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Abstract. A straightforward way of constructing an n-bit pseudoran-
dom function is to XOR two or more pseudorandom permutations:
p1 ⊕ . . . ⊕ pk. This XOR construction has gained broad attention over
the last two decades. In this work, we revisit the security of this well-
established construction. We consider the case where the underlying
permutations are considered secret, as well as the case where these
permutations are publicly available to the adversary. In the secret permu-
tation setting, we present a simple reduction showing that the XOR con-
struction achieves optimal 2n security for all k ≥ 2, therewith improving
a recent result of Cogliati et al. (FSE 2014). Regarding the public permu-
tation setting, Mandal et al. (INDOCRYPT 2010) proved 22n/3 security
for the case k = 2, but we point out the existence of a non-trivial flaw
in the proof. We re-establish and generalize the claimed security bound
for general k ≥ 2 using a different proof approach.

Keywords: XOR of permutations · Indifferentiability · Beyond
birthday bound · H-coefficient technique

1 Introduction

A fundamental research question in cryptography is how to construct a pseudo-
random function (PRF) from a pseudorandom permutation (PRP). The first to
formally consider this problem were Bellare et al. [21]. They named the prob-
lem “Luby-Rackoff backwards”, referring to the celebrated result by Luby and
Rackoff who showed how to construct a PRP from a PRF [31]. Their PRF
construction consisted of two sequential block cipher calls, where the output of
the first call is the key input to the second one: f(k, x) = E(E(k, x), x). This
construction only achieves security up to the birthday bound on the output size.

Various methods to construct a PRF from a PRP have been presented that
achieve security beyond the 2n/2 birthday bound, the most notable approach
being the XOR of multiple n-bit permutations. In more detail, let p1, . . . , pk be
k ≥ 1 n-bit permutations, and define the following function:

fk = p1 ⊕ · · · ⊕ pk. (1)

For k = 1, the security of f1 is commonly known as the PRP-PRF switch,
and primary analysis on this function has, among others, been performed by
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Impagliazzo and Rudich [25], Black et al. [19], Hall et al. [29], and Bellare
and Rogaway [4]. For general k ≥ 1, Lucks [9] proved that this function is a
secure PRF up to about 2

k
k+1n queries. For k = 2, Bellare and Impagliazzo [18]

proved security up to approximately 2n/n2/3, and Patarin [30] improved this
bound to approximately 2n. The latter result is proven using the H-coefficient
technique [10], a proof technique that has recently been revisited by Chen and
Steinberger [27] and found adoption (among others) in the security of key alter-
nating ciphers [27], cascade encryption [1], and MACs [5,24]. Using the same
techniques, Cogliati et al. [28] recently improved the security bounds of fk for
k ≥ 3, proving that it behaves like a PRF up to approximately 2

2k+1
2k+2n queries.

The authors also mention that the bound could be improved to 2n, via methods
similar to the iterative method employed by Patarin [30], but no proof is given.
The state of the art is summarized in Table 1.

All of above-mentioned results are in the secret permutation setting. In more
detail, one considers an adversary that is given access to either fk (using secret
permutations), or a random function R, and its goal is to distinguish both worlds.
While to a certain degree it is possible to view the permutations as secret – one
can consider them being instantiated as block ciphers with fixed and secret keys
– a novel trend in cryptography is to view permutations as standalone and pub-
licly available objects. For instance, various permutation-based hash functions
have appeared over the last years [6,7,16,20,22,23] and the recently started
CAESAR competition [11] received various permutation-based submissions, and
all of these constructions have been analyzed in the public permutation model.
If we wish to consider fk in the case where the underlying permutations are pub-
licly available, the indistinguishability model is deficient. An improved notion is
the indifferentiability framework, introduced by Maurer et al. [15]. Informally, it
gives a sufficient condition under which an ideal functionality R can be replaced
by fk using ideal, publicly available, primitives p = (p1, . . . , pk). Indifferentia-
bility proofs consider the existence of a simulator S with access to R such that
(fk, p) on the one hand and (R,S) on the other hand are indistinguishable. In
this indifferentiability model, Mandal et al. [2] proved that f2 achieves O(22n/3)
security. The authors conjecture that their simulator allows to achieve optimal
O(2n) indifferentiability. An additional open problem is to generalize this result
to k > 2 permutations. Table 1 also summarizes the state of the art for the public
permutation setting.

A related result is the construction of a permutation XORed with its inverse,
p ⊕ p−1, as introduced by Dodis et al. [12]. However, this construction is only
proven to achieve indifferentiability security up to the birthday bound.

