
Partial Key Exposure Attacks on CRT-RSA:
Better Cryptanalysis to Full Size Encryption

Exponents

Atsushi Takayasu(B) and Noboru Kunihiro

The University of Tokyo, Chiba, Japan
a-takayasu@it.k.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

Abstract. There have been several papers which studied the security
of CRT-RSA when some bits of CRT-exponents dp and dq are known
to attackers. At first, Blömer and May (Crypto 2003) proposed attacks
which used the most or the least significant bits of either dp or dq. Next,
Sarkar and Maitra (ACNS 2009) generalized the scenario and proposed
an attack which used the most significant bits of both dp and dq. Recently,
Lu et al. (ACNS 2014) proposed improved attacks for the same scenario
as Blömer and May. These works showed that public RSA modulus can
be factored when e < N3/8, or sizes of unknown bits are less than N1/4.
In this paper, we propose improved attacks when attackers know the
most/least significant bits of dp or/and dq. Unlike previous works, our
attacks work in the same conditions regardless of positions of known
bits; either the most or the least significant bits are not the matter. In
addition, using our attacks, public RSA modulus can be factored even
when an encryption exponent is full size or sizes of unknown bits are less
than N1/3.

Keywords: CRT-RSA · Cryptanalysis · Partial key exposure · Copper-
smith’s method · Lattices

1 Introduction

1.1 Background

CRT-RSA. RSA [RSA78] is one of the most famous cryptosystems and is
widely used. Let N = pq be a public RSA modulus where prime factors p and
q are the same bit size. An encryption exponent e and a decryption exponent
d satisfy ed = 1 mod (p − 1)(q − 1). For encryption/verifying (resp. decryp-
tion/signing), we should calculate the heavy modular exponentiation. To speed
up the calculation, a simple solution is to use a smaller encryption (resp. decryp-
tion) exponent. However, public RSA modulus can be factored in polynomial
time when too small decryption exponent is used. At first, Wiener [Wie90] pro-
posed a polynomial time attack which works when d < N0.25. Boneh and Durfee
[BD00] revisited the attack and improved the bound to d < N0.292 using the
Coppersmith method [Cop96a].
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To thwart the attack and achieve a faster calculation for decryption/signing,
Chinese Remainder Theorem (CRT) is often used as described by Quisquater
and Couvreur [QC82]. Instead of the original decryption exponent d, we use
CRT-exponents dp and dq which satisfy

edp = 1 mod (p − 1) and edq = 1 mod (q − 1).

However, when too small CRT-exponents are used, analogous attacks to [BD00]
have been proposed [May02,GHM05,BM06,JM07,HM10]. Jochemsz and May
[JM07] revealed that public RSA modulus N can be factored in polynomial time
when an encryption exponent is full size, and dp and dq < N0.073. In addition,
CRT-RSA is more vulnerable than standard RSA against fault injection attacks
[BDL97]. To use RSA efficiently and securely, we should analyze the security in
detail.

Partial Key Exposure Attacks on RSA. It is widely known that factoriza-
tion and RSA problems become easy when certain amount of secret information
is known to attackers. When we know the most significant bits of primes fac-
tors, we can factor public RSA modulus N [RS86,Cop95,Cop96b]. Coppersmith
[Cop96b] showed that the half most significant bits of a prime factor suffices to
factor N .

RSA becomes vulnerable also with partial bits of decryption exponent d.
Boneh et al. [BDF98] showed that the most or the least significant bits of a
decryption exponent d enable us to factor public RSA modulus N . Later, several
papers revisited the attack [BM03,EJMW05,Aon09,SGM10,JL12,TK14], and
Ernst et al. [EJMW05] revealed that RSA is vulnerable even for a full size
encryption/decryption exponent against the attack.

Partial Key Exposure Attacks on CRT-RSA. As with standard RSA,
several attacks which use partial information of dp and dq have also been con-
sidered [BM03,SM09,LZL14]. Blömer and May [BM03] proposed attacks when
the most or the least significant bits of either dp or dq are known to attack-
ers. The attacks work when encryption exponent is small, e < N1/4 when the
most significant bits are known and e = poly(log N) when the least significant
bits are known. In addition, the attacks can recover unknown bits which are
less than N1/4. Recently, Lu et al. [LZL14] revisited Blömer and May’s attack
[BM03]. When the most significant bits are known and dp and dq ≈ N1/2, they
cannot improve Blömer and May’s attack. However, for smaller dp and dq, they
improved the previous attack. When the least significant bits are known, they
improved Blömer and May’s result and their attack works when e < N3/8.

Sarkar and Maitra [SM09] generalized partial key exposure attacks on CRT-
RSA. Unlike other previous works [BM03,LZL14], they proposed an attack when
the most significant bits of both dp and dq are known to attackers1. However, the

1 In their paper [SM09], they also used the most significant bits of a prime factor p.
However, we do not consider the additional information in this paper.
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Fig. 1. Recoverable conditions for par-
tial key exposure attacks on CRT-RSA
when the most significant bits of either
dp or dq are known to attackers.

Fig. 2. Recoverable conditions for par-
tial key exposure attacks on CRT-RSA
when the least significant bits of either
dp or dq are known to attackers.

attack is weaker than other attacks [BM03,LZL14] in the sense that the attack
does not work when dp and dq ≈ N1/2 though they used more information than
[BM03,LZL14]. The attack works only for smaller dp and dq.

1.2 Our Contributions

Our Results. In this paper, we study partial key exposure attacks on CRT-
RSA. We propose improved attacks when the most/least significant bits of dp

or/and dq are known. Unlike previous works, the conditions when our attacks
work do not depend on the position of known bits, that is, either the most or
the least significant bits are not the matter.

