme
PKE = (Gen,Enc,Dec) is IND-NM-SO-ATK secure, if for any stateful PPT
adversary A = (A1, A2), its advantage AdvIND-NM-SO-ATK

PKE,A (κ) is negligible, where
ATK ∈ {CPA, CCA1, CCA2}. Here

AdvIND-NM-SO-ATK
PKE,A (κ) := |Pr[ExpIND-NM-SO-ATK-1

PKE,A (κ) = 1]

− Pr[ExpIND-NM-SO-ATK-0
PKE,A (κ) = 1]|,

where experiment ExpIND-NM-SO-ATK-b
PKE,A (κ) (b ∈ {0, 1}) and the related oracles are

defined as follows. In experiment ExpIND-NM-SO-ATK-b
PKE,A (κ), we require that adver-

sary A2 access to both oracles Openb,M,m0,r(·) and Psk,c(·) just once respectively.
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ExpIND-NM-SO-ATK-b
PKE,A (κ):

(pk, sk) ← Gen(1κ)

(M,ResampM, s1) ← A
O1(·)
1 (pk)

m0 ← M
r ← (REnc)

|m0|

c ← Enc(pk,m0; r)

b′ ← A
Openb,M,m0,r(·),Psk,c(·),O2(·)
2 (c, s1)

return b′

Oracle Openb,M,m0,r(I):
m1 ← ResampM(I,m0[I])
return (mb, r[I])

Oracle Psk,c(y):
For i ∈ [|y|],

If y[i] ∈ c, then x[i] := COPY
else, x[i] := Dec(sk,y[i])

return x

Remark 2. In [3,10], the notions of traditional selective opening security were
generalized to a new version, where the adversary is allowed to make multiple
opening queries adaptively. SIM-NM-SO security and IND-NM-SO security can
also be naturally generalized to the similar notions. In this paper, for simplic-
ity, when we talk about selective opening attack (i.e., SIM/IND-SO security or
SIM/IND-NM-SO security), we just consider the adversaries making one round
of opening query. However, all the results investigated in this paper can be
extended to the generalized notions.

4 Relations Between SIM-NM-SO Securities and SIM-SO
Securities

In this section, we explore the relations between SIM-NM-SO securities and
SIM-SO securities.

SIM-NM-SO-ATK ⇒ SIM-SO-ATK. We provide a high-level description of
the reasoning here.

Given any SIM-SO-ATK adversary A = (A1, A2, A3) for an encryption
scheme PKE, we construct a SIM-NM-SO-ATK adversary A′ (in Table 2).
If ExpSIM-NM-SO-ATK-Real

PKE,A′ (κ) := (M,m, I,x, σ), then ExpSIM-SO-ATK-Real
PKE,A (κ)

= (M,m, I, σ). SIM-NM-SO-ATK security guarantees that there is a
simulator S′ with respect to A′, such that ExpSIM-NM-SO-ATK-Ideal

PKE,S′ (κ)
c≈

ExpSIM-NM-SO-ATK-Real
PKE,A′ (κ), i.e., (MS′ ,mS′ , IS′ ,xS′ , σS′)

c≈ (M,m, I,x, σ).

Hence, (MS′ ,mS′ , IS′ , σS′)
c≈ (M,m, I, σ). Based on S′, we can construct

a SIM-SO-ATK simulator S (in Table 2), such that ExpSIM-SO-ATK-Ideal
PKE,S (κ) :=

(MS′ ,mS′ , IS′ , σS′). Hence, we have the following theorem.

Theorem 1 (SIM-NM-SO-ATK ⇒ SIM-SO-ATK). For any ATK ∈
{CPA, CCA1, CCA2}, SIM-NM-SO-ATK security implies SIM-SO-ATK
security.

SIM-SO-ATK � SIM-NM-SO-ATK. Now we show that SIM-SO security is
strictly weaker than SIM-NM-SO-ATK security. Formally, we have the following
theorem.
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Table 2. Constructions of adversary A′ = (A′
1, A

′
2, A

′
3) and simulator S = (S1, S2, S3)

Theorem 2 (SIM-SO-ATK � SIM-NM-SO-ATK). For any ATK ∈
{CPA, CCA1, CCA2}, there is a SIM-SO-ATK secure PKE scheme, which is
not SIM-NM-SO-ATK secure.

