
Accumulable Optimistic Fair Exchange
from Verifiably Encrypted Homomorphic

Signatures

Jae Hong Seo1(B), Keita Emura2, Keita Xagawa3, and Kazuki Yoneyama4

1 Myongji University, Seoul, South Korea
jaehongseo@mju.ac.kr
2 NICT, Tokyo, Japan
k-emura@nict.go.jp

3 NTT Secure Platform Laboratories, Tokyo, Japan
xagawa.keita@lab.ntt.co.jp

4 Ibaraki University, Ibaraki, Japan
kazuki.yoneyama.sec@ibaraki.ac.jp

Abstract. Let us consider a situation where a client (Alice) frequently
buys a certain kind of product from a shop (Bob) (e.g., an online music
service sells individual songs at the same price, and a client buys songs
multiple times in a month). In this situation, Alice and Bob would like
to aggregate the total transactions and pay once per month because
individual payments are troublesome. Though optimistic fair exchange
(OFE) has been considered in order to swap electronic items simul-
taneously, known OFE protocols cannot provide such aggregate func-
tion efficiently because various costs are bounded by the number of
transactions in the period. In order to run this aggregation procedure
efficiently, we introduce a new kind of OFE called Accumulable OFE
(AOFE) that allows clients to efficiently accumulate payments in each
period. In AOFE, any memory costs, computational costs, and commu-
nication complexity of the payment round must be constant in terms of
the number of transactions. Since a client usually has just a low power
and poor memory device, these efficiency are desirable in practice. Cur-
rently known approaches (e.g., based on verifiably encrypted signature
scheme) are not very successful for constructing AOFE. Thus, we con-
sider a new approach based on a new cryptographic primitive called ver-
ifiably encrypted homomorphic signature scheme (VEHS). In this paper,
we propose a generic construction of AOFE from VEHS, and also present
a concrete VEHS scheme over a composite-order bilinear group by using
the dual-form signature techniques. This VEHS scheme is also of inde-
pendent interest. Since we can prove the security of VEHS without ran-
dom oracles, our AOFE protocol is also secure without random oracles.
Finally, we implemented our AOFE protocol, and it is efficient enough for
practical use.

Keywords: Optimistic fair exchange · Homomorphic signatures ·
Verifiably encrypted signatures

c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 192–214, 2015.
DOI: 10.1007/978-3-319-28166-7 10

Accumulable Optimistic Fair Exchange 193

1 Introduction

In a real trade, a buyer and a seller can exchange goods and money simulta-
neously in a physical way. Conversely, it is difficult to swap electronic items
simultaneously because exchange is usually done through an asynchronous net-
work such as the Internet. Then, a client, Alice, must send her e-cash before
receiving an item from a shop, Bob. If Bob is malicious, Bob can abscond with
the e-cash without sending the item. Thus, to prevent such a malicious Bob, the
fairness is considered as one of the most important requirements for electronic
commerce.

Protocols that provide the fair exchange of electronic items are called fair
exchange (FE) protocols. FE protocols are roughly classified into two types:
those with or without a trusted third party (TTP). An FE protocol without
TTP, for example, a gradual release protocol [1–3], is far from practical in terms
of communication complexity because the secret must be divided and sent grad-
ually. FE with TTP can be achieved efficiently, but in-line [4,5] or on-line [6,7]
TTP protocols are also not practical in a sense because TTP must be involved
in all sessions in order to relay transactions between parties. Optimistic FE
(OFE) [8–14] is the best of both worlds. Most OFE protocols have the following
form; first, Alice sends a partial signature, which is a kind of a contract; that is,
a valid partial signature itself is not evidence of payment. Next, Bob sends an
item or a signature. Finally, Alice sends a full signature, which is like a check;
that is, Bob can cash a valid full signature. When Bob does not receive the full
signature from Alice after he sends the item, Bob can obtain the full signature
from a TTP, called an adjudicator. The adjudicator has the power to convert
the valid partial signature into a valid full signature. That is, the adjudicator
does not need to participate in a session as long as the protocol is executed as
usual.

1.1 Motivation

Let us consider a situation where Alice frequently buys a certain kind of product
from Bob. For example, an online music service sells individual songs at the same
price, and a client buys songs multiple times in a month. Another example is
an online game; that is, exchanging in-game currency or virtual goods for real
money. In these situations, it would be much desirable to allow Alice and Bob
to aggregate the total transactions and pay once per month than individual
payments if possible.

For the above application, Alice and Bob can perform OFE; both would
repeatedly run k ≤ n sessions to exchange k partial signatures and k items, and
Alice finally sends k full signatures in parallel at the end of a period, where k
denotes the number of transactions between Alice and Bob and n be the max-
imum number of transactions. Although the ordinary OFE could be successful
(for fairness) in several applications including the above, we point out that the
OFE would be suffered from its linear complexity in k; that is, it is not well
scalable in terms of k. More precisely,

194 J.H. Seo et al.

– In terms of memory (RAM) for full signatures: Alice needs to keep k full
signatures if she finally sends k full signatures at the end of the period; Of
course, Alice can use an external storage unit to store intermediate state
information (e.g., messages, signatures, and public keys) for each transaction,
but she must send all k full signatures to Bob at the end of the period;
that is, the required RAM size depends on k. In particular, clients may only
have a device with an insufficient RAM, so that small memory requirement is
desirable.
For Bob, since he is required to receive and verify all full signatures at the
end of the period, the required RAM size also depends on k.

– In terms of computation for verification: Since k full signatures are sent by
Alice, Bob needs to perform verification algorithm k times individually at the
end of the period. Furthermore, Bob (shop) has many clients besides Alice,
and so he will be very busy to verify all full signatures given by several clients
at the end of the period.

– In terms of communication for sending signatures: At the end of the period,
Alice and Bob exchange all k full signatures. The network bandwidth of Bob
will be stringent at the end of the period since all clients send all their full
signatures at the almost same time.

The more frequent the transactions become (i.e., k and n become larger), the
more these costs cause the protocol to be impractical. Thus, it is desirable to
reduce these costs by accumulating full signatures, and we need an OFE protocol
to achieve it. Here, we call this special OFE accumulable OFE (AOFE).

Küpçü and Lysyanskaya [15] introduced an OFE protocol (called useful OFE)
as a partial solution. In their protocol, exchange of k items is solved by k times
repetition of cheap computations, and heavy computations are executed only
once within a period. However, if the resolution by the adjudicator is done at
the end of the period, Alice and Bob must send all unresolved signatures; and
thus, the memory problem remains.