Our Contributions

We revisit the state of the art in both the secret permutation setting and the
public permutation setting.

Starting with security in the secret permutation setting, we present an alter-
native and short proof showing that fk indeed achieves 2n indistinguishability
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Table 1. State of the art for indistinguishability (first) and indifferentiability (second).
Results in bold are derived in this work

k bound reference remark

indistinguishability (pi secret) ≥1 2
k

k+1n [9]

2 2n/n2/3 [18]

2 2n [30]

≥3 2
2k+1
2k+2n [28] conjectured 2n

≥3 2n Sect. 3

indifferentiability (pi public) 2 2n/2 [2]

2 22n/3 [2] flawed (Sect. 4.3)

≥2 22n/3 Sect. 4

security for all k ≥ 3. The proof is fairly straightforward, consisting of a reduction
of the security of fk+1 to fk for all k ≥ 2, and using Patarin’s proof of 2n secu-
rity of f2 [30]. The proof is simpler than the one suggested by Cogliati et al. to
achieve 2n security [28], but the price to pay is a slightly worse security bound.
(The difference lies in the security exponent. Informally, this is a value c such
that the security bound behaves like (q/2n)c. A larger c means a sharper curve
for the security advantage, or in other words that the threshold value q0 such
that (q0/2n)c = 1/2, is higher. The approach suggested in [28] is expected to
result in a larger security exponent.)

Regarding security in the public permutation setting, we revisit the work of
Mandal et al. [2] and note that the proof contains a subtle but non-negligible flaw.
The bug appears in the technical part of the proof, it is not straightforwardly
fixable, and thus invalidates the security result, leaving the indifferentiability of
f2 beyond 2n/2 as an open problem. Nevertheless, the mistake does not have a
direct influence on the proposed simulator. For a generalization of their simulator
to k ≥ 2 rounds, we next restore the claimed security bound. In more detail, we
re-confirm that fk achieves at least 22n/3 indifferentiability security. The security
result is obtained by following a different proof approach and avoiding the flawed
part all the way. The new proof particularly relies on a result from the area of
Fourier theory proven by Babai [3], Steinberger [13], and Chen et al. [14], that
(informally) bounds the number of solutions to a⊕b = c for (a, b, c) ∈ A×B×C,
where C is a set of random elements and A and B are two arbitrarily chosen
sets of size |C| (details follow in Sect. 4.4). This problem found earlier adoption
in the area of permutation-based hashing [23], digital signatures [17], and the
security of Even-Mansour [14].

The new results are also included in Table 1.

Outline

We introduce some mathematical preliminaries and discuss the indistinguishabil-
ity and indifferentiability models in Sect. 2. We present our short and alternative
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proof for the indistinguishability of fk in Sect. 3. A new indifferentiability proof
for k ≥ 2, using a generalization of the simulator of Mandal et al. [2], is given
in Sect. 4. The work is concluded in Sect. 5. In this section, we also elaborate on
possible improvements of our result to 2n security.

2 Preliminaries

Let n ≥ 1 be an integer. By Func(n) we denote the set of all functions from
{0, 1}n to {0, 1}n and by Perm(n) the set of all permutations on {0, 1}n. For a
set X , we denote by x

$←− X the uniformly random sampling of an element from
X . If x and y are two bitstrings of the same size, x⊕y denotes their bitwise XOR.

Throughout, a distinguisher D is a computationally unbounded probabilistic
algorithm that has oracle access to one or more oracles O. The distinguisher
can make a certain amount of oracle queries to O, and after this interaction DO

outputs a 0 or a 1.

Definition 1 (Indistinguishability). For an integer k ≥ 1, consider fk of
(1) based on p = (p1, . . . , pk) $←− Perm(n)k. Let R $←− Func(n). The distinguishing
advantage of D against fk is defined as

Advdist
fk

(D) =
∣
∣P

(

Dfk = 1
)

− P
(

DR = 1
)∣
∣ ,

where the probabilities are taken over the randomness of p, R, and D.

Maurer et al. [15] introduced indifferentiability as an extension of indistinguisha-
bility, more suitable for the case the underlying primitives are publicly available.
Indifferentiability of a function fk from a random function R, intuitively, means
that fk shows no structural design flaws and that it can replace R in any con-
struction, up to the indifferentiability security bound of fk. We employ the adap-
tion and simplification by Coron et al. [26], rewritten in our own terminology.