We prove this theorem with two counterexamples.
In the case of ATK = CPA, we consider the Goldwasser-Micali probabilistic

encryption scheme (the GM scheme) [9]. In [4], Bellare et al. pointed out that the
GM scheme is SIM-SO-CPA secure. We claim that the GM scheme is not SIM-
NM-SO-CPA secure because of its homomorphic property. Roughly speaking,
let the challenge ciphertext vector c be generated from a random message vector
m. We can construct an adversary A who encrypts bit 0 to obtain a ciphertext
y′, and then outputsy := (y′ · c[i])i∈[n] 	= c. Obviously, the decryption of y is
x := (0⊕m[i])i∈[n] = m. However, no PPT simulator S can output a ciphertext
vector y satisfying x = m, since m was uniformly chosen and no information
about m is leaked to S except the opened messages.

In the case of ATK ∈ {CCA1, CCA2}, we show a counterexample as follows.
The main idea of our counterexample is similar to that in [17]. Let PKE =
(Gen,Enc,Dec) be an encryption scheme. We construct a new scheme ˜PKE =
(˜Gen, ˜Enc, ˜Dec) in Table 3.

Table 3. ˜PKE = (˜Gen,˜Enc,˜Dec)
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To prove that ˜PKE is not SIM-NM-SO-CCA1/CCA2 secure, consider the
adversary A: A obtains θ by querying the decryption oracle on input (c, 0, 1κ),
and outputs a ciphertext whose decryption is ⊥. Notice that any PPT sim-
ulator S has no information about the uniformly chosen θ, since it cannot
access to the decryption oracle. So the probability that the simulator outputs a
ciphertext whose decryption is ⊥ is negligible. Consider the distinguisher D: On
input (M,m, I,x, σ), return 1 if and only if ⊥ ∈ x. Then D can distinguish
Exp

SIM-NM-SO-CCA1/CCA2-Real
˜PKE,A

(κ) and Exp
SIM-NM-SO-CCA1/CCA2-Ideal
˜PKE,S

(κ). Hence,
˜PKE is not SIM-NM-SO-CCA1/CCA2 secure. Now, what remains is to prove
the SIM-SO-CCA1/CCA2 security of ˜PKE, which is guaranteed by PKE’s SIM-
SO-CCA1/CCA2 security. Due to space limitations, the formal proof will be
given in the full version of this paper.

Remark 3. The aforementioned analysis actually shows that ˜PKE is not SIM-
NM-SO-CCA1 secure, even if PKE is SIM-SO-CCA2 secure. So we have a
stronger conclusion: “SIM-SO-CCA2 � SIM-NM-SO-CCA1”, and a similar
analysis gives “SIM-SO-CCA2 � SIM-NM-CCA1”.

A Note on SIM-NM-SO-CCA2. In [17], Pass et al. specified a special condi-
tion (i.e., the message space and the range of the decryption algorithm are iden-
tical), under which IND-NM-CCA1/CCA2 security and SIM-NM-CCA1/CCA2
security are equivalent. Interestingly, we find that under this condition, if the
range of the decryption algorithm is recognizable (i.e., roughly speaking, there is
a polynomial-time algorithm, which can determine whether an element is in the
range of the decryption algorithm), then SIM-SO-CCA2 security implies SIM-
NM-SO-CCA2 security (i.e., these two security notions are equivalent). Below we
recall the special condition proposed in [17], which we name “invertible decryp-
tion”.

Definition 8 (Invertible Decryption). Let PKE = (Gen,Enc,Dec) be a PKE
scheme. Dec is invertible if there exists a PPT algorithm F, such that for any
ciphertext c, Dec(sk,F(pk,Dec(sk, c))) = Dec(sk, c), where (pk, sk) ← Gen(1κ).

Theorem 3. If a SIM-SO-CCA2 secure PKE scheme has an invertible decryp-
tion algorithm, and the range of the decryption algorithm is recognizable in poly-
nomial time, then the scheme is also SIM-NM-SO-CCA2 secure.

Proof. Let PKE = (Gen,Enc,Dec) be a SIM-SO-CCA2 secure encryption scheme,
such that it has an inverting algorithm F, and the range of Dec is recognizable.
Now we prove PKE is SIM-NM-SO-CCA2 secure.

For any PPT adversary A = (A1, A2, A3) attacking PKE in the sense of SIM-
NM-SO-CCA2, we construct a PPT adversary A′ = (A′

1, A
′
2, A

′
3) attacking PKE

in the sense of SIM-SO-CCA2 as follows.
Receiving a public key pk, A′

1 runs A1 on the input of pk. For any decryption
query c′ asked by A1, A′

1 sends c′ to its own decryption oracle, and then returns
the answer to A1. At some point, A1 returns a message distribution M. Then,
A′

1 outputs M to the challenger.
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On the other side, the challenger samples m ← M and r ← (REnc)|m|, and
generates c∗ ← Enc(pk,m; r).