1.2 This Work

We propose the first AOFE protocol. The main building block is a new primitive
called verifiably encrypted homomorphic signature scheme (VEHS). This paper
pioneers a new application of a homomorphic signature scheme (HS), that differs
from known applications involving network coding [16] and public computation
on authenticated data [17]. Our AOFE protocol is categorized as setup-free1 and
stand-alone,2 which are desirable properties [18].

Verifiably Encrypted Signatures. A typical construction of OFE is based on
a verifiably encrypted signature (VES) scheme such as [19–23]. The structure of
1 We say an OFE protocol is setup-free if the client does not need to contact the

adjudicator except when receiving and verifying the public key certificate of the
adjudicator.

2 We say an OFE protocol is stand-alone if the full signature is an ordinary signature.

Accumulable Optimistic Fair Exchange 195

a VES scheme is such that a signer generates an encrypted signature ω, a verifier
can check the validity of ω but not decrypt it, and the adjudicator can decrypt
ω and output an ordinary signature σ.3 Thus, it is compatible with OFE when
replacing the signer with the client, the verifier with the shop, the encrypted
signature with the partial signature, and the ordinary signature with the full
signature. Dodis et al. [12] showed a generic construction of OFE from a VES
scheme.4 We basically follow this paradigm. However, if we simply apply this
paradigm, it seems not easy to achieve AOFE because ordinary VES schemes
do not support a mechanism to accumulate k full signatures. We solve the prob-
lem by using a special type of VES which has an accumulation functionality of
signatures.

Why Homomorphic Signatures? In order to construct a VES scheme with
such an accumulation functionality, a naive idea is to use aggregate signature
(AS) or multi-signature (MS). Originally, these signatures do not match the
situation of AOFE (i.e., accumulating full signatures of a signer) because AS
and MS are used to accumulate signatures of different signers. Thus, we need a
special AS or MS that works correctly and is still secure even if all signatures
are generated by the same signer. Though some sequential AS schemes [20,
21,25,26] can match this purpose, however, it is not clear whether such the
sequential aggregating property can be implemented over encrypted signatures.
Since Bellare et al. [27] showed that the BGLS AS [20] can be used without any
restriction when the signer’s public key is appended to each signed message, and
the aggregating property is preserved for encrypted signatures in the BGLS AS.
Also, history-free AS [28] can preserve the aggregating property due to history-
freeness. However, the BGLS AS and all known constructions of history-free
AS rely on random oracle (RO) heuristics, and therefore we may also require
a RO even if we can construct a VES based on such schemes. Although RO
model schemes have better performance in many cryptographic areas, there are
evidences to show the riskiness of schemes with security proofs only in the RO
model [29]. Though, Hohenberger et al. [30] propose a technique to remove ROs
with multi-linear maps and the technique could be used for the above ASs, there
is no known practical construction of multi-linear maps. From the above reasons,
we do not select AS or MS schemes to create (verifiably) encrypted signatures
according to the VES setting.
3 As an example, let us consider the Waters signature scheme [24] with public key

x = gα and secret key hα and the corresponding VES scheme [21]. Let σ = (σ1, σ2) =
(hα · H(m)r, gr) for random r be an ordinary signature. Let apk = y = gβ be the
adjudicator’s public key. Then, we define ω = (ω1, ω2, ω3) = (σ1 · yt, σ2, g

t) for
random t. The verfication of an encrypted signature checks if e(ω1, g) = e(h, x) ·
e(H(m), ω2) · e(y, ω3) or not.

4 Correctly speaking, they constructed OFE from EUF-CMA secure signature, IND-
CCA secure public-key encryption, and simulation-sound non-interactive zero-
knowledge proof system, which yield a VES scheme.

196 J.H. Seo et al.

We consider HS as a candidate for accumulating signatures. HS allows one to
compute linear combinations of given signatures with only public information.
The key observation here is that it is possible to accumulate homomorphic sig-
natures by linearly combining them, where messages are of special form so that
one can recover each message from a linear combination of them. Also, Alice
can accumulate signatures during the period so that she needs only small RAM
to compute an accumulated signature. Moreover, we can achieve homomorphic
property over encrypted signatures thanks to a homomorphic encryption such
as the ElGamal encryption. Therefore, HS could be a good candidate to attain
scalability for VES (and OFE also) in terms of the number of transactions k.

Our Contribution. In this paper, we propose a generic method to construct
an AOFE protocol based on a VEHS scheme, and also propose a concrete VEHS
scheme based on composite-order bilinear groups by using the dual-form signa-
ture technique [31,32]. By applying our AOFE protocol, we can achieve that any
computational costs of parties and communication complexity of the payment
round are constant in terms of k. Moreover, the required RAM space is also
constant in terms of k. We describe some technical details of this work.

Security Model of AOFE. We extend the model of OFE in the multi-user set-
ting [12] by introducing algorithms for accumulation of signatures and partial
signatures, Acc and PAcc, respectively. We consider three security requirements
for clients, shops, and the adjudicator, respectively. The security against clients
means that a client cannot produce valid partial signatures such that the veri-
fication of the full signature (derived from partial signatures) is not valid. The
security against shops means that a shop cannot produce a valid full signature
that the adjudicator does not give all ordinary signatures to the shop. The secu-
rity against the adjudicator means that the adjudicator cannot produce a valid
full signature for which the client has not given all partial signatures to the
adjudicator.

Security Model of VEHS. Formulating a reasonable security model for VEHS is
not a trivial matter, and there exists a subtle issue which is not captured by just
simply combining security models of VES and HS. Secure VEHS must satisfy
unforgeability and opacity : Unforgeability guarantees that no adversary can pro-
duce a valid encrypted signature which is not generated by the signer. Opacity
guarantees that no adversary can produce a valid ordinary signature which is
not generated by the adjudicator or the signer. Note that both unforgeability
and opacity must be relaxed in the VEHS setting because linear combinations
of valid signatures are not regarded as a forgery as they are in the HS setting.
Such a complicated situation does not occur with VES and HS. See Sect. 3 for
details.