When we know the most/least significant bits of dp or dq, we improve Blömer
and May’s results [BM03] and Lu et al.’s results [LZL14] for a large encryption
exponent e. As we claimed, our attack works in the same condition regardless
of positions of known bits. Therefore, this is the first result to attack CRT-RSA
when 1/4 ≤ e < N3/8 and the most siginificant bits of either dp or dq are known.
Figures 1 and 2 compares the recoverable ranges by each algorithm when dp and
dq ≈ N1/2. Horizontal axis α represents a size of encryption exponent, α =
logN e. Vertical axis δ represents a size of unknown bits. We obtain improvements
in gray areas. Our improved algorithms can recover larger δ for large α. Note
that we do not compare the bound of Theorem2 by Blömer and May [BM03],
since the algorithm works only for an extremely small encryption exponent e =
poly(log N).

When we know the most significant bits of both dp and dq, we improve
Sarkar and Maitra’s result [SM09]. In addition, we also propose an analogous
attack when the least significant bits of dp and dq are known. Our algorithm
works even when an encryption exponent e is full size and sizes of unknown bits
are less than N1/3. Figure 3 shows the recoverable ranges by our algorithm when
dp and dq ≈ N1/2. We again stress that Sarkar and Maitra’s algorithm does not
work when dp and dq ≈ N1/2. Their algorithm works only for smaller dp and dq.
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Fig. 3. Recoverable conditions for partial key exposure attacks on CRT-RSA when the
most/least significant bits of both dp and dq are known to attackers.

Technical Overview. At Eurocrypt 1996, Coppersmith introduced two lattice-
based methods, (1) to find small roots of modular univariate polynomials [Cop96a]
and (2) to find small roots of bivariate polynomials over the integers [Cop96b].
The methods can be generalized to find small roots with more variables under
heuristic argument. So far, several RSA vulnerabilities have been revealed by using
the methods. See [Cop97,Cop01,NS01,May03,May10] for more information.

Recoverable sizes of roots using the Coppersmith methods depend on two
factors, Newton polygon and a size of a modulus of a polynomial2. The simpler
Newton polygon of a polynomial is, and the larger the size of the modulus is, we
can recover larger roots. To the best of our knowledge, there are no exact criteria
to decide which methods (1) or (2) enable us to recover larger roots. Therefore,
we should use the appropriate method for each problem.

Blömer and May [BM03] and Lu et al. [LZL14] used the method (1). Though
Lu et al.’s first attack (Theorem 4) works under the same condition regardless of
positions of known bits, Blömer and May’s attack (Theorem 1) and Lu et al.’s
second attack (Theorem 5) work for only the case when the most or the least
significant bits are known, respectively. Blömer and May’s attack makes use of
the most significant bits of dp or dq and exploits a modular polynomial with a
simple Newton polygon. Lu et al.’s attack makes use of the least significant bits
of dp or dq and exploits a modular polynomial with a large modulus. Therefore,
these attacks cannot simply be generalized to the other cases when the least or
the most significant bits known, respectively.

In this paper, we use the Coppersmith method (2) for partial key expo-
sure attacks on CRT-RSA. For the attacks, we can consider polynomials with
the same Newton polygon regardless of positions of known bits. Note that the
Newton polygons of these polynomials are the same as that of the polynomials
2 Note that when we use the Coppersmith method (2), we set a suitable modulus

and solve a modular equation. The size of the modulus depends on a size of the
polynomial.
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Ernst et al. [EJMW05] used for partial key exposure attacks on RSA. In addi-
tion, Ernst et al.’s attacks work under the same condition regardless of positions
of known bits, since sizes of polynomials are the same and we can use moduli
for the same sizes. Analogous to Ernst et al.’s results, our partial key expo-
sure attacks on CRT-RSA work in the same conditions regardless of positions of
known bits.

To achieve better bounds when we use the Coppersmith method, it is crucial
to select appropriate lattice bases. Our lattice constructions are based on the
Jochemsz-May strategy [JM06]. The Jochemsz-May strategy is very simple to
understand. Moreover, to the best of our knowledge, there are no results known
which achieve better bounds when we use the Coppersmith method (2). The
finer analyses enable us to obtain better bounds than previous results including
Sarkar and Maitra’s results [SM09] which also use the Coppersmith method (2).

1.3 Organization

In Sect. 2, we introduce tools for the Coppersmith method to find small roots of
multivariate polynomials over the integers, Howgrave-Graham’s Lemma and the
LLL algorithm. Afterward, we explain the Jochemsz-May lattice construction
strategy. In Sect. 3, we define the situations of partial key exposure attacks on
CRT-RSA and summarize previous results [BM03,SM09,LZL14]. In Sect. 4, we
propose our attacks when the most/least significant bits of either dp or dq are
known. In Sect. 5, we propose our attacks when the most/least significant bits
of both dp and dq are known.

2 Preliminaries

In this section, we summarize the Coppersmith method to find small roots of
polynomials over the integers [Cop96b] and the Jochemsz-May strategy for lat-
tice constructions [JM06]. So far, simpler reformulations of the method have
been proposed by Coron [Cor04,Cor07]. In this paper, we introduce Coron’s
reformulation in [Cor04]. Though the method needs larger dimensional lattice
than the other methods [Cop96b,Cor07], is much easier to understand.

For a k-variate polynomial over the integers h(x1, . . . , xk) =
∑

hi1,...,ik
xi1
1

· · · xik

k , we define a norm of a polynomial ‖h(x1, . . . , xk)‖ =
√∑

h2
i1,...,ik

and ‖h(x1, . . . , xk)‖∞ = maxi1,...,ik
|hi1,...,ik

|. To find roots of a polynomial
h(x1, . . . , xk), it suffices to find new k − 1 polynomials which have the same roots
over the integers. We use lj to denote the largest exponent of xj in the polyno-
mial h(x1, . . . , xk). We set a integer m and W ≤ ‖h(x1, . . . , xk)‖∞. Based on the
Jochemsz-May strategy [JM06], we set a integer R := W

∏k
j=1 X

lj(m−1)
j and con-

sider a modular equation h(x1, . . . , xk) = 0 mod R. To derive new polynomials
from the modular equation, we introduce Howgrave-Graham’s Lemma [How97].