Receiving c∗ from the challenger, A′
2 runs A2 on the input of c∗. For any

decryption query c′ asked by A2, A′
2 answers it with its own decryption oracle

as before (of course, both A2 and A′
2 are not allowed to query c′ ∈ c∗). At some

point, A2 returns a subset I ⊂ [|c∗|]. Then, A′
2 outputs I to the challenger.

Receiving m[I] and r[I], A′
3 runs A3 on the input of m[I] and r[I]. For any

decryption query c′ asked by A3, A′
3 answers it as before. At last, A3 returns

its final output (y, σ). Then, A′
3 generates x (where |x| = |y|) as follows: For

i = 1, 2, · · · , |y|, if y[i] /∈ c∗, submit y[i] to A′’s decryption oracle and denote
the decryption by x[i]; if y[i] ∈ c∗, set that x[i] := COPY. Finally, A′

3 outputs
outA′ := (x, σ).

Notice that A′ perfectly simulates experiment ExpSIM-NM-SO-ATK-Real
PKE,A (κ) for

A. Hence,

ExpSIM-SO-CCA2-Real
PKE,A′ (κ) = (M,m, I, outA′) = (M,m, I,x, σ)

= ExpSIM-NM-SO-CCA2-Real
PKE,A (κ). (1)

Since PKE is SIM-SO-CCA2 secure, there is a PPT simulator S′ =
(S′

1, S
′
2, S

′
3) such that

ExpSIM-SO-CCA2-Ideal
PKE,S′ (κ)

c≈ ExpSIM-SO-CCA2-Real
PKE,A′ (κ). (2)

Now, based on S′, we construct a simulator S = (S1, S2, S3) in the sense of
SIM-NM-SO-CCA2.

Receiving a public key pk, S1 runs S′
1 on the input of 1κ. Then S1 outputs

the MS′ returned by S′
1.

On the other side, the challenger samples mS′ ← MS′ , without returning
anything to S.

Later, S′
2 outputs a subset IS′ . S2 outputs IS′ to the challenger.

Upon receiving mS′ [IS′ ], S3 runs S′
3 on the input of mS′ [IS′ ], obtaining S′

3’s
final output outS′ . After parsing outS′ = (xS′ , σS′), S3 checks whether there
is some i0 ∈ [|xS′ |] such that xS′ [i0] 	= COPY and meanwhile xS′ [i0] is not in
the range of Dec. It is feasible to check that in polynomial time since the range
of Dec is recognizable. If there is such an i0, then S3 aborts by outputting a
random string. Otherwise, S3 generates yS (where |yS | = |xS′ |) as follows: For
i = 1, 2, · · · , |yS |, if xS′ [i] = COPY, then set yS [i] = COPY; otherwise, generate
yS [i] ← F(pk,xS′ [i]). Finally, S3 outputs (yS , σS′).

Let bad denote the event that S aborts. If bad does not occur, then for
any j ∈ [|xS′ |] such that xS′ [j] 	= COPY, there is some ciphertext ĉj (not
has to be valid), such that Dec(sk, ĉj) = xS′ [j]. We have Dec(sk,yS [j]) =
Dec(sk,F(pk,Dec(sk, ĉj))) = Dec(sk, ĉj) = xS′ [j]. In this case,

ExpSIM-NM-SO-CCA2-Ideal
PKE,S (κ) = (MS′ ,mS′ , IS′ ,xS′ , σS′)

= (MS′ ,mS′ , IS′ , outS′)
= ExpSIM-SO-CCA2-Ideal

PKE,S′ (κ).



Non-malleability Under SOA: Implication and Separation 99

So for any PPT algorithm D,

|Pr[D(ExpSIM-NM-SO-CCA2-Ideal
PKE,S (κ)) = 1]

− Pr[D(ExpSIM-SO-CCA2-Ideal
PKE,S′ (κ)) = 1]| ≤ Pr[bad].

Notice that if Pr[bad] is negligible, then we have

ExpSIM-NM-SO-CCA2-Ideal
PKE,S (κ)

c≈ ExpSIM-SO-CCA2-Ideal
PKE,S′ (κ). (3)

Combining Eqs. (1), (2) and (3) gives

ExpSIM-NM-SO-CCA2-Real
PKE,A (κ)

c≈ ExpSIM-NM-SO-CCA2-Ideal
PKE,S (κ).