Definition 2 (Indifferentiability). For an integer k ≥ 1, consider fk of (1)
based on p = (p1, . . . , pk) $←− Perm(n)k. Let R $←− Func(n). Let S be a simulator
with the same interface as p and with oracle access to R. The differentiating
advantage of D against fk for simulator S is defined as

Advdiff
fk,S(D) =

∣
∣P

(

Dfk,p = 1
)

− P
(

DR,S = 1
)∣
∣ ,

where the probabilities are taken over the randomness of p, R, S, and D.

The indistinguishability and indifferentiability definitions are depicted in Fig. 1.

3 Indistinguishability of fk

We present a short proof for the indistinguishability of fk from a random func-
tion R from Func(n), in accordance with Definition 1. We start with a security
reduction of fk+1 to fk for all k ≥ 2.
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Fig. 1. Indistinguishability (without dashed elements) and indifferentiability (with
dashed elements)

Theorem 1. For all k ≥ 2, for any distinguisher D, we have Advdist
fk+1

(D) ≤
Advdist

fk
(D).

Proof. We consider a distinguisher DO that has access to an oracle O, either
fk+1 or R $←− Func(n), and makes q queries to this oracle. If DO,O′

is given
access to an additional oracle O′ with the same domain as O, this means that
for every query D makes to O, it gets the same query to O′ for free. In other
words, if DO,O′

queries x to its oracle O, it gets as response the values O(x) and
O′(x).

For brevity, we denote P
(

DO = 1
)

= P (O) and P
(

DO,O′
= 1

)

= P (O,O′).
Recall that fk+1 = p1 ⊕ · · · ⊕ pk+1. By construction:

Advdist
fk+1

(D) = |P (p1 ⊕ · · · ⊕ pk+1) − P (R)|
(a)

≤ |P (p1 ⊕ · · · ⊕ pk+1, pk+1) − P (R, pk+1)|
(b)
= |P (p1 ⊕ · · · ⊕ pk, pk+1) − P (R, pk+1)|
(c)
= |P (p1 ⊕ · · · ⊕ pk) − P (R)| = Advdist

fk
(D) ,

where (a) holds as extra access may only increase the advantage, (b) holds as
(p1 ⊕· · ·⊕pk, pk+1) can be computed from (p1 ⊕· · ·⊕pk+1, pk+1) and vice versa,
and (c) holds as pk+1 is an independent permutation. ��

Next, we recall the result of Patarin [30] on the indistinguishability of f2.

Lemma 1 (Patarin [30]). For any D making q oracle queries, we have
Advdist

f2
(D) = O(q/2n).

From Theorem 1 and Lemma 1, the following corollary immediately follows,
showing that fk is indistinguishable up to about 2n queries, for all k ≥ 2.

Corollary 1. For all k ≥ 2, for any D making q oracle queries, we have
Advdist

fk
(D) = O(q/2n).
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4 Indifferentiability of fk

In this section we consider the indifferentiability of fk (cf. Definition 2), in case
the underlying permutations are public. We prove the following result.

Theorem 2. For all k ≥ 2, there exists a simulator S such that for any D
making q ≥ 9n oracle queries,

Advdiff
fk,S(D) ≤ 4q3

22n
+

3n1/2q3/2

2n
+

2
2n

.

The simulator makes at most 2q queries to R.

While the theorem is stated for general k, the bound is independent of k. This
is caused by the fact that we consider a direct generalization of the simulator
of Mandal et al. [2], but the core problems that determine the bound find their
roots in the basic case of k = 2. We refer to Sect. 5 for a more detailed discussion.

The remainder of the section is organized as follows. Firstly, we describe a
generalization of the simulator S introduced by Mandal et al. [2] to k ≥ 2 (in
Sect. 4.1). Secondly, we present Patarin’s H-coefficient technique upon which the
proof is based, along with some preliminary observations (in Sect. 4.2). These fol-
low [2] with the difference that we use the re-formalization of Patarin’s technique
by Chen and Steinberger [27]. Thirdly, we discuss the original indifferentiability
proof of [2] (in Sect. 4.3). Fourthly, we present our new proof (in Sect. 4.4).

4.1 Simulator

We describe the simulator used in our work. It is a direct generalization of the
simulator S of Mandal et al. [2] to a general number of k ≥ 2 permutations.

The goal of the simulator S is to mimic the permutations p = (p1, . . . , pk)
in such a way that (fk, p) and (R,S) look indistinguishable. S therefore has
the same interface as p, and we write S = (S1, . . . ,Sk). The distinguisher can
make forward and inverse queries to each of these functionalities, which means
that it can query S in 2k ways. However, the simulator should look like R =
S1 ⊕ · · · ⊕ Sk, and if a distinguisher would, for instance, query S1(x), it very
likely also wishes to know S2(x), . . . ,Sk(x). To suit the analysis, we model the
simulator in such a way that on a forward query x, the distinguisher is given all
values S(x) = (S1(x), . . . ,Sk(x)). This simplification essentially corresponds to
giving the distinguisher k − 1 “free” queries. It also means that S has only one
interface for forward queries.