Construction of VEHS. Several types of HS have been studied in the pioneering
works [33,34], for example, pairing-based constructions [16,17,35–38], lattice-

Accumulable Optimistic Fair Exchange 197

based constructions [39,40], an RSA-based construction [41], a multi-source set-
ting [42], and a homomorphic message authentication code [43]. In this paper,
we use the composite-order pairing groups for the following technical reason; in
the security proof, we must construct a simulator (which solves a hard problem)
from an adversary of VEHS. As mentioned above, opacity captures the case
where the adversary might forge an ordinary signature of a linear combination
of the messages of which the adversary already obtains the encrypted signatures
and ordinary signatures. If we use known HS schemes in the prime-order pairing
groups, the simulator must guess which messages the adversary uses to forge.
However, there are exponentially many combinations of messages; thus, the sim-
ulator cannot work. (We will discuss this point in detail in the full version.)
On the other hand, if we use HS schemes in the composite-order pairing groups
such as the ALP12 signature [17], the simulator does not need to guess messages
thanks to the dual-form signature technique [31,32]. This technique allows the
simulator to proceed with the simulation while keeping the signing key as long
as possible. Fortunately, we can avoid the guessing problem by exploiting this
simulation.

According to the classical design principle of VES on the pairing groups,
we extend the ALP12 signature to the VES setting; that is, an encrypted sig-
nature ω is obtained by encrypting an ordinary signature σ with the ElGamal
encryption. We prove that our VEHS scheme is secure in the proposed model
under assumptions in [17,44] without ROs. Though the original security proof
of the ALP12 signature does not consider opacity, we show that the special sit-
uation of opacity is also solved by applying the dual-form signature technique.
We finally note that encrypted signatures can also be accumulated thanks to the
homomorphism of the ElGamal encryption.

AOFE from VEHS. The design is more complicated than constructing OFE
from VES. There are two challenging problems; one is how to encode messages,
and the other is how to handle sessions.

For simplicity, we begin with a slightly restricted setting that a single kind
of items is sold with a single rate in a period (e.g., the on-line music store which
sells singles). This setting helps to understand the essential design principle of
our construction. After that, we show an extension to the general setting (i.e.,
items and rates are variable).

For the first problem, we use a vector-representation of the transaction flag
as a message. For example, unit vectors (1, 0, . . . , 0) and (0, 1, 0, . . . , 0) ∈ Z

n
N are

signed for the first and second transactions in a period, respectively, and the
accumulated signature corresponds to (1, 1, 0, . . . , 0), where n is the maximum
number of transactions in a period and N is an integer. Such an encoded vector
is called a properly augmented vector [37,45]. Bob can cash the accumulated
signature as the full signature according to the Hamming weight of the cor-
responding message: For example, Alice’s signature on (1, 1, 0, . . . , 0) indicates
that Alice buys two items in the period.) This prevents reuse of a valid signature
because reuses can be detected by checking if the message vector contains values
other than 0 and 1. Attacks except for reuse attacks are prevented thanks to

198 J.H. Seo et al.

the unforgeability and opacity of the underlying VEHS. Note that such a mes-
sage representation does not contain information of items because the amount of
money of the item is fixed, and such information is contained in a file identifier.

For the second problem, we use a file identifier τ which is contained in the
models of HS and VEHS inherently. τ is used to control the range of linear
combination operations that are allowed. If τ is the same for two signatures,
signatures can be accumulated. Otherwise, signatures cannot be accumulated.
In our AOFE protocol, τ contains identities of a client and a shop (e.g., Alice and
Bob), the name and amount of money of an item, and a period of time. Hence,
accumulation is possible only for transactions between Alice and Bob for the
item in the period, and is prevented for other cases. This ensures security in the
multi-user setting, as in [12]. Since a shop does transactions with multiple clients
in the same period, security in the multi-user setting is a realistic situation. Note
that it is known that security in the single-user setting does not imply security in
the multi-user setting [12]. Additionally, we consider more general settings such
as when Alice can choose an item from multiple items with a specific amount of
money for each transaction, and show a concrete construction.

Our VEHS scheme has O(n) size of public parameters where n is the maxi-
mum number of transactions in a period. Hence, Alice and Bob need O(n) size
of storages to store public parameters. As mentioned in Sect. 1.1, Alice uses her
RAM space by taking necessary information out from the storage. In our instan-
tiation, computation of Alice in each transaction and the end of a period only
needs a constant number of contents of public parameters (i.e., each signing needs
one of {hi}i∈[n]). For example, a message (1, 1, . . . , 0) ∈ Z

n
N will be mapped to a

single group element h1h2. Thus, our instantiation certainly solves the memory
problem. We show an implementation result of our AOFE protocol based on
our VEHS scheme in the full version. Though schemes in the composite-order
pairing groups usually require a high computational cost, our implementation
result shows that our VEHS scheme is efficient enough for practical use.

We also give a way to extend the restricted setting to more general setting
such that Alice can choose an item from multiple items with distinct amount
of money for each transaction. To deal with distinct values we add a message
mi (for the i-th transaction) representing an amount of money and name of
an item to the message vector. We extend the properly augmented vector to
(0, . . . , 1, . . . , 0, 0, . . . ,mi, . . . , 0) where the last half elements are added for con-
taining mi. The first half elements guarantee secure accumulation as our con-
struction with the restricted setting. In the general setting, file identifier τ just
contains identities of a client and a shop (e.g., Alice and Bob), and a period of
time because the name and the amount of money may change for each period.

Organization. We define AOFE and VEHS in Sects. 2 and 3, respectively.
We construct AOFE from VEHS in Sect. 4. We finally construct VEHS in the
composite-order pairing groups in Sect. 5.

Accumulable Optimistic Fair Exchange 199

2 Definitions of Accumulable Optimistic Fair Exchange

In this section, we define the syntax of AOFE and its security requirements.
An AOFE protocol involves four kinds of parties, clients, shops, an adjudi-

cator, and a trusted party. (We here divide a TTP into an adjudicator and a
trusted party that generates only a public parameter.) Roughly, an AOFE pro-
tocol is executed as follows: A trusted party generates a public parameter which
will be used in every participants in the protocol. Clients and the adjudicator
generate their/its key pairs. A client and a shop run the protocol as follows: First,
for i-th session of a period, the client generates a partial signature ω(i) and an
ordinary signature σ(i) on a message mi and sends (ω(i),mi) to the shop. The
client can also accumulate messages and ordinary signatures to an accumulated
message and an accumulated ordinary signature in order to reduce the memory
cost. Then, the shop verifies ω(i) and sends an item corresponding to mi to the
client. The shop can also accumulate messages and partial signatures to an accu-
mulated message and an accumulated partial signature in order to reduce the
memory cost. In the end of the period, the client sends the accumulated ordinary
signature as the full signature to the shop. The shop verifies the full signature,
and he can cash a check if the full signature is correct. Otherwise, the shop asks
the resolution to the adjudicator by sending the accumulated message and the
accumulated partial signature. The adjudicator verifies them and produces the
full signature from the accumulated partial signature.