Hence, what remains is to prove that Pr[bad] is negligible. We consider the
following distinguisher D′:

Algorithm D′(M,m, I, out):
Parse out = (x, σ)
For i ∈ [|x|],

If x[i] �= COPY and x[i] is not in the range of Dec, then return 1
Return 0

It is obvious that Pr[D′(ExpSIM-SO-CCA2-Real
PKE,A′ (κ)) = 1] = 0, and that

Pr[D′(ExpSIM-SO-CCA2-Ideal
PKE,S′ (κ)) = 1] = Pr[bad]. In other words,

Pr[bad] = |Pr[D′(ExpSIM-SO-CCA2-Real
PKE,A′ (κ)) = 1]

− Pr[D′(ExpSIM-SO-CCA2-Ideal
PKE,S′ (κ)) = 1]|.

Hence, Eq. (2) guarantees that Pr[bad] is negligible. �

5 Relations Between IND-NM-SO Securities and IND-SO
Securities

In this section, we explore the relations between IND-NM-SO securities and
IND-SO securities. First of all, for any ATK ∈ {CPA, CCA1, CCA2}, an IND-
NM-SO-ATK adversary is more powerful than an IND-SO-ATK adversary in
that it can make an additional query to oracle Psk(·). Intuitively, IND-NM-SO-
ATK security implies IND-SO-ATK security. Further more, any IND-SO-CCA2
adversary A is able to access to the decryption oracle after receiving the challenge
ciphertext vector. So providing A the ability to make a parallel decryption query
yields no additional power. The above analysis results in the following theorem.

Theorem 4 (IND-NM-SO-ATK⇒IND-SO-ATK, IND-NM-SO-CCA2
⇔ IND-SO-CCA2). For any ATK ∈ {CPA, CCA1, CCA2}, IND-NM-SO-
ATK security implies IND-SO-ATK security. Further more, if ATK = CCA2,
these two securities are equivalent.
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IND-NM-SO-CPA �

�
IND-SO-CCA1. Formally, we have the following the-

orem. This is an direct extension of the conclusion in [1]. So we just provide a
high-level description of the reasoning here.

Theorem 5 (IND-NM-SO-CPA �

�
IND-SO-CCA1). There is an IND-

SO-CCA1 secure PKE scheme, which is not IND-NM-SO-CPA secure; vice
verse.

The Direction �. Note that after receiving the challenge ciphertext, the IND-
SO-CCA1 adversary cannot access to the decryption oracle, but the IND-NM-
SO-CPA adversary still can make a parallel decryption query. Based on this
observation, any PKE scheme, achieving IND-SO-CCA1 but not IND-SO-CCA2
security, might be used as a counterexample. The following scheme PKE′ (in
Table 4), with message space {0, 1}κ, is from [1]. If the basic scheme PKE =
(Gen,Enc,Dec) is IND-SO-CCA1 secure, then we can prove that PKE′ is IND-
SO-CCA1 secure but not IND-NM-SO-CPA secure. The formal proof will be
given in the full version of this paper.

Table 4. PKE′ = (Gen′,Enc′,Dec′)

The Direction �. Note that an IND-NM-SO-CPA adversary can make just a
one-time decryption query (although it is parallel), but an IND-SO-CCA1 adver-
sary can query the decryption oracle polynomial times. Based on this observa-
tion, we provide a PKE scheme PKE′′, which is identical to the scheme ˜PKE
in Sect. 4, except that during the decryption, roughly, the decryption algorithm
returns the original secret key sk instead of the special symbol ⊥, in the case of
“b = 0 and ϑ = θ”. The analysis is similar to that in Sect. 4. The IND-SO-CCA1
adversary can obtain θ by querying the decryption oracle on input (c, 0, 1κ), so it
can obtain the original sk by querying on (c, 0, θ). Hence, PKE′′ is not IND-SO-
CCA1 secure. However, the IND-NM-SO-CPA adversary cannot make any other
decryption query after the parallel decryption query. Notice that θ is uniformly
chosen, so PKE′′ can be proved IND-NM-SO-CPA secure. The formal proof will
be given in the full version of this paper.