A similar issue arises for inverse queries. If the distinguisher makes a query
to S−1

� for � ∈ {1, . . . , k}, the simulator will not only output a preimage x, but
also the corresponding range values S1(x), . . . ,S�−1(x),S�+1(x), . . . ,Sk(x). Also
here, the distinguisher essentially gets k − 1 queries for free.

The simulator maintains a sequence of responses {(xi, y
1
i , . . . , yk

i )}q
i=1, where

q denotes the number of queries to S. These tuples correspond to the evaluations

S(xi) = (S1(xi), . . . ,Sk(xi)) = (y1
i , . . . , yk

i ) ,
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for i = 1, . . . , q. Note that every forward query as well as every inverse query to
S results in exactly one such tuple. Here and throughout, we assume D never
repeats an old query, e.g., in a forward query S(xi), we have xi 	∈ {x1, . . . , xi−1}.

The simulator S is defined as follows. We consider its description for the ith
query, for i ∈ {1, . . . , q}. We describe the simulator for forward queries S(xi),
and for inverse queries S−1

� (y�
i ) for � ∈ {1, . . . , k}.

Forward Query S(xi). For � = 3, . . . , k, the simulator draws y�
i uniformly

randomly from {0, 1}n\{y�
1, . . . , y

�
i−1}. Then, it queries xi to R and generates y1

i

uniformly randomly from

{0, 1}n\{y1
1 , . . . , y1

i−1, ȳi ⊕ y2
1 , . . . , ȳi ⊕ y2

i−1} (2)

where we define ȳi = R(xi) ⊕ y3
i ⊕ . . . ⊕ yk

i . Finally, it sets y2
i = ȳi ⊕ y1

i .
Informally, S(xi) selects random y�

i for � = 3, . . . , k, and uses y1
i and y2

i to
make sure that R(xi) = y1

i ⊕ . . . ⊕ yk
i . Note that, due to the drawing of y1

i from
(2), we have y2

i 	∈ {y2
1 , . . . , y2

i−1}.

Inverse Query S−1
� (y�

i). The simulator generates its response as follows.

(1) Draw y�′
i uniformly randomly from {0, 1}n\{y�′

1 , . . . , y�′
i−1} for �′ ∈ {� +

1, . . . , � + k − 2};1

(2) Draw xi uniformly randomly from {0, 1}n\{x1, . . . , xi−1} and query xi to R;
(3) Set y�−1

i = R(xi) ⊕ y�
i ⊕ . . . ⊕ y�+k−2

i . If y�−1
i ∈ {y�−1

1 , . . . , y�−1
i−1}, return

to (2).

We call a drawing xi such that the resulting value y�−1
i in step (3) is not new

a “failed guess”. As in [2], in the proof we will limit the simulator to make at
most 2 attempts (and thus at most 1 failed guess) per query. The simulator will
abort once it exceeds this bound for some query.

4.2 Patarin’s Technique

Fix any distinguisher D making q queries. As it is computationally unbounded,
without loss of generality we can assume it is deterministic. We summarize the
interaction of D with its oracles by a transcript τ , which consists of all query-
response tuples D sees during its interaction with its oracles. We assume D
never makes duplicate queries. The set of all possible transcripts is denoted by
T . Denote by X (resp. Y ) the probability distribution of transcripts in the ideal
(resp. simulated) world, for the fixed deterministic distinguisher D.

Patarin’s H-coefficient technique [27,30] states the following.2

1 Here and throughout, all indices are taken modulo k and in the range {1, . . . , k}.
2 The H-coefficient technique in fact applies to indistinguishability in general, but to

suit the presentation, we introduce it in the context of the indifferentiability of fk.
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Lemma 2 (H-coefficient Technique [27,30]). Consider a fixed deterministic
distinguisher D. Let T = Tgood ∪Tbad be a partition of the set of transcripts. Let
ε be such that for all τ ∈ Tgood,

P (Y = τ) ≥ P (X = τ) · (1 − ε) . (3)

Then, Advdiff
fk,S(D) ≤ ε + P (X ∈ Tbad).

Proof. The proof is fairly straightforward, and we include it for completeness.
We refer to [27] for a more detailed discussion.