We note that we formulate a model of AOFE by extending the model of OFE
in the multi-user setting [12].

First, we define the syntax of AOFE.

Definition 2.1 (Syntax of AOFE)

OFE.Setup(1κ): This probabilistic algorithm is run by the trusted third party.
It takes security parameter 1κ as input and outputs public parameters pp.
Hereafter, we omit the public parameter pp from the arity of algorithms.

OFE.AdjGen(1κ): This probabilistic algorithm takes as input security parameter
1κ and outputs a pair of keys for an adjudicator (apk, ask).

OFE.Gen(1κ): This probabilistic algorithm takes as input security parameter 1κ,
and outputs a verification/signing key pair (vkj , skj) for a user j.

OFE.Sign(skj , apk,m, aux): This probabilistic algorithm takes as input signing
key skj, apk,5 message m to be signed and some session information aux,6

and outputs an ordinary signature σ.
OFE.Vrfy(vkj , apk,m, σ, aux): This deterministic algorithm takes as input vkj,

apk, m, σ and aux, and outputs 1 if σ is valid, and 0 otherwise.
PSign(skj , apk,m, aux): This probabilistic algorithm takes as input skj, apk, m

and aux, and outputs a partial signature ω.
PVrfy(vkj , apk,m, ω, aux): This deterministic algorithm takes as input vkj, apk,

m, ω and aux, and outputs 1 if ω is valid, and 0 otherwise.
5 apk is not always used. However, since the definition of OFE.Sign in OFE [12] contains
apk, we adopt the same formulation.

6 For example, session information contain the current period, and identities of parties.

200 J.H. Seo et al.

Acc(vkj , apk, {mi, σ
(i)}�

i=1, aux): This probabilistic algorithm takes as input vkj,
apk, {mi, σ

(i)} and aux, where σ(i) is an ordinary signature on mi under vkj

and apk, and outputs an ordinary signature σ on
∑�

i=1 mi under vkj and
apk.

PAcc(vkj , apk, {mi, ω
(i)}�

i=1, aux): This probabilistic algorithm takes as input vk,
apk, {mi, ω

(i)} and aux, where ω(i) is a partial signature on mi under vkj

and apk, and outputs a partial signature ω on
∑�

i=1 mi under vkj and apk.
Res(ask, apk, vkj ,m, ω, aux): This (possibly) probabilistic algorithm takes as input

ask, apk, vkj, m, ω and aux, and outputs an ordinary signature σ on m under
vkj if PVrfy(vkj , apk,m, ω, aux) = 1.

Correctness of AOFE must guarantee that an accumulated signature from
valid partial signatures is always acceptable as well as correctness of ordinary
OFE.

Definition 2.2 (Correctness). We say that AOFE satisfies correctness if the
following conditions are satisfied: For all κ ∈ N, all pp ← OFE.Setup(1κ), all
(apk, ask) ← OFE.AdjGen(1κ), all (vkj , skj) ← OFE.Gen(1κ), all � ∈ N, all
m,mi ∈ M for i = 1, . . . , �, and all aux ∈ {0, 1}∗,

1. OFE.Vrfy
(
vkj , apk,m,OFE.Sign(skj , apk,m, aux), aux

)
= 1,

2. OFE.Vrfy
(
vkj , apk,

∑�
i=1 mi,Acc(vkj , apk, {mi,OFE.Sign(skj , apk,mi,

aux)}�
i=1, aux), aux

)
= 1,

3. PVrfy
(
vkj , apk,m,PSign(skj , apk,m, aux), aux

)
= 1,

4. PVrfy
(
vkj ,apk,

∑�
i=1 mi,PAcc(vkj , apk, {mi,PSign(skj , apk,mi, aux)}�

i=1, aux),
aux

)
= 1,

5. OFE.Vrfy
(
vkj ,apk,m,Res(ask, apk, vkj ,m,PSign(skj , apk,m, aux), aux), aux

)
=1,

6. and OFE.Vrfy
(
vkj ,apk,

∑�
i=1 mi,Res(ask,apk, vkj ,

∑�
i=1 mi,PAcc(vkj ,apk, {mi,

PSign(skj , apk,mi, aux)}�
i=1, aux), aux), aux

)
= 1.

The ambiguity property guarantees that the resolved signature from a par-
tial signature is indistinguishable from the real signature corresponding to the
partial signature. In practice, the ambiguity property is necessary to hide if the
transaction has some trouble between a client and a shop. We note that the
client who causes a trouble in a transaction with a shop should still keep to par-
ticipate with a transaction with other shops as in the real world and the shop
will hope to avoid that the bank knows if the ordinary signature is obtained from
the adjudicator, on cashing a check.

Definition 2.3 (Ambiguity [46]). We say that AOFE satisfies ambiguity if
any resolved signature Res(ask, apk, vkj ,m, PSign(skj , apk,m, aux), aux) (resp.
Res(ask, apk, vkj ,

∑�
i=1 mi,PAcc(vkj , apk, {mi, PSign(skj ,apk,mi, aux)}�

i=1, aux),
aux)) is computationally indistinguishable from the real signature OFE.Sign(skj ,
apk,m, aux) (resp. Acc(vkj , apk, {mi,OFE.Sign(skj , apk,mi, aux)}�

i=1, aux)).

Next, we consider the security model for AOFE. The model contains three
requirements: security against clients, security against shops, and security
against the adjudicator.

Accumulable Optimistic Fair Exchange 201

The security against clients means that a client cannot produce valid partial
signatures from which the verification of the full signature derived is not valid.

Definition 2.4 (Security against Clients). We say that an AOFE scheme
satisfies security against clients if no PPT adversary E has a non-negligible
advantage (as a function of κ) in the following game:

1. Adversary E is given pp and apk, where pp ← OFE.Setup(1κ) and (apk, ask) ←
OFE.AdjGen(1κ).

2. E is allowed to issue queries to the following oracle:
Resolution oracle: This oracle receives verification key vkj, message m,

partial signature ω and aux. It verifies PVrfy(vkj , apk,m, ω, aux) = 1,
and returns ordinary signature σ ← Res(ask, apk, vkj ,m, ω, aux) to the
adversary.