Lemma 1 (Howgrave-Graham’s Lemma [How97]). Let h(x1, . . . , xk) ∈
Z[x1, . . . , xk] be a polynomial over the integers, which consists of at most n
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monomials. Let R,X1, . . . , Xk be positive integers. Consider the case that the
polynomial h(x1, . . . , xk) satisfies
1. h(x̃1, . . . , x̃k) = 0 (mod R), where |x̃1| < X1, . . . , |x̃k| < Xk,
2. ‖h(x1X1, . . . , xkXk)‖ < R/

√
n.

Then h(x̃1, . . . , x̃k) = 0 holds over the integers.

To find new polynomials which have the same roots as the original polynomial,
we should find k − 1 new polynomials which have the same roots modulo R and
whose norms are small enough to satisfy Howgrave-Graham’s Lemma.

To find such small polynomials, we use the LLL Algorithm. Let b1, . . . ,bn ∈
Z

d be linearly independent d-dimensional vectors. All vectors are row represen-
tations. The lattice L(b1, . . . ,bn) spanned by the basis vectors b1, . . . ,bn is
defined as L(b1, . . . ,bn) = {∑n

j=1 cjbj : cj ∈ Z}. We also use matrix represen-
tations for lattice bases. A basis matrix B is defined as the n×d matrix that has
basis vectors b1, . . . ,bn in each row. In this representation, a lattice spanned by
the basis matrix B is defined as L(B) = {cB : c ∈ Z

n}. We call n a rank of
the lattice, and d a dimension of the lattice. We call the lattice full-rank when
n = d. In this paper, we only use full-rank lattices. We define a determinant of
a lattice det(L(B)) as det(L(B)) =

√
det(BBT ) where BT is a transpose of B.

A determinant of a full-rank lattice can be computed as det(L) = |det(B)|.
For a cryptanalysis, to find short lattice vectors is a very important problem.

In 1982, Lenstra et al. [LLL82] proposed a polynomial time algorithm to find
short lattice vectors.

Proposition 1 (LLL algorithm [May03]). Given a lattice L spanned by a
basis matrix B ∈ Z

n×n, the LLL algorithm finds new reduced bases b′
1, . . . ,b

′
n

for the same lattice that satisfy

‖b′
j‖ ≤ 2n(n−1)/4(n−j+1)(det(L(B)))1/(n−j+1),

for all j = 1, 2, . . . , n. These norms are all Euclidean norms. The running time
of the LLL algorithm is polynomial time in n and input length.

Based on the Jochemsz-May strategy [JM06], we define a set of shift-
polynomials g and g′ as

g : xi1
1 · · · xik

k · h(x1, . . . , xk)
n∏

j=1

X
lj(m−1)−ij

j for xi1
1 · · · xik

k ∈ S,

g′ : xi1
1 · · · xik

k · R for xi1
1 · · · xik

k ∈ M\S,

for

S := {xi1
1 · · · xik

k |xi1
1 · · · xik

k is a monomial of h(x1, . . . , xk)m−1},

M := {monomials of xi1
1 · · · xik

k · h(x1, . . . , xk) for xi1
1 · · · xik

k ∈ S}.

All these shift-polynomials g and g′ modulo R have the same roots as h
(x1, . . . , xk). We construct a lattice with coefficient vectors of g(x1X1, . . . , xkXk)
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and g′(x1X1, . . . , xkXk) as the bases. Polynomials whose coefficients correspond
to any lattice vectors modulo R also have the same roots as the original roots. By
omitting a small term and Jochemsz and May showed that new k−1 polynomials
obtained by vectors output by the LLL algorithm satisfy Howgrave-Graham’s
Lemma when

k∏

j=1

X
sj

j < W |S| for sj =
∑

x
i1
1 ···xik

k ∈S

ij .

When the condition holds, we can find all small roots.
The above lattice construction is based on the Jochemsz-May basic strategy.

In the extended strategy, we add extra shifts for some variables. We omit the
detail in this section though we use the strategy in the following sections. See
[JM06] for more detailed information.

We should note that the method needs heuristic argument. There are no
assurance if new polynomials obtained by vectors output by the LLL algorithm
are algebraically independent though Coron [Cor04] proved that the original
polynomial and each new polynomial is algebraically independent. In this paper,
we assume that these polynomials are always algebraically independent and
resultants of polynomials will not vanish since there have been few negative
reports which contradict the assumption.

3 Previous Works

3.1 Definitions of Partial Key Exposure Attacks on CRT-RSA

We use α, β to represent the sizes of encryption/CRT exponents, that is, e ≈ Nα

and dp, dq ≈ Nβ . When attackers know some bits of either dp or dq, we call
an attack a single partial key exposure attack on CRT-RSA. Similarly, when
attackers know some bits of both dp and dq, we call an attack a double partial
key exposure attack on CRT-RSA. Without loss of generality, we assume that
attackers know some bits of dp for single cases.

Next, we formulate exposed bits. When attackers know the most significant
bits (MSBs) of dp and dq, we write dp0 and dq0 as partial information. Therefore,
we can rewrite

dp = dp0M + dp1 and dq = dq0M + dq1

with some positive integer M ≈ N δ. Attackers do not know the least significant
bits dp1 and dq1 < N δ. Similarly, when attackers know the least significant bits
(LSBs) of dp and dq, we write dp0 and dq0 as partial information. Therefore, we
can rewrite

dp = dp1M + dp0 and dq = dq1M + dq0

with some positive integer M ≈ Nβ−δ. Attackers do not know the most signifi-
cant bits dp1 and dq1 < N δ.



Partial Key Exposure Attacks on CRT-RSA 525

3.2 Previous Results

Next, we summarize the previous results for single/double MSBs/LSBs partial
key exposure attacks on CRT-RSA which work in polynomial time in log N .

Theorem 1 (Single MSBs [BM03]). Let 0 < α ≤ 1/4. For a single MSBs
partial key exposure attacks on CRT-RSA, when

δ <
1
4

− α,

then public RSA modulus N can be factored in polynomial time.

The algorithm is the best when α is small and β is large.

Theorem 2 (Single LSBs [BM03]). Let e = poly (log N). For a single LSBs
partial key exposure attacks on CRT-RSA, when

δ < β − 1
4
,

then public RSA modulus N can be factored in polynomial time.