We consider a deterministic distinguisher D, and as such, its differentiating
advantage equals the statistical distance between the distributions of transcripts
in the ideal and simulated world:

Advdiff
fk,S(D) =

1
2

∑

τ∈T

∣
∣P (X = τ) − P (Y = τ)

∣
∣

(a)
=

∑

τ∈T :P(X=τ)>P(Y =τ)

(

P (X = τ) − P (Y = τ)
)

(b)
=

∑

τ∈T :P(X=τ)>P(Y =τ)

P (X = τ)
(

1 − P (Y = τ)
P (X = τ)

)

(c)

≤
∑

τ∈Tgood

P (X = τ) ε +
∑

τ∈Tbad

P (X = τ)

≤ ε + P (X ∈ Tbad) ,

where (a) holds by symmetry, (b) as P (X = τ) > 0 by construction, and (c)
holds by (3). ��

The main idea of the technique is exposed in the last step: for almost all tran-
scripts (the good ones), the ratio of (3) will be rather close to one and for these
transcripts we can take ε close to 0. For the few bad transcripts, ε may become
large (even close to 1). Additionally, the technique allows us to focus on fixed
transcripts and compute the probability of such a transcript to occur.

We build the following distinguisher D′ on top of D. Distinguisher D′ operates
as D, and particularly outputs the same decision. However, at the end D′ will
make an additional amount of q1 primitive queries to p/S as follows: for each
of the queries to fk/R it has made, D′ makes the same query to p/S, except
if this would imply a duplicate primitive query in which case D′ may replace it
with a random non-repeating query. Clearly, D and D′ always output the same
decision, and hence Advdiff

fk,S(D) = Advdiff
fk,S(D′). Also, if D makes q1 queries to

its construction oracle and q2 queries to its primitive, then D′ makes exactly q1

additional queries to its primitive. Note that, particularly, D′ makes q queries to
the primitive. In a transcript of D′, all queries to the construction oracle (fk or
R) are encapsulated in the queries to the primitive oracle (p or S). Therefore,
this approach reduces our problem to the problem of comparing (p1, . . . , pk) with
(S1, . . . ,Sk), the former called the ideal and the latter the simulated world.
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Finally, recall that the simulator may abort. This is formalized by including
in the transcript a dedicated symbol b ∈ {�,⊥}. In the ideal world, we always
have b = �, and in the simulated world, b = � unless the simulator aborted.
Note that if b = ⊥, the distinguisher succeeds with probability 1. In fact, in this
case the transcript will be considered a bad transcript, and due to Lemma2, the
technical part of the work centers around good transcripts.

Let τ =
(

{(xi, y
1
i , . . . , yk

i )}q
i=1, b

)

∈ T be any transcript that can be seen by
distinguisher D′. Note that, as D′ makes no duplicate queries, we have xi 	= xi′

and y�
i 	= y�

i′ for all i, i′, �. For arbitrary z ∈ {0, 1}n, we define

N(z) = {(j, j′) ∈ {1, . . . , q}2 | y1
j ⊕ y2

j′ = z} . (4)

4.3 Intermezzo: Proof of Mandal et al. [2]

The skeleton of our proof is similar to the one of [2]. Differences arise at the
definition of the bad event, and the remainder of the proof. Before proceeding
with our proof, we revisit the one of [2] at a high level (in our terminology),
point out the presence of a flaw, and briefly discuss to what extent our proposed
fix differs. Recall that the proof of [2] is for k = 2.

In the original proof, a transcript3 τ = {(xi, y
1
i , y2

i )}q
i=1 is called “bad” if

N(z) > 24q2

2n−q for some z ∈ {0, 1}n. In [2, Theorem 5], it is then proven that

P (X ∈ Tbad) = P
(

∃z ∈ {0, 1}n : N(z) >
24q2

2n − q

)

≤ 1/211n.

The proof assumes randomness of {(y1
i , y2

i )}q
i=1, but if an adversary makes an

inverse query to one of its primitive oracles, it can freely choose y1
i or y2

i . Inspired
by this, we can consider an adversary that operates as follows (define q′ = q/2):

• Choose z ∈ {0, 1}n;

• Query y1
i

p−1
1−−→ xi, y

2
i for i = 1, . . . , q′, all distinct values;

• Query y2
i = y1

i−q′ ⊕ z
p−1
2−−→ xi, y

1
i for i = q′ + 1, . . . , 2q′ = q, all distinct values.

Then, we have y1
i ⊕ y2

i+q′ = z for all i = 1, . . . , q′. In other words, N(z) ≥ q/2
after q queries, invalidating the claim for any 2 ≤ q ≤ 2n/49. (In a personal
communication, the authors of [2] have confirmed the presence of this flaw.)