Remark 4. Since IND-SO-CCA1 (resp. IND-NM-SO-CCA1) security implies
IND-SO-CPA (resp. IND-NM-SO-CPA) security, we have the following corollary.
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Corollary 1 (IND-SO-CPA/CCA1 � IND-NM-SO-CPA/CCA1).
IND-SO-CPA/CCA1 security is strictly weaker than IND-NM-SO-CPA/ CCA1
security.

6 Relations Between SIM-NM-SO Securities
and SIM-NM Securities

SIM-NM-SO-ATK ⇒ SIM-NM-ATK. Compared with the conclusion that
“SIM-NM-SO-ATK ⇒ SIM-SO-ATK”, this conclusion is not that obvious. That
is because, compared with the SIM-NM-SO-ATK adversary, although the SIM-
NM-ATK adversary is less powerful (i.e., not allowed to make any opening
query), the corresponding simulator also has less information (i.e., not allowed
to make any opening query) about the message vector. Formally, we have the
following theorem. Due to space limitations, its formal proof will be given in the
full version of this paper.

Theorem 6 (SIM-NM-SO-ATK ⇒ SIM-NM-ATK). For any ATK ∈
{CPA, CCA1, CCA2}, SIM-NM-SO-ATK security implies SIM-NM-ATK
security.

Remark 5. We can also prove Theorem 6 by simply constructing a “non-
opening” SIM-NM-SO-ATK adversary, which is a copy of the SIM-NM-ATK
adversary. Hence, our proof, the overview of which has been provided in the
Introduction, actually shows that even considering constrained SIM-NM-SO-
ATK adversary (i.e., “opening” adversary), Theorem 6 still holds.

SIM-NM-ATK � SIM-NM-SO-ATK. We will show that the IND-CCA2
secure Cramer-Shoup scheme [6,7] (the CS scheme) is SIM-NM-CCA2 secure.
But the CS scheme is not SIM-SO-CPA secure [2]. According to Theorem 1,
it is not SIM-NM-SO-CPA secure either. Consequently, “SIM-NM-ATK′

�

SIM-NM-SO-ATK′′”, for any ATK′,ATK′′ ∈ {CPA,CCA1,CCA2}.
To show that the CS scheme is SIM-NM-CCA2 secure, we use the following

two facts: (1) For any PKE scheme having an invertible decryption algorithm,
it is IND-NM-CCA2 secure iff it is SIM-NM-CCA2 secure [17, Theorem 6]. (2)
IND-CCA2 security is equivalent to IND-NM-CCA2 security, since the parallel
decryption query provides no additional ability to the adversary in the case of
CCA2. So what remains is to show that the CS scheme has an invertible decryp-
tion algorithm. Let (Enc,Dec) denote the corresponding encryption/decryption
algorithms. Following the notations of [7], any valid ciphertext ψ of the CS
scheme has the form ψ := (a, â, c, d) ∈ G4, the message space is G, and the
range of Dec is G

⋃

{reject}, where G is a group of prime order q (see [7]).
We construct an inverting algorithm F as follows: On input (pk,Dec(sk, ψ)),
if Dec(sk, ψ) ∈ G, then F runs Enc(pk,Dec(sk, ψ)) and returns the generated
ciphertext; If Dec(sk, ψ) = reject, then F returns an arbitrary ciphertext not
in G4.
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7 Relations Between IND-NM-SO Securities
and IND-NM Securities

Theorem 7 (IND-NM-CCA2 � IND-NM-SO-CCA2). There is an IND-
NM-CCA2 secure PKE scheme, which is not IND-NM-SO-CCA2 secure.

Theorem 8 (IND-NM-SO-ATK ⇒ IND-NM-ATK). For any ATK
∈ {CPA, CCA1, CCA2}, IND-NM-SO-ATK security implies IND-NM-ATK
security.

Notice that IND-NM-CCA2 (resp. IND-NM-SO-CCA2) security is equivalent
to IND-CCA2 (resp. IND-SO-CCA2) security, so Theorem 7 is directly from [15],
which separated IND-CCA2 security and IND-SO-CCA2 security. The conclu-
sion of Theorem 8 is not surprising at all. One subtlety here is that the ways
that message vectors are sampled in these two notions are different. Due to space
limitations, the proof of Theorem 8 will be given in the full version of this paper.

Remark 6. In Sect. 5, we have showed that scheme PKE′′ is IND-NM-SO-CPA
secure. It is easy to see that PKE′′ is not IND-NM-CCA1 secure. So we conclude
that “IND-NM-SO-CPA � IND-NM-CCA1”.