In this paper, we do not compare our results with the above result, since the
algorithm works only for an extremely small encryption exponent.

Theorem 3 (Double MSBs Adapted from [SM09]). Let 1/2 − β < α <
5/4−5β/2. For a double MSBs partial key exposure attacks on CRT-RSA, when

δ <
(18 − 36β − 12α)τ2 + (20 − 40β − 16α)τ + 5 − 10β − 4α

24τ3 + 30τ2 + 16τ + 4

holds for some τ ≥ 0, then public RSA modulus N can be factored in polynomial
time.

Theorem 4 (Single MSBs/LSBs [LZL14]). Let 1/2 < α + β < 3/4. For a
single MSBs/LSBs partial key exposure attacks on CRT-RSA, when

(

α + β − 1
2

) (
3
2

− δ − 2

√

α + β − δ − 1
2

)

<
1
8

for 1 −
√

2
4

≤ α + β <
3
4
,

α + β + δ <
1√
2
,

δ

(

2 − α − β − 2

√

δ − α − β +
1
2

)

<
1
8

for
1
2

< α + β ≤ 3
√

2
4

− 1
2
,

then public RSA modulus N can be factored in polynomial time.

The algorithm is the best for the single LSBs attack for small α. Note that the
second condition is valid when 1/2 < α + β ≤ 1/

√
2 and better than the other

conditions when 3
√

2/4 − 1/2 < α + β < 1 − √
2/4.
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Theorem 5 (Single LSBs Adapted from [LZL14]). Let 1/2 < α + β ≤ 7/8.
For a single LSBs partial key exposure attacks on CRT-RSA, when

δ <
5 − 2

√
1 + 6(α + β)

6
,

then public RSA modulus N can be factored in polynomial time.

The algorithm is the best for large α and the first algorithm which works when
1/4 < α ≤ 3/8. Note that the condition of Theorem 5 is slightly worse than that
was written in [LZL14]. Though we omit the detail, thier condition is not valid,
since their analysis implicitly has a restriction for the parameter σ ≤ τ in their
notation and the result does not satisfy the restriction.

4 Single Partial Key Exposure Attacks on CRT-RSA

For single MSBs/LSBs partial key exposure attacks on CRT-RSA, we obtain the
following result.

Theorem 6 (Single MSBs/LSBs). Let 1/2 < α + β ≤ 7/8. For single
MSBs/LSBs partial key exposure attacks on CRT-RSA, when

− 5 + 8(α + β) + 8δ − 12δ2 − 2(1 − 4δ)
√

1 − 4δ < 0,

then public RSA modulus N can be factored in polynomial time.

In this section, we focus on the MSBs case.

Based on the Jochemsz-May Basic Strategy. At first, we start from the
Jochemsz-May basic strategy. It is interesting that the lattice construction yields
the second condition of Theorem 4.

For a single MSBs partial key exposure attack on CRT-RSA, looking at
CRT-RSA key generation,

e(dp0M + dp1) = 1 + �(p − 1),

with some integer � ≈ Nα+β−1/2. We consider a polynomial over the integers

fsMSBs(x, y, z1) := csMSBs + ex + y(z1 − 1)

where csMSBs = 1 − edp0M whose roots are (x, y, z1) = (−dp1 , �, p). If we can
find two polynomials which have the same roots over the integers as fsMSBs, we
can recover the roots. We also use an additional variable z2 = q and the Durfee-
Nguyen technique [DN00] z1z2 = N which Bleichenbacher and May [BM06] and
Lu et al. [LZL14] used to attack CRT-RSA. Sizes of the solutions are bounded
by X := N δ, Y := Nα+β−1/2, Z1 := N1/2, Z2 := N1/2.

We set an integer WsMSBs := Nα+β since ‖fsMSBs(x, y, z1)‖∞ ≥ |csMSBs| ≈
Nα+β . Next, we set an integer Rs1 := WsMSBs(XY )m−1Zm−1−k

1 Zk
2 with
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some integer m and k = ηm with a restriction 0 ≤ η ≤ 1 such that
gcd(csMSBs, Rs1) = 1. We compute asMSBs1 = c−1

sMSBs mod Rs1 and
f ′

sMSBs1(x, y, z1) := asMSBs1 · fsMSBs(x, y, z1) mod Rs1. We define a set of
shift-polynomials gsMSBs1, gsMSBs2 and g′

sMSBs1, g
′
sMSBs2 as

gsMSBs1 : xixyiyz
iz1−k
1 · f ′

sMSBs1(x, y, z1)Xm−1−ixY m−1−iyZ
m−1−iz1
1 Zk

2

for xixyiyz
iz1
1 ∈ Ss1,

gsMSBs2 : xixyiyz
k−iz1
2 · f ′

sMSBs1(x, y, z1)Xm−1−ixY m−1−iyZm−1−k
1 Z

iz1
2

for xixyiyz
iz1
1 ∈ Ss2,

g′
sMSBs1 : xixyiyz

iz1−k
1 · Rs1 for xixyiyz

iz1
1 ∈ Ms1\(Ss1 ∪ Ss2),

g′
sMSBs2 : xixyiyz

k−iz1
2 · Rs1 for xixyiyz

iz1
1 ∈ Ms2\(Ss1 ∪ Ss2),

for

S1 := {xixyiyz
iz1
1 |xixyiyz

iz1
1 is a monomial of f ′

sMSBs1(x, y, z1)
m−1 and iz1 ≥ k},

S2 := {xixyiyz
iz1
1 |xixyiyz

iz1
1 is a monomial of f ′

sMSBs1(x, y, z1)
m−1 and iz1 < k},

M1 := {xixyiyz
iz1
1 |monomials of xi′xyi′yz

i′z1
1 · f ′

sMSBs1(x, y, z1)

for xi′xyi′yz
i′z1
1 ∈ Ss1 ∪ Ss2 and iz1 ≥ k},

M2 := {xixyiyz
iz1
1 |monomials of xi′xyi′yz

i′z1
1 · f ′

sMSBs1(x, y, z1)

for xi′xyi′yz
i′z1
1 ∈ Ss1 ∪ Ss2 and iz1 < k}.