We note that a straightforward fix of the proof of [2], consisting of impos-
ing N(z) ≤ const · q for good transcripts, does not work: it only results in
O(2n/2) security of the construction. This issue is resolved in our proof by using
a structurally different bad event, and relying on existing results from the area
of Fourier theory [3,13,14]. Naturally, the employment of a different bad event
also leaves its traces in the analysis of good transcripts, as becomes clear from
the proof.

3 The abortion bit b is absent in the original proof.
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4.4 Proof of Theorem 2

The proof of Theorem 2 roughly consists of four steps: (i) we define what type
of transcripts we consider “bad”, (ii) we bound the probability a bad transcript
occurs, (iii) we derive a bound on the ratio a good transcript is seen in the real
and ideal world, and (iv) the pieces are connected and the proof of Theorem 2
is completed.

The proof differs from the one of [2] in the definition of bad transcripts and
the probability analysis thereof, and in the analysis of forward queries for good
transcripts.

Bad Transcripts

Let τ =
(

{(xi, y
1
i , , . . . , yk

i )}q
i=1, b

)

∈ T be any attainable transcript. Recall the
definition of N(z) for arbitrary z ∈ {0, 1}n, Eq. (4). Transcript τ is called bad if
b = ⊥, or if

q
∑

i=1

|N(y1
i ⊕ y2

i )| > C (5)

for some to-be-determined C > 0. Next, we upper bound the probability a bad
transcript is obtained in the ideal world, P (X ∈ Tbad), and lower bound the
ratio P (Y = τ) /P (X = τ) for τ ∈ Tgood.

Upper Bounding P (X ∈ Tbad)

The ideal world never aborts, hence b = � by construction. Consequently, the
badness of transcripts is solely defined based on the values (y1

i , y2
i ). We isolate

the problem, and consider an adversary whose sole objective is to maximize
∑q

i=1 |N(y1
i ⊕ y2

i )|.
In a forward query, the adversary chooses xi and receives randomly drawn

y1
i and y2

i . In an inverse query, it may choose either of the yi-values and receives
a randomly drawn opposite. Therefore, the adversary will be most successful if
it only makes inverse queries to p−1

� for � ∈ {1, 2}. In light of this, we consider
an adversary engaged in the following game. For i = 1, . . . , q, either choose a y1

i

to receive y2
i = p2 ◦ p−1

1 (y1
i ), or choose a y2

i to receive y1
i = (p2 ◦ p−1

1 )−1(y2
i ).

Define zi = y1
i ⊕ y2

i . The adversary’s goal is to maximize

q
∑

i=1

|N(y1
i ⊕ y2

i )| =
q

∑

i=1

|N(zi)| =
∣
∣{(j, j′, i) ∈ {1, . . . , q}3 | y1

j ⊕ y2
j′ = zi}

∣
∣ .

Note that, as p1, p2
$←− Perm(n), also π = p2 ◦ p−1

1 behaves like a random permu-
tation. We generalize the game as follows. Let π

$←− Perm(n). The adversary can
query π adaptively and in both directions to obtain two lists Y 1 = {y1

1 , . . . , y1
q}

and Y 2 = {y2
1 , . . . , y2

q} such that y2
i = p2 ◦ p−1

1 (y1
i ) for i = 1, . . . , q. Write
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Z = {z1, . . . , zq}, with the zi’s as before. Then, its goal is now to find two lists
U and V of q elements that maximize

λ(U, V, Z) =
∣
∣
{

(u, v, z) ∈ U × V × Z | u ⊕ v = z
}∣
∣ .

Note that, by construction,
q

∑

i=1

|N(y1
i ⊕ y2

i )| = λ(Y 1, Y 2, Z) ≤ max
U,V :|U |=|V |=q

λ(U, V, Z) =: μ(Z) .

We therefore obtain:

P (X ∈ Tbad) ≤ P

(
q

∑

i=1

|N(y1
i ⊕ y2

i )| > C

)

≤ P (μ(Z) > C) .

The problem of bounding μ(Z) appeared before in works on permutation-based
hashing by Mennink and Preneel [23], on digital signatures by Kiltz et al. [17],
and on the security of Even-Mansour by Chen et al. [14]. It is also known as the
“sum-capture problem”. We follow Chen et al. [14, Theorem 1], which in turn
builds upon Babai [3] and Steinberger [13]:

Lemma 3 (Sum-Capture Problem [14]). Let π
$←− Perm(n) be a random

permutation. Let A be some adversary that makes q two-sided adaptive queries to
π, resulting in transcript {(y1

1 , y2
1), . . . , (y1

q , y2
q )}. Write Z = {z1, . . . , zq}, where

zi = y1
i ⊕ y2

i for i = 1, . . . , q. Then, assuming 9n ≤ q ≤ 2n/2,

P
(

μ(Z) > 3q3/2n + 3n1/2q3/2
)

≤ 2
2n

.