8 Relations Between SIM-NM-SO Securities
and IND-NM-SO Securities

For the relations between SIM-NM-SO securities and IND-NM-SO securities, we
have the following conclusion. Its proof is similar to that of Theorem 2 and [17,
Theorem 4], so we just provide a sketch here.

Theorem 9 (IND-NM-SO-CCA1/CCA2 � SIM-NM-SO-CCA1/
CCA2). For any ATK ∈ {CCA1,CCA2}, there is an IND-NM-SO-ATK secure
PKE scheme, which is not SIM-NM-SO-ATK secure.

Proof. (Sketch) Let PKE = (Gen,Enc,Dec) be an IND-NM-SO-CCA1/CCA2
secure encryption scheme. We construct the scheme ˜PKE = (˜Gen, ˜Enc, ˜Dec)
described in Table 3. Note that in Sect. 4, we have shown that ˜PKE is not SIM-
NM-SO-CCA1/CCA2 secure, and the reasoning there does not involve the secu-
rity of the basic scheme PKE. So here we just need to prove that ˜PKE achieves
IND-NM-SO-CCA1/CCA2 security.

For any PPT adversary ˜A attacking ˜PKE in the sense of IND-NM-SO-
CCA1/CCA2 with non-negligible advantage, roughly speaking, we construct a
PPT adversary A attacking PKE (in the sense of IND-NM-SO-CCA1/CCA2) as
follows: Receiving the public key, A chooses θ ← {0, 1}κ, and uses this θ and
its own decryption oracle to answer ˜A’s decryption queries. A outputs the same
message distribution M as ˜A does, transforms any component c[i] of its own
challenge ciphertext vector into (c[i], 1, 0κ) to get a modified challenge cipher-
text vector and passes the modified one to ˜A. A uses its own opening oracle to
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answer ˜A’s opening query. Finally, A returns ˜A’s final output. Notice that A

perfectly simulates the IND-NM-SO-CCA1/CCA2 experiment (about ˜PKE) for
˜A. So A’s advantage is also non-negligible, contradicting the assumption. �

Remark 7. Note that ˜PKE is not SIM-NM-SO-CCA1 secure, even if PKE is
IND-NM-SO-CCA2 secure. So we actually have a stronger conclusion: “IND-
NM-SO-CCA2 � SIM-NM-SO-CCA1”.

9 Constructions

Fortunately, there are some known selective opening secure PKE schemes achiev-
ing SIM/IND-NM-SO securities. Details are as follows.

SIM-NM-SO-CCA2 Secure Construction. The Fehr-Hofheinz-Kiltz-Wee
encryption scheme (the FHKW scheme) is SIM-SO-CCA2 secure [10,13,14]. We
claim that the decryption algorithm of the FHKW scheme is invertible, and the
range of the decryption algorithm is recognizable. Hence, according to Theorem 3,
the FHKW scheme is SIM-NM-SO-CCA2 secure. Our claim is justified as follows.

According to [10], any valid ciphertext of the FHKW scheme has the form
(X1, · · · ,XL, T ), and the message space is {0, 1}L. For any ciphertext of the
form (X1, · · · ,XL, T ), where Xi ∈ X and T ∈ XT , its decryption is an L-bit
string. Since X and XT are both efficiently recognizable, any invalid cipher-
text (X1, · · · ,XL, T ) (i.e., Xi /∈ X for some i, or T /∈ XT ) will be decrypted
to ⊥. In other words, the range of the decryption algorithm is {0, 1}L

⋃

{⊥},
which is recognizable. As to the special inverting algorithm F, we construct it
as follows: Let (Enc,Dec) denote the encryption/decryption algorithms of the
FHKW scheme. For any ciphertext c, we have that Dec(sk, c) ∈ {0, 1}L

⋃

{⊥}.
If Dec(sk, c) ∈ {0, 1}L, F runs Enc(pk,Dec(sk, c)) and returns the generated
ciphertext; If Dec(sk, c) = ⊥, F returns an arbitrary ciphertext (X1, · · · ,XL, T )
where Xi /∈ X or T /∈ XT .

IND-NM-SO-CCA2 Secure Construction. According to Theorem 4, IND-
NM-SO-CCA2 security is equivalent to IND-SO-CCA2 security. So any IND-
SO-CCA2 secure encryption scheme (e.g. the PKE scheme constructed from
all-but-many lossy trapdoor functions [11]) meets IND-NM-SO-CCA2 security.
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