For shift-polynomials gsMSBs2, we eliminate the term z1z2 by using the Durfee-
Nguyen technique z1z2 = N . By definition, the index sets become

Ss1 ⇔ ix = 0, 1, . . . , m − 1 − k; iy = k, k + 1, . . . , m − 1 − ix;
iz1 = k, k + 1, . . . , m − 1 − ix,

Ss2 ⇔ ix = 0, 1, . . . , m − 1; iy = 0, 1, . . . ,m − 1 − ix;
iz1 = 0, 1, . . . ,min{k − 1,m − 1 − ix},

Ms1 ⇔ ix = 0, 1, . . . , m − k; iy = k, k + 1, . . . , m − ix; iz1 = k, k + 1, . . . , m − ix,

Ms2 ⇔ ix = 0, 1, . . . , m; iy = 0, 1, . . . ,m − ix; iz1 = 0, 1, . . . ,min{k − 1,m − ix}.

All these shift-polynomials gsMSBs1, gsMSBs2 and g′
sMSBs1, g

′
sMSBs2 modulo

Rs1 have the roots (x, y, z1, z2) = (−dp1 , �, p, q) which are the same as
fsMSBs(x, y, z1) and the definition of z2. We construct a lattice with coeffi-
cient vectors of gsMSBs1(xX, yY, z1Z1, z2Z2), gsMSBs2(xX, yY, z1Z1, z2Z2) and
g′

sMSBs1(xX, yY, z1Z1, z2Z2), g′
sMSBs2(xX, yY, z1Z1, z2Z2) as the bases. Based

on the Jochemsz-May strategy [JM06], LLL outputs two short lattice vectors
which satisfy Howgrave-Graham’s Lemma when

X
m3
6 +o(m3)Y

m3
3 +o(m3)Z

(1−η)3

6 m3+o(m3)
1 Z

(
η2

2 − η3

6

)
m3+o(m3)

2 < W
m3
6 +o(m3)

sMSBs .
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Ignoring low order terms of m, and the condition becomes

δ · 1
6

+
(

α + β − 1
2

)

· 1
3

+
1
2

·
(

(1 − η)3

6
+

η2

2
− η3

6

)

< (α + β) · 1
6
.

The detailed calculation is discussed later. We optimize the parameter η = 1 −
1/

√
2 which satisfy 0 ≤ η ≤ 1 and obtain the condition,

α + β + δ <
1√
2
.

The condition corresponds to the second condition of Theorem 4.

Based on the Jochemsz-May Extended Strategy. Next, we show our lat-
tice construction based on the Jochemsz-May extended strategy. The lattice
construction enables us to solve the equation fsMSBs(x, y, z1) = 0 for larger
α + β and yields the condition of Theorem6.

We set an integer Rs2 := WsMSBs(XY )m−1Zm−1−k+t
1 Zk

2 with some inte-
gers m, k = ηm and t = τm with restrictions 0 ≤ τ ≤ η ≤ 1 such that
gcd(csMSBs, Rs2) = 1. We compute asMSBs2 and f ′

sMSBs2(x, y, z1) as in the
basic strategy and define a set of shift-polynomials gsMSBs3, gsMSBs4 and
g′

sMSBs3, g
′
sMSBs4 as

gsMSBs3 : xixyiyz
iz1−k
1 · f ′

sMSBs2(x, y, z1)Xm−1−ixY m−1−iyZ
m−1+t−iz1
1 Zk

2

for xixyiyz
iz1
1 ∈ Ss3,

gsMSBs4 : xixyiyz
k−iz1
2 · f ′

sMSBs2(x, y, z1)Xm−1−ixY m−1−iyZm−1−k+t
1 Z

iz1
2

for xixyiyz
iz1
1 ∈ Ss4,

g′
sMSBs3 : xixyiyz

iz1−k
1 · Rs2 for xixyiyz

iz1
1 ∈ Ms3\(Ss3 ∪ Ss4),

g′
sMSBs4 : xixyiyz

k−iz1
2 · Rs2 for xixyiyz

iz1
1 ∈ Ms4\(Ss3 ∪ Ss4),

for

Ss3 :=
⋃

0≤j≤t

{xixyiyz
iz1+j
1 |xixyiyz

iz1
1 is a monomial of f ′

sMSBs2(x, y, z1)m−1

and iz1 ≥ k},

Ss4 :=
⋃

0≤j≤t

{xixyiyz
iz1+j
1 |xixyiyz

iz1
1 is a monomial of f ′

sMSBs2(x, y, z1)m−1

and iz1 < k},

Ms3 := {xixyiyz
iz1
1 |monomials of xi′

xyi′
yz

i′
z1
1 · f ′

sMSBs2(x, y, z1)

for xi′
xyi′

yz
i′
z1
1 ∈ Ss3 ∪ Ss4 and iz1 ≥ k},

Ms4 := {xixyiyz
iz1
1 |monomials of xi′

xyi′
yz

i′
z1
1 · f ′

sMSBs2(x, y, z1)

for xi′
xyi′

yz
i′
z1
1 ∈ Ss3 ∪ Ss4 and iz1 < k}.
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For shift-polynomials gsMSBs4, we eliminate the term z1z2 by using the Durfee-
Nguyen technique z1z2 = N . By definition, the index sets become

Ss3 ⇔ ix = 0, 1, . . . ,m − 1 − k + t; iy = k − t, k − t + 1, . . . , m − 1 − ix;
iz1 = k, k + 1, . . . , m − 1 + t − ix,

Ss4 ⇔ ix = 0, 1, . . . ,m − 1; iy = 0, 1, . . . ,m − 1 − ix;
iz1 = 0, 1, . . . ,min{k − 1,m − 1 + t − ix},

Ms3 ⇔ ix = 0, 1, . . . ,m − k + t; iy = k − t, k − t + 1, . . . , m − ix;
iz1 = k, k + 1, . . . , m + t − ix,

Ms4 ⇔ ix = 0, 1, . . . ,m; iy = 0, 1, . . . ,m − ix;
iz1 = 0, 1, . . . ,min{k − 1,m + t − ix}.