3. Finally, E outputs ({m∗
i , ω

(i)∗}�
i=1, vkE, aux

∗). We say that E wins if for i = 1
to �, PVrfy(vkE, apk, m∗

i , ω
(i)∗, aux∗) = 1, σ(i)∗ ← Res(ask, apk, vkE,m∗

i , ω
(i)∗,

aux∗) and OFE.Vrfy(vkE, apk,
∑�

i=1 m∗
i , Acc(vkE, apk, {m∗

i , σ
(i)∗}�

i=1, aux
∗),

aux∗) = 0.

The advantage of E is defined as AdvOFE.Client
E (κ) := Pr[E wins].

E can select arbitrary verification key vkE for a client to attack. Thus, this def-
inition is for the multi-user setting as [12], and captures the situation that E
generates vkE without obeying OFE.Gen (i.e., there exists no corresponding sign-
ing key skE).

The security against shops means that no shop can produce a valid full
signature unless the shop obtains all ordinary signatures corresponding to the
full signature.

Definition 2.5 (Security against Shops). We say that an AOFE scheme sat-
isfies security against shops if no PPT adversary E has a non-negligible advan-
tage (as a function of κ) in the following game:

1. Adversary E is given pp, apk and vkA, where pp ← OFE.Setup(1κ), (apk,
ask) ← OFE.AdjGen(1κ) and (vkA, skA) ← OFE.Gen(1κ) for the target client
A. Tables Tpsig and Tres are initialized as ∅.

2. E is allowed to issue queries to the following oracles:
Partial signing oracle: This oracle receives message m and aux. It returns

partial signature ω ← PSign(skA, apk,m, aux) to the adversary, and
stores ((m, aux), ω) in table Tpsig .

Resolution oracle: This oracle receives verification key vkj, message m,
partial signature ω and aux. It verifies PVrfy(vkj , apk,m, ω, aux) = 1,
returns ordinary signature σ ← Res(ask, apk, vkj ,m, ω, aux) to the adver-
sary, and stores ((vkj ,m, ω, aux), σ) in table Tres .

3. Finally, E outputs (m∗, σ∗, aux∗). We say that E wins if OFE.Vrfy(vkA, apk,
m∗, σ∗, aux∗) = 1, and either of the following holds:
– aux∗ �= aux for any entry ((·, aux), ·) ∈ Tpsig and ((·, ·, ·, aux), ·) ∈ Tres .

202 J.H. Seo et al.

– m∗ �= ∑�
i=1 m∗

i for all sets {((m∗
i , aux

∗), ·)}�
i=1 ⊆ Tpsig .

– m∗ �= ∑�
i=1 m∗

i for all sets {((vkA,m∗
i , ·, aux∗), ·)}�

i=1 ⊆ Tres .

The advantage of E is defined as AdvOFE.Shop
E (κ) := Pr[E wins].

As in the definition of OFE [12], the target client A is chosen at the beginning of
the game. E can pose the target message for arbitrary verification key vkj except
vkA to the resolution oracle. Thus, this definition is for the multi-user setting
as [12]. That means, E can arbitrarily interact with all clients and establish
sessions with them except the target session. Note that E does not need the
ordinary signing oracle because it can be simulated by the combination of the
partial signing oracle and the resolution oracle.

The security against the adjudicator means that no adjudicator can produce
a valid full signature unless the adjudicator can generate its public key malignly
and obtain all partial signatures corresponding to the full signature.

Definition 2.6 (Security against Adjudicator). We say that an AOFE
scheme satisfies security against the adjudicator if no PPT adversary E has
a non-negligible advantage (as a function of κ) in the following game:

1. Adversary E is given pp, and vkA, where pp ← OFE.Setup(1κ) and (vkA,
skA) ← OFE.Gen(1κ) for the target client A. E outputs apk∗. A table Tpsig is
initialized as ∅.

2. E is allowed to issue queries to the following oracle:
Partial signing oracle: This oracle receives message m and aux. It returns

partial signature ω ← PSign(skA, apk∗,m, aux) to the adversary, and
stores ((m, aux), ω) in table Tpsig .

3. Finally, E outputs (m∗, σ∗, aux∗). We say that E wins if OFE.Vrfy(vkA, apk∗,
m∗, σ∗, aux∗) = 1, and either of the following holds:
– aux∗ �= aux for any entry ((·, aux), ·) ∈ Tpsig .
– m∗ �= ∑�

i=1 m∗
i for all sets {((m∗

i , aux
∗), ·)}�

i=1 ⊆ Tpsig .

The advantage of E is defined as AdvOFE.Adj
E (κ) := Pr[E wins].

As in the definition of OFE [12], the target client A is chosen at the beginning
of the game. Note that E does not need the resolution oracle because E can have
ask∗ corresponding to apk∗.

We additionally note that if the trusted party, who generates pp ← OFE.Setup
(1κ), colluded with an adjudicator, the adjudicator could forge a signature.
Indeed, our AOFE scheme built upon a VEHS scheme in Sect. 5 is vulnerable to
this attack.7

In this paper, we focus on the basic security properties as in [12]. However,
additional properties such as abuse-freeness [47], non-repudiation [48], and timely
termination [9] can be also considered by the same way as previous works.

7 Consider the malicious adjudicator knowing the discrete logarithm of hi, logg1
(hi).

Accumulable Optimistic Fair Exchange 203

3 Definitions of Verifiably Encrypted Homomorphic
Signature

In this section, we explain the syntax of VEHS and its security definitions. A
VEHS scheme VEHS consists of the following ten algorithms. Let the underlying
message space M be represented as M := Rn for some integer n and ring R, and
let T be a file-identifier space.

Definition 3.1 (Syntax of VEHS). We here describe the syntax of VEHS.

Setup(1κ, 1n): This probabilistic algorithm is run by the trusted third party. It
takes security parameter 1κ and the length of vectors to be signed 1n as input
and outputs public parameters pp. Hereafter, we omit the public parameter
pp from the arity of algorithms.

AdjGen(1κ): This probabilistic algorithm takes as input security parameter 1κ

and outputs a pair of keys for an adjudicator (apk, ask).
Gen(1κ): This probabilistic algorithm takes as input security parameter 1κ, and

outputs a verification/signing key pair for a signer (vk, sk).
Sign(sk, τ,v): This probabilistic algorithm takes as input a signing key sk, a file

identifier τ ∈ T, and a vector v ∈ Z
n
p to be signed, and outputs a signature σ.

Vrfy(vk, τ,v, σ): This deterministic algorithm takes as input vk, τ , v, and σ,
and outputs 1 if σ is valid, and 0 otherwise.

Create(sk, apk, τ,v): This probabilistic algorithm takes as input sk, apk, τ , and
v, and outputs a VES ω.