We, logically, define C = 3q3/2n + 3n1/2q3/2.

Lower Bounding Ratio P (Y = τ ) /P (X = τ )

Let τ =
(

{(xi, y
1
i , . . . , yk

i )}q
i=1, b

)

∈ Tgood be a good transcript. This particularly
implies that b = � and that the simulator never aborts, and we omit this sym-
bol in the remaining analysis. Note that in the ideal world p1, . . . , pk are ideal
permutations, and P (X = τ) =

∏q
i=1 1/

(

2n − (i − 1)
)k. In the remainder, we

will compute P (Y = τ). For � = 1, . . . , q, we denote by e� the event that the
failed guess in the �th query (if any) does not equal any x1, . . . , xq and has not
occurred before (the same condition was posed by Mandal et al. [2]). We write
E� = e1 ∧ · · · ∧ e�. Clearly,

P (Y = τ) ≥ P (Y = τ ∧ Eq) , (6)

and we focus on the latter probability. Denote τi = (xi, y
1
i , . . . , yk

i ) for i =
1, . . . , q. Similarly for random variable Y , denote by Yi the random variable
corresponding to the ith tuple. We have

P (Y = τ ∧ Eq) =
q

∏

i=1

P
(

Yi = τi ∧ Ei

∣
∣
∣ ∀i−1

j=1Yj = τj ∧ Ei−1

)

︸ ︷︷ ︸

Pi

. (7)

We proceed with the analysis of Pi for i ∈ {1, . . . , q}.
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Forward Query S(xi). Due to attainability of the transcript, xi is distinct of
x1, . . . , xi−1. Additionally, Ei−1 implies that xi has not been queried to R before.
Therefore, the response value R(xi) = y1

i ⊕ · · · ⊕ yk
i is randomly drawn from a

set of size 2n. The values y3
i , . . . , yk

i are all drawn from a set of size 2n − (i − 1).
Finally, y1

i is uniformly randomly drawn from the set (2) which is of size at most
2n − 2(i − 1) + |N(ȳi)|, where ȳi = R(xi) ⊕ y3

i ⊕ . . . ⊕ yk
i . Indeed, the sets

{y1
1 , . . . , y1

i−1} and {ȳi ⊕ y2
1 , . . . , ȳi ⊕ y2

i−1}

have an overlap of at most |N(ȳi)|. For forward queries we thus have

Pi ≥ 1
(

2n − (i − 1)
)k−2

· 1
2n

· 1
2n − 2(i − 1) + |N(ȳi)|

≥ 1
(

2n − (i − 1)
)k

·
(

1 − |N(ȳi)|
2n

)

,

which follows from the fact that (writing B = |N(ȳi)|)
1
2n

· 1
2n − 2(i − 1) + B

=
1

(

2n − (i − 1)
)2 · (2n − (i − 1))2

2n(2n − 2(i − 1) + B)

=
1

(

2n − (i − 1)
)2 ·

(

1 − B

2n
· 2n − (i − 1)2/B

2n − 2(i − 1) + B

)

≥ 1
(

2n − (i − 1)
)2 ·

(

1 − B

2n

)

,

where in the last step we use that 2n − (i − 1)2/B ≤ 2n − 2(i − 1) + B as
(i − 1)2/B − 2(i − 1) + B = (i − 1 − B)2/B ≥ 0.

Finally, as ȳi = y1
i ⊕y2

i by construction, we have B = |N(ȳi)| = |N(y1
i ⊕y2

i )|.

Inverse Query S−1
� (y�

i)(� ∈ {1, . . . , k}). Regarding xi, the simulator may
make 2 trials in order to find a successful x�. For β = 1, 2, denote by succ(β) the
event that attempts 1, . . . , β − 1 failed but attempt β succeeds. Then,

Pi ≥
2∑

β=1

P
(

Yi = τi ∧ Ei ∧ succ(β)
∣
∣
∣ ∀i−1

j=1Yj = τj ∧ Ei−1

)

︸ ︷︷ ︸

Pi,β

. (8)

Now, Pi,β covers the case that (i) the drawings y�+1
i , . . . , y�+k−2

i are all cor-
rect, (ii) the first guess fails (if β = 2), and (iii) the βth succeeds. Firstly,
y�+1

i , . . . , y�+k−2
i are all randomly drawn from a set of size 2n − (i−1). Secondly