All these shift-polynomials gsMSBs3, gsMSBs4 and g′
sMSBs3, g

′
sMSBs4 modulo

Rs2 have the roots (x, y, z1, z2) = (−dp1 , �, p, q) which are the same as
fsMSBs(x, y, z1) and the definition of z2. We construct a lattice with coeffi-
cient vectors of gsMSBs3(xX, yY, z1Z1, z2Z2), gsMSBs4(xX, yY, z1Z1, z2Z2) and
g′

sMSBs3(xX, yY, z1Z1, z2Z2), g′
sMSBs4(xX, yY, z1Z1, z2Z2) as the bases. Based

on the Jochemsz-May strategy [JM06], LLL outputs two short lattice vectors
which satisfy Howgrave-Graham’s Lemma when XsX Y sY Z

sZ1
1 Z

sZ2
2 < W

|S|
sMSBs

where

sX =
m∑

i=0

m−i∑

j=0

(m − i − j) +
m∑

i=0

t∑

j=1

(m − i) =
(

1
6

+
τ

2

)

m3 + o(m3),

sY =
m∑

i=0

m−i∑

j=0

(i + j) +
m∑

i=0

t∑

j=1

i =
(

1
3

+
τ

2

)

m3 + o(m3),

sZ1 =
m∑

i=s

m−i∑

j=0

(i − s) +
m∑

i=s−t

t∑

j=s−t−i

(i + j − s) =
(1 + τ − η)3

6
m3 + o(m3),

sZ2 =
s∑

i=0

m−i∑

j=0

(s − i) +
s∑

i=0

min{t,s−i}∑

j=1

(s − i − j) =
(

η2

2
− (η − τ)3

6

)

m3 + o(m3),

|S| =
m−1∑

ix=0

m−1−ix∑

iy=0

m−1+t−ix∑

iz1=0

1 =
(

1
6

+
τ

2

)

m3 + o(m3).

Ignoring low order terms of m, the condition becomes

δ ·
(

1
6

+
τ

2

)

+
(

α + β − 1
2

)

·
(

1
3

+
τ

2

)

+
1
2

·
(

(1 + τ − η)3

6
+

η2

2
− (η − τ)3

6

)

< (α + β) ·
(

1
6

+
τ

2

)

.

Let τ = 0 and we can obtain the condition based on the Jochemsz-May basic
strategy. We optimize the parameter η = (1 − 2δ) /2, τ =

(√
1 − 4δ − 2δ

)
/2 and

obtain the condition,
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− 5 + 8(α + β) + 8δ − 12δ2 − 2(1 − 4δ)
√

1 − 4δ < 0.

Note that the restriction τ ≤ η ≤ 1 always holds. The restriction 0 ≤ τ holds
only when δ ≤ 1/

√
2−1/2. However, the condition always holds for α+β > 1/2,

which is the smallest choice of α + β for CRT-RSA.

Single LSBs Partial Key Exposure Attack on CRT-RSA. For a sin-
gle LSBs partial key exposure attack on CRT-RSA, looking at CRT-RSA key
generation,

e(d1M + d0) = 1 + �(p − 1),

with some integer � ≈ Nα+β−1/2. We consider a polynomial over the integers

fsLSBs(x, y, z1) := csLSBs + eMx + y(z1 − 1)

where csLSBs = 1 − ed0 whose roots are (x, y, z1) = (−d0, �, p). We also use an
additional variable z2 = q. Sizes of the solutions are bounded by X := N δ, Y :=
Nα+β−1/2, Z1 := N1/2, Z2 := N1/2.

We set an integer WsLSBs := Nα+β since ‖fsLSBs(x, y, z1)‖∞ ≥ |eMx| ≈
Nα+β . The polynomial fsLSBs(x, y, z1) has the same Newton polygon as
fsMSBs(x, y, z1), and the integers WsMSBs and WsLSBs are the same sizes.
Therefore, we use the same lattice construction as above and obtain the con-
dition of Theorem6.

5 Double Partial Key Exposure Attacks on CRT-RSA

For double MSBs/LSBs partial key exposure attacks on CRT-RSA, we obtain
the following result.

Theorem 7 (Double MSBs/LSBs). Let 1/2 < α + β ≤ 3/2. For double
MSBs/LSBs partial key exposure attacks on CRT-RSA, when

δ <
(18 − 12(α+β))τ2 + (20 − 16(α+β))τ + 5 − 4(α+β)

24τ3+54τ2+40τ + 10
for

15
16

< α + β <
3
2
,

δ <
5 − 4(α + β)

10
,

δ <
(12 − 24(α+β))τ3 + (27 − 30(α+β))τ2 + (20 − 16(α+β))τ + 5 − 4(α+β)

36τ2 + 40τ + 10

for
1
2

< α + β <
15
26

,

hold for some τ > 0, then public RSA modulus N can be factored in polynomial
time.

Note that the second condition is valid when 1/2 ≤ α+β ≤ 5/4 and better than
the other conditions when 15/26 ≤ α + β ≤ 15/16.

In this section, we focus on the MSBs case.
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Based on the Jochemsz-May Basic Strategy. As in a previous section, we
start from the Jochemsz-May basic strategy. The lattice construction yields the
second condition of Theorem 7.

Looking at CRT-RSA key generation,

edp = 1 + �p(p − 1) and edq = 1 + �q(q − 1),

with some integers �p, �q ≈ Nα+β−1/2. We multiply following two equations

edp − 1 + �p = �pp and edq − 1 + �q = �qq,

and obtain

e2dpdq + edp(�q − 1) + edq(�p − 1) − (N − 1)�p�q − (�p + �q − 1) = 0.

For a double MSBs partial key exposure attack on CRT-RSA, we obtain

e2(dp0M + dp1)(dq0M + dq1) + e(dp0M + dp1)(�q − 1)
+e(dq0M + dq1)(�p − 1) − (N − 1)�p�q − (�p + �q − 1) = 0.