VesVrfy(apk, vk, τ,v, ω): This deterministic algorithm takes as input apk, vk, τ ,
v, and ω, and outputs 1 if ω is valid, and 0 otherwise.

Derive(vk, τ, {γi,vi, σ
(i)}�

i=1): This probabilistic algorithm takes as input vk, τ ,
and {γi,vi, σ(i)}, where γi is a weight and σ(i) is a signature on vi with τ

under vk, and outputs a signature σ on
∑�

i=1 γivi with τ under vk.
VesDerive(vk, apk, τ, {γi,vi, ω

(i)}�
i=1): This probabilistic algorithm takes as input

vk, τ , and {γi,vi, ω
(i)}, where γi is a weight and ω(i) is a VES on vi with τ

under vk and apk, and outputs a VES ω on
∑�

i=1 γivi with τ under vk and
apk.

Adj(ask, apk, vk, ω, τ,v): This (possibly) probabilistic algorithm takes as input
(ask, apk, vk, ω, τ , v), and outputs an ordinary signature σ on v with τ
under vk if VesVrfy(apk, vk, ω, τ,v) = 1.

Let us define correctness of VEHS.

Definition 3.2 (Correctness). We say a VEHS scheme VEHS is correct if the
following conditions are satisfied: For all κ, n ∈ N, all (apk, ask) ← AdjGen(1κ),
all (vk, sk) ← Gen(1κ), all τ ∈ T and v ∈ M, and all � ∈ N, we require the
following conditions:

1. Vrfy
(
vk, τ,v,Sign(sk, τ,v)

)
= 1.

2. Vrfy
(
vk, τ,

∑�
i=1 γivi,Derive(vk, τ, {γi,vi, σ

(i)}�
i=1)

)
= 1 if all Vrfy(vk, τ,vi,

σ(i)) = 1.

204 J.H. Seo et al.

3. VesVrfy
(
apk, vk, τ,v,Create(sk, apk, τ,v)

)
= 1.

4. VesVrfy
(
apk, vk, τ,

∑�
i=1 γivi,VesDerive(vk, apk, τ, {γi,vi, ω

(i)}�
i=1)

)
= 1

if all VesVrfy(apk, vk, τ,vi, ω
(i)) = 1.

We can define additional property resolution independence of VEHS as that
in the context of VES [49]. Roughly speaking, resolution independence implies
that an ordinal signature and resolved signature have the same distribution.
Since we omit the detail of proofs, we defer the definition of resolution indepen-
dence to the full version.

We next extend extractability of VES [22] to that of VEHS. Roughly speaking,
extractability implies that a signature extracted from a valid VES via the Adj
algorithm is always valid. Again, we omit the formal defintion of extractability
due to page limit.

We define the two security notions unforgeability and opacity. We consult the
security definitions of [17] (Definition 12: unforgeability of a linearly homomor-
phic signature scheme) and [23] (Definition 4: unforgeability and opacity of a
VES scheme). Since VEHS inherits both properties of homomorphic signatures
and VESs, we need to keep in mind the security requirements in both contexts.

Before giving definitions, we briefly review unforgeability and opacity of a
VES scheme. In the unforgeability game defined in [23], an adversary A is allowed
to obtain VESs from the creation oracle which returns a VES for a queried
message, and is also allowed to access the adjudication oracle which extracts
and returns a signature for a queried message/VES pair. We strengthen the
adversary by allowing it to be a malicious adjudicator. By this strengthening,
unforgeability guarantees that even malicious adjudicator cannot produce a valid
VES ω∗ which is not generated by the creation oracle. Opacity is also defined
under the same design principle, where no adversary can produce a valid ordinary
signature σ∗ which is not generated by the adjudication oracle.

In both definitions, we need to modify the winning condition of A in the VEHS
context because of the homomorphic property. Therefore, we adopt the winning
condition of the unforgeability game of [17]. In their unforgeability game, we say
that A wins if A can produce a valid signature on a message, where the message
does not belong to the subspace spanned by all queried messages, or they have
a different file identifier from those previously obtained.

Definition 3.3 (Unforgeability). A VEHS scheme VEHS is said to be
unforgeable if no PPT adversary A has a non-negligible advantage (as a function
of κ and n) in the following game:

1. C runs pp ← Setup(1κ), initializes a table Tves ← ∅, and gives pp to the
adversary. A chooses apk∗, and sends it to the challenger C. C runs (vk, sk) ←
Gen(1κ), and sends vk to A.

2. A is allowed to issue queries to the following oracle:
Creation oracle: This oracle receives a file identifier τ ∈ T and an n-

dimensional vector v ∈ Rn. It computes ω ← Create(sk, apk∗, τ,v), stores
((τ,v), ω) in the table Tves , and returns ω to the adversary.

Accumulable Optimistic Fair Exchange 205

3. Finally, A outputs a file identifier τ∗, a vector v∗, and a signature σ∗. We
say that A wins if (τ∗,v∗) ∈ M and Vrfy(vk, τ∗,v∗, σ∗) = 1 hold, and either
of the following holds:
Class I: τ∗ �= τ for any entry ((τ, ·), ·) ∈ Tves and v∗ �= 0.
Class II: There exists τ such that τ∗ = τ and ((τ, ·), ·) ∈ Tves , and v∗ �∈

span(v1, . . . ,vk), where v1, . . . ,vk are vectors which appeared in Tves
such that ((τ∗,vj), ·) ∈ Tves for all j ∈ [k].

The advantage of A is defined as AdvForgeA (κ, n) := Pr[A wins].

Definition 3.4 (Opacity). A VEHS scheme VEHS is said to be opaque if no
PPT adversary A has a non-negligible advantage (as a function of κ and n) in
the following game:

1. C runs pp ← Setup(1κ), initializes two tables Tves , Tsig ← ∅, and gives pp to
the adversary. C runs (apk, ask) ← AdjGen(1κ) and (vk, sk) ← Gen(1κ), and
sends apk and vk to A.

2. A is allowed to issue queries to the following two oracles:
Creation oracle: This oracle is the same as that of the unforgeability game.
Adjudication oracle: This oracle receives a file identifier τ ∈ T, an n-

dimensional vector y ∈ Rn, and a VES ω. If VesVrfy(vk, apk, τ,y, ω) →
0, then it returns ⊥. Otherwise, it computes σ ← Adj(ask, apk, vk, ω, τ,y),
stores ((τ,y), σ) in the table Tsig , and returns σ to the adversary.