(if β = 2), the first guess fails with probability at least
(

1 − (q − (i − 1)) + (i − 1)
2n − (i − 1)

)

· i − 1
2n

,

where the first fraction comes from the number of invalid guesses xi (which
would violate the conditions in ei), and the second fraction is because every
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guess corresponds to a random draw from {0, 1}n (by R) and it fails if R(xi) ∈
{ȳi ⊕ y�−1

1 , . . . , ȳi ⊕ y�−1
i−1}, for ȳi = y�

i ⊕ · · · ⊕ y�+k−2
i . The βth attempt succeeds

with probability
1

2n − (i − 1)
· 1

2n
, where xi is again taken from a set of size

2n − (i − 1) and y�−1
i is defined as the outcome of R. Therefore, from (8):

Pi ≥ 1
(

2n − (i − 1)
)k−1

· 1
2n

·

⎛

⎜
⎜
⎜
⎝

1
︸︷︷︸

β=1

+
2n − q − (i − 1)

2n − (i − 1)
· i − 1

2n

︸ ︷︷ ︸

β=2

⎞

⎟
⎟
⎟
⎠

=
1

(

2n − (i − 1)
)k

· 2n(2n − (i − 1)) + (2n − q − (i − 1))(i − 1)
22n

=
1

(

2n − (i − 1)
)k

·
(

1 − (q + (i − 1))(i − 1)
22n

)

≥ 1
(

2n − (i − 1)
)k

·
(

1 − 2(i − 1)q
22n

)

.

Combination. Combining forward and inverse queries, we find that

Pi ≥ 1
(

2n − (i − 1)
)k

·
(

1 − |N(y1
i ⊕ y2

i )|
2n

− 2(i − 1)q
22n

)

,

and thus, via (6–7):

P (Y = τ) ≥ P (X = τ) ·
q

∏

i=1

(

1 − |N(y1
i ⊕ y2

i )|
2n

− 2(i − 1)q
22n

)

≥ P (X = τ) ·
(

1 −
q

∑

i=1

|N(y1
i ⊕ y2

i )|
2n

−
q

∑

i=1

2(i − 1)q
22n

)

≥ P (X = τ) ·
(

1 −
q

∑

i=1

|N(y1
i ⊕ y2

i )|
2n

− q3

22n

)

.

As τ is a good transcript, we know that
∑q

i=1 |N(y1
i ⊕ y2

i )| ≤ C = 3q3/2n +
3n1/2q3/2, and hence we obtain,

ε =
4q3

22n
+

3n1/2q3/2

2n
. (9)

Conclusion of Proof

Using Lemma 2, the value ε of (9) and Lemma 3 for a bound on the probability
of a bad transcript combine to

Advdiff
fk,S(D) = Advdiff

fk,S(D′) ≤ 4q3

22n
+

3n1/2q3/2

2n
+

2
2n

.

This completes the proof of Theorem 2.
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5 Conclusions

Since their first appearance in [18], XOR constructions have received broad
attention in the cryptographic community [2,9,10,18,28,30]. As a matter of fact,
the security of the XOR construction in the secret permutation setting is well-
studied, as reflected in Table 1, and our proof of Corollary 1 closes the case. On
the other hand, for the more relevant case of security in the public permutation
setting, the only result in this direction [2] claimed 22n/3 security. We pointed
out a bug in their analysis, and also our proof only guarantees security as long
as the number of queries does not exceed this bound.

The original simulator of [2], and more generally the simulator of Sect. 4.1 for
k ≥ 2 is conjectured to allow for security up to q � 2n queries. We expect this to
be a highly non-trivial exercise. Our generalized proof clearly shows the bottle-
neck (in the proof of Mandal [2] this was a bit less clear): while the analysis of the
ratio P (Y = τ) /P (X = τ) and the description of bad transcripts as imposed
by our analysis leaves little room for tightening, the lossiness of the bound seems
to originate from the analysis of P (X ∈ Tbad), or in more detail that the quan-
tity of (5) is bounded by O(q3/2n). The bound we derive on this probability,
however, relies on various well-established results from Fourier theory [3,13,14].

A possible alternative improvement lies in the description of the simulator.
Indeed, the presented simulator is constructed to effectively use two out of k
of its responses to comply with R. It may be possible to generate its responses
so as to minimize the quantity of (5) or a generalized variant thereof. This,
however, leads to a simulator that is significantly harder to analyze, and it may
additionally influence the ratio for good transcripts. We recall that, already for
the case k = 2, optimal security is conjectured.
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