We consider a polynomial over the integers,

fdMSBs(x1, x2, y1, y2) = e2x1x2 + (e2dq0M − e)x1 + (e2dp0M − e)x2

+ex1y2 + ex2y1 + (edq0M − 1)y1 + (edp0M − 1)y2
−(N − 1)y1y2 + cdMSBs,

where cdMSBs = e2dp0dq0M
2 − edp0M − edq0M + 1 whose roots are

(x1, x2, y1, y2) = (dp1 , dq1 , �p, �q). Sizes of the roots are bounded by X1 :=
N δ,X2 := N δ, Y1 := Nα+β−1/2, Y2 := Nα+β−1/2.

We set an integer WdMSBs := N2(α+β) since ‖fdMSBs(x1, x2, y1, y2)‖∞ ≥
|(N − 1)y1y2| ≈ N2(α+β). Note that fdMSBs(x1, x2, y1, y2) has the same mono-
mials as the polynomial which Jochemsz and May considered in [JM07]. There-
fore, we use the same lattice construction as [JM07]. We set an integer Rd1 :=
WdMSBs(X1X2Y1Y2)m−1 with some integer m such that gcd(cdMSBs, Rd1) =
1. We compute adMSBs1 = c−1

dMSBs mod Rd1 and f ′
dMSBs1(x1, x2, y1, y2) :=

adMSBs1 · fdMSBs(x1, x2, y1, y2) mod Rd1. We define a set of shift-polynomials
gdMSBs1 and g′

dMSBs1 as

gdMSBs1 : x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2

·f ′
dMSBs1(x1, x2, y1, y2)X

m−1−ix1
1 X

m−1−ix2
2 Y

m−1−iy1
1 Y

m−1−iy2
2

for x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd1,

g′
dMSBs1 : x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · Rd1 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Md1\Sd1,

for

Sd1 := {x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 | x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 is a monomial of

f ′
dMSBs1(x1, x2, y1, y2)m−1},

Md1 := {monomials of x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs1(x1, x2, y1, y2)|
x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd1}.
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By definition, the index sets become

Sd1 ⇔ ix1 = 0, 1, . . . ,m − 1 − iy1 ; ix2 =; 0, 1, . . . ,m − 1 − iy2 ;
iy1 = 0, 1, . . . ,m − 1; iy2 = 0, 1, . . . , m − 1,

Md1 ⇔ ix1 = 0, 1, . . . ,m − iy1 ; ix2 =; 0, 1, . . . ,m − iy2 ; iy1 = 0, 1, . . . ,m;
iy2 = 0, 1, . . . ,m.

Shift-polynomials gdMSBs1 and g′
dMSBs1 modulo Rd1 have the roots

(x1, x2, y1, y2) = (dp1 , dq1 , �p, �q) which are the same as fdMSBs(x1, x2, y1, y2).
We construct a lattice with coefficient vectors of gdMSBs1(x1X1, x2X2,
y1Y1, y2Y2) and g′

dMSBs1(x1X1, x2X2, y1Y1, y2Y2) as the bases. Based on the
Jochemsz-May strategy [JM06], LLL outputs three short lattice vectors which
satisfy Howgrave-Graham’s Lemma when

(X1X2)
5
12m4+o(m4)(Y1Y2)

5
12m4+o(m4) < W

1
4m4+o(m4)

dMSBs .

Ignoring low order terms of m, the condition becomes

δ · 2 · 5
12

+
(

α + β − 1
2

)

· 2 · 5
12

< 2(α + β) · 1
4
,

that is,

δ <
5 − 4(α + β)

10
.

The detailed calculation is discussed later.

Based on the Jochemsz-May Extended Strategy. Next, we show our lat-
tice construction based on the Jochemsz-May extended strategy. The lattice con-
struction enables us to solve the equation fdMSBs(x1, x2, y1, y2) = 0 for larger
α+β and yields the first and the third condition of Theorem7. At first, we show
the lattice construction for the first condition of Theorem7.

We set an integer Rd2 := WdMSBs(X1X2)m−1+t(Y1Y2)m−1 with some inte-
gers m and t = τm such that gcd(cdMSBs, Rd2) = 1. We compute adMSBs2 =
c−1
dMSBs mod Rd2 and f ′

dMSBs2(x1, x2, y1, y2) as in the basic strategy. We define
a set of shift-polynomials gdMSBs2 and g′

dMSBs2 as

gdMSBs2 : x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2

·f ′
dMSBs2(x1, x2, y1, y2)X

m−1+t−ix1
1 X

m−1+t−ix2
2 Y

m−1−iy1
1 Y

m−1−iy2
2

for x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd2,

g′
dMSBs2 : x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · Rd2 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Md2\Sd2,
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for

Sd2 :=
⋃

0≤j1,j2≤t

{x
ix1+j1
1 x

ix2+j2
2 y

iy1
1 y

iy2
2 | x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 is a monomial of

f ′
dMSBs2(x1, x2, y1, y2)m−1},

Md2 := {monomials of x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs2(x1, x2, y1, y2)|
x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd2}.

By definition, the index sets become

Sd2 ⇔ ix1 = 0, 1, . . . ,m − 1 + t − iy1 ; ix2 =; 0, 1, . . . ,m − 1 + t − iy2 ;
iy1 = 0, 1, . . . ,m − 1; iy2 = 0, 1, . . . ,m − 1,

Md2 ⇔ ix1 = 0, 1, . . . ,m + t − iy1 ; ix2 =; 0, 1, . . . ,m + t − iy2 ; iy1 = 0, 1, . . . ,m;
iy2 = 0, 1, . . . ,m.

Shift-polynomials gdMSBs2 and g′
dMSBs2 modulo Rd2 have the roots (x1, x2,

y1, y2) = (dp1 , dq1 , �p, �q) which are the same as fdMSBs(x1, x2, y1, y2). We
construct a lattice with coefficient vectors of gdMSBs2(x1X1, x2X2, y1Y1, y2Y2)
and g′

dMSBs2(x1X1, x2X2, y1Y1, y2Y2) as the bases. Based on the Jochemsz-May
strategy [JM06], LLL outputs three short lattice vectors which satisfy Howgrave-
Graham’s Lemma when3

(X1X2)(τ
2+ 9

4 τ2+ 5
3 τ+ 5

12 )m
4+o(m4)(Y1Y2)(

3
2 τ2+ 5

3 τ+ 5
12 )m

4+o(m4)

< W
(τ2+τ+ 1

4 )m
4+o(m4)

dMSBs .