3. Finally, A outputs an identifier τ∗, a vector y∗, and a signature σ∗. We say
that A wins if (τ∗,y∗) ∈ M, y∗ �= 0, and Vrfy(vk, τ∗,y∗, σ∗) = 1 hold, and
either of the following holds:
Class I: τ∗ �= τ for any entry ((τ, ·), ·) ∈ Tves ∪ Tsig .
Class II: There exists τ such that τ∗ = τ and ((τ, ·), ·) ∈ Tves ∪ Tsig , and

y∗ �∈ span(v1, . . . ,vk), where v1, . . . ,vk are vectors which appeared in
Tves with τ∗; that is, ((τ∗,vj), ·) ∈ Tves for all j ∈ [k].

Class III: There exists τ such that τ∗ = τ and ((τ, ·), ·) ∈ Tves ∪ Tsig ,
y∗ ∈ span(v1, . . . ,vk), and y∗ �∈ span(y1, . . . ,yl), where v1, . . . ,vk are
vectors which appeared in Tves such that ((τ∗,vj), ·) ∈ Tves for all j ∈
[k] and y1, . . . ,yl are vectors which appeared in Tsig with τ∗, that is,
((τ∗,yj), ·) ∈ Tsig for all j ∈ [l].

The advantage of A is defined as AdvOpac
A (κ, n) := Pr[A wins].

4 Constructions of Accumulable Optimistic Fair
Exchange

4.1 Simple Construction and Its Limitation

First, we consider a simple solution toward our goal, and explain its limitations.
Let Alice be a client and Bob be a shop. We suppose that Alice and Bob do
transactions k times in a period. The simple construction is based on the con-
ventional VES with simple message aggregation (whereas AOFE is based on the

206 J.H. Seo et al.

VES aggregation). That is, in the i-th transaction, Alice computes a VES on a
message m1|| · · · ||mi, say ω(i), and sends (mi, ω

(i)) to Bob as a contract. Then,
at the finish, Alice sends a full signature on the message m1|| · · · ||mk, which is
used as the check for all transactions in this period. The adjudicator verifies a
transcript, decrypts a VES ω(k), and returns σ(k), Alice’s full signature on the
message m1|| · · · ||mk, to Bob.

The weak point of this solution is that it does not support history-free accu-
mulation. This property is desirable for a network with out-of-order delivery:
Even Alice sends (m1, ω

(1)) and (m2, ω
(2)), Bob may receive (m2, ω

(2)) at first,
and later he receives (m1, ω

(1)). Then, Bob cannot verify the validity of the VES
(m2, ω

(2)), because he does not know m1. Therefore, Bob cannot return goods
and Alice will be annoyed. That is, the simple construction requires that Bob
sequentially verifies encrypted signatures.

As another example, if Alice sends (mi, ω
(i)), where ω(i) is a VES on mi,

then this problem seems to be solved. However, such a construction is inefficient
as we already discussed in the introduction.

Therefore, the approach based on ordinary VES does not fully satisfy our
definition of security; and thus, we must consider another approach (i.e., an
approach based on VEHS).

4.2 Generic Construction of AOFE from VEHS

Here, we show our generic construction of AOFE (OFE.Setup,OFE.AdjGen,
OFE.Gen, OFE.Sign,OFE.Vrfy,PSign,PVrfy,Acc,PAcc,Res) from VEHS (Setup,
AdjGen, Gen, Sign, Vrfy, Create, VesVrfy, Derive, VesDerive, Adj) in the restricted
setting (i.e., the name and the cost of an item is fixed in a period). Compared to
the simple construction, our generic construction satisfies the ambiguity prop-
erty, and allows Bob to verify VESs in parallel (or regardless of the order).

Recall that a file identifier τ can be an arbitrary string in VEHS due to our
security definitions for VEHS in Sect. 3. We use it to designate identities of a
client and a shop, the name and amount of money of an item, and a certain
period, e.g., τ := H(Alice||Bob||Music||$10||May), where H is a collision resis-
tance hash function. τ is set as session information aux. We suppose that Alice
and Bob do transactions k times in a period, where transactions occur at most
n times, i.e., k ≤ n. Let M = Rn be a message space of VEHS with ring R and
integer n. Let vi ∈ Rn be a unit vector whose i-th element is 1 and the other
elements are 0, that is, vi = (0, . . . , 0, 1, 0, . . . , 0). In the i-th phase, a message
is defined as a properly augmented vector vi

Setup Phase

1. OFE.Setup(1κ): pp←Setup(1κ, 1n) is provided to all users and the adjudicator.
2. OFE.AdjGen(1κ): The adjudicator generates (apk, ask) ← AdjGen(1κ).
3. OFE.Gen(1κ): User i generates (vki, ski) ← Gen(1κ).8

8 Because key generation algorithms for a signer and the adjudicator are independent
in VEHS, our AOFE protocol is setup-free.

Accumulable Optimistic Fair Exchange 207

Transaction Phase (For i = 1 to k). Alice’s key is (vkA, skA). Identities of Alice
and Bob, the name and amount of money of the item, and the period of the
transaction are specified by τ . Initially, Alice sets v = (0, . . . , 0) and σ = ⊥, and
Bob sets v = (0, . . . , 0) and ω = ⊥.

1. OFE.Sign(skA, apk,vi, τ): Alice generates signature σ(i) ← Sign(skA, τ,vi) as
the ordinary signature.

2. Acc(vkA, apk, {(v, σ), (vi, σ
(i))}, τ): If i = 1, then Alice sets v := v1 and σ :=

σ(1). Otherwise, Alice updates v ← v + vi, and σ ← Derive(vkA, τ, {(1,v, σ),
(1,vi, σ

(i))}).9

3. PSign(skA, apk,vi, τ): Alice generates VES ω(i) ← Create(skA, apk, τ,vi) as
the partial signature. Alice sends (ω(i),vi) to Bob as a contract.