Ignoring low order terms of m, the condition becomes

δ · 2 ·
(

τ2 +
9
4
τ2 +

5
3
τ +

5
12

)

+
(

α + β − 1
2

)

· 2 ·
(

3
2
τ2 +

5
3
τ +

5
12

)

< 2(α + β) ·
(

τ2 + τ +
1
4

)

,

that is,

δ <
(18 − 12(α + β))τ2 + (20 − 16(α + β))τ + 5 − 4(α + β)

24τ3 + 54τ2 + 40τ + 10
.

The condition becomes the first condition of Theorem 7.
Next, we briefly summarize the lattice construction to yield the third con-

dition of Theorem7. This is the almost the same as the lattice construction
described above except we add extra-shifts to y1 and y2 instead of x1 and x2.

To solve the equation fdMSBs(x1, x2, y1, y2) = 0, we set an integer Rd3 :=
WdMSBs(X1X2)m−1(Y1Y2)m−1+t with some integer m and t = τm such
3 In this paper, we omit the calculation since that is the same as [JM07]. See the paper

for detailed calculation.
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that gcd(cdMSBs, Rd3) = 1. We compute adMSBs3 = c−1
dMSBs mod Rd3 and

f ′
dMSBs3(x1, x2, y1, y2) := adMSBs3fdMSBs(x1, x2, y1, y2) mod Rd3. We define a

set of shift-polynomials gdMSBs3 and g′
dMSBs3 as

gdMSBs3 : x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2

·f ′
dMSBs3(x1, x2, y1, y2)X

m−1−ix1
1 X

m−1−ix2
2 Y

m−1+t−iy1
1 Y

m−1+t−iy2
2

for x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd3,

g′
dMSBs3 : x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · Rd3 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Md3\Sd3,

for

Sd3 :=
⋃

0≤j1,j2≤t

{x
ix1
1 x

ix2
2 y

iy1+j1
1 y

iy2+j2
2 | x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 is a monomial of

f ′
dMSBs3(x1, x2, y1, y2)m−1},

Md3 := {monomials of x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs3(x1, x2, y1, y2)|
x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd3}.

By definition, the index sets become

Sd3 ⇔ ix1 = 0, 1, . . . , m − 1 − iy1 ; ix2 =; 0, 1, . . . ,m − 1 − iy2 ;
iy1 = 0, 1, . . . , m − 1 + t; iy2 = 0, 1, . . . ,m − 1 + t,

Md3 ⇔ ix1 = 0, 1, . . . , m − iy1 ; ix2 =; 0, 1, . . . ,m − iy2 ; iy1 = 0, 1, . . . ,m + t;
iy2 = 0, 1, . . . , m + t.

Shift-polynomials gdMSBs3 and g′
dMSBs3 modulo Rd3 have the roots (x1, x2,

y1, y2) = (dp1 , dq1 , �p, �q) which are the same as fdMSBs(x1, x2, y1, y2). We
construct a lattice with coefficient vectors of gdMSBs3(x1X1, x2X2, y1Y1, y2Y2)
and g′

dMSBs3(x1X1, x2X2, y1Y1, y2Y2) as the bases. Based on the Jochemsz-May
strategy [JM06], LLL outputs three short lattice vectors which satisfy Howgrave-
Graham’s Lemma when

(X1X2)(
3
2 τ2+ 5

3 τ+ 5
12 )m4+o(m4)(Y1Y2)(τ2+ 9

4 τ2+ 5
3 τ+ 5

12 )m4+o(m4)

< W
(τ2+τ+ 1

4 )m4+o(m4)

dMSBs .

Ignoring low order terms of m, the condition becomes

δ · 2 ·
(

3
2
τ2 +

5
3
τ +

5
12

)

+
(

α + β − 1
2

)

· 2 ·
(

τ2 +
9
4
τ2 +

5
3
τ +

5
12

)

< 2(α + β) ·
(

τ2 + τ +
1
4

)

,

that is,

δ <
(12 − 24(α+β))τ3+(27 − 30(α+β))τ2+(20 − 16(α+β))τ +5 − 4(α+β)

36τ2 + 40τ + 10
.

The condition becomes the third condition of Theorem7.
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Double LSBs Partial Key Exposure Attack on CRT-RSA. As above,
we can obtain the following equation

e2dpdq + edp(�q − 1) + edq(�p − 1) − (N − 1)�p�q − (�p + �q − 1) = 0,

from CRT-RSA key generations. For a double LSBs partial key exposure attack
on CRT-RSA, we obtain

e2(dp1M + dp0)(dq1M + dq0) + e(dp1M + dp0)(�q − 1)
+e(dq1M + dq0)(�p − 1) − (N − 1)�p�q − (�p + �q − 1) = 0.

We consider a polynomial over the integers,

fdLSBs(x1, x2, y1, y2) = e2M2x1x2 + (e2dq0 − e)Mx1 + (e2dp0 − e)Mx2

+eMx1y2 + eMx2y1 + (edq0 − 1)y1 + (edp0 − 1)y2
−(N − 1)y1y2 + cdLSBs,

where cdLSBs = e2dp0dq0 − edp0 − edq0 + 1 whose roots are (x1, x2, y1, y2) =
(dp1 , dq1 , �p, �q). Sizes of the roots are bounded by X1 := N δ,X2 := N δ, Y1 :=
Nα+β−1/2, Y2 := Nα+β−1/2.

We set an integer WdLSBs := N2(α+β) since ‖fdLSBs(x1, x2, y1, y2)‖∞ ≥
|e2M2x1x2| ≈ N2(α+β). The polynomial fdLSBs(x1, x2, y1, y2) has the same New-
ton polygon as fdMSBs(x1, x2, y1, y2), and the integers WdMSBs and WdLSBs

are the same sizes. Therefore, we use the same lattice construction as above and
obtain the condition of Theorem 7.
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