4. PVrfy(vkA, apk,vi, ω
(i), τ): Bob verifies that vi is a unit vector (

i−1
︷ ︸︸ ︷
0, . . . , 0, 1,

0, . . . , 0), and VesVrfy(apk, vkA, τ,vi, ω
(i)) = 1. If so, Bob sends the item to

Alice.
5. PAcc(vkA, apk, {(v, ω), (vi, ω

(i))}, τ): If i = 1, then Bob sets v := v1 and
ω := ω(1). Otherwise, Bob updates v ← v+vi, and ω ← VesDerive(vkA, apk, τ,
{(1,v, ω), (1,vi, ω

(i))}).10

Check Phase (The end of the period)

1. Alice sends σ as the full signature as a check.11

2. OFE.Vrfy(vkA, apk,v, σ, τ): Bob verifies that v has the form (

k
︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0),

and Vrfy(vkA, τ,v, σ) = 1. If so, Bob can cash a check with σ.
3. Res(ask, apk, vkA,v, ω, τ): If OFE.Vrfy(vkA, apk,v, σ, τ) = 0 or Bob has not

received the full signature by the end of the period, Bob sends (v, ω) to the

adjudicator. The adjudicator verifies that both v has the form (

k
︷ ︸︸ ︷
1, . . . , 1, 0,

. . . , 0), and VesVrfy(apk, vkA, τ,v, ω) = 1. Then, the adjudicator runs σ ←
Adj(ask, apk, vkA, ω, τ,v), and sends σ to Bob.

Correctness and ambiguity of our AOFE protocol are trivially derived from
correctness and resolution independence of VEHS; and thus, we omit to prove it.

Note that Bob seems to be able to choose the weight values, and can get
a weighted signature from the adjudicator that might not be agreed by Alice.
However, this problem does not occur by syntax of messages: the adjudicator
verifies the validity of the received sum of VESs by checking the form of v in the
step 3 of the Check phase. The adjudicator refuses the malformed weight even
if Bob chooses the invalid ones: for example, the adjudicator rejects a message
9 Then, Alice needs to store just one message and one ordinary signature in her mem-

ory during a transaction period.
10 Then, Bob also needs to store just one message and one partial signature in his

memory during a transaction period.
11 Since the full signature is also an ordinary signature, our protocol is stand-alone.

208 J.H. Seo et al.

v = (2, 1, 1, 0, . . . , 0). Moreover, unforgeability of VEHS guarantees that Bob
cannot forge any partial signature of a message vector that the i-th value is 1
when the i-th transaction between Alice and Bob does not occur.

4.3 Security

Due to page limits, we defer the proofs of Theorems 4.1, 4.2, and 4.3 to the full
version. We only comment intuition.

Theorem 4.1 (Security against Clients). Our AOFE protocol is secure
against clients if the underlying VEHS scheme is extractable.

Since the client cannot forge a valid encrypted signature such that the corre-
sponding ordinary signature is not valid because of extractability of the under-
lying VEHS, this property is guaranteed.

Theorem 4.2 (Security against Shops). Our AOFE protocol is secure
against shops if the underlying VEHS scheme is opaque and resolution inde-
pendent.

Since the shop cannot forge a valid full signature without knowing one of corre-
sponding ordinary signatures because of opacity of the underlying VEHS, this
property is guaranteed. Also, we need resolution independence to simulate the
resolution oracle.

Theorem 4.3 (Security against Adjudicator). OurAOFEprotocol is secure
against the adjudicator if the underlying VEHS scheme is unforgeable.

Since the adjudicator cannot forge both a valid encrypted signature and the cor-
responding valid ordinary signature without knowing the signing key of the client
because of unforgeability of the underlying VEHS, this property is guaranteed.

4.4 Extension to General Setting

The above AOFE protocol only supports the case in which the name and cost
of an item in a period are fixed. This protocol covers a situation where Alice
frequently buys a certain kind of product from Bob at a flat rate (e.g., an online
music service sells individual songs at the same price, and a client buys songs
multiple times in a month). Here, we consider the general setting where each
item has a distinct amount of money, and Alice can choose an arbitrary item in
each transaction. We provide a key idea to extend our basic AOFE protocol into
general setting, and the details of the extended AOFE protocol and its security
analysis appear in the full version of this paper.

On choosing an item, Alice must include the name and cost of the item in the
message field instead of in the file identifier. That is, we add a message mi (e.g.,
H(Music||$10)) to the message vector vi as (vi||mivi) = (0, . . . , 0, 1, 0, . . . , 0,
mi, 0, . . . , 0) ∈ R2n, and the file identifier just designates the identities of a client

Accumulable Optimistic Fair Exchange 209

and a shop, and a period (e.g., τ := H(Alice||Bob||May)), where H is a collision
resistance hash function. Thus, at the end of the period, the accumulated message
vector v is (1, . . . , 1, 0, . . . , 0,m1, . . . ,mk, 0, . . . , 0). As the restricted setting, if
Bob tries to choose the weight values, and to get a weighted signature from the
adjudicator that might not be agreed by Alice, it is prevented by checking the
form of the first k elements of v. Thus, the security of the construction in the
general setting can be proved in the same way as the restricted setting.

5 Construction of Verifiably Encrypted Homomorphic
Signature

We first give the definition of bilinear groups. We then propose our VEHS
scheme.

5.1 Bilinear Groups with Composite Order

For a set X and an element x ∈ X, x ←$ X denotes x is chosen uniformly at
random from X.

Let us recall the property of composite-order pairing groups. Let (G,GT) be a
bilinear group of composite order N = p1p2p3, let e : G×G → GT be a bilinear
map, and let G be a group generator, where G with the security parameter κ
outputs (G,GT , e,N = p1p2p3). For i, j ∈ {1, 2, 3}, let Gi denote the subgroup
of G of the order pi, and Gi,j (i �= j) denote the subgroup G of the order pipj . We
note that “orthogonality” of subgroups is as follows. For all gi ∈ Gi and hj ∈ Gj

where i, j ∈ {1, 2, 3} and i �= j, e(gi, hj) = 1T holds. Here, 1T is the unit of GT .
This property is applied in our verification algorithms such that elements of G3

contained in signatures/VESs are canceled out by pairing computations.
In the proposed scheme, we require that algorithms except for Setup randomly

choose an element from the subgroups of G without knowing the corresponding
orders. To do so, generators of subgroups (g ∈ G1 and Xp3 ∈ G3 in the scheme)
are included in pp. That is, algorithms just choose a random value r ∈ ZN , and
compute its exponentiation, e.g., u := gr and R3 = Xr

p3
, and so on. We simply

denote these procedures as u ←$ G1 and R3 ←$ G3, respectively.

Assumptions. We will employ the following assumptions in the literature in
order to prove the security. Due to the space limit, we informally introduce the
assumptions. For strict definitions, see the papers [17,44] or the full version of
this paper. We note that they are hard in the generic group model.

Assumption LW1’ [44]: Let g ←$ G1, X3 ←$ G3, Tb ←$ G1,2, and T1−b ←$

G1 for b ←$ {0, 1}. Given (g,X3, T0, T1), it is infeasible to decide b.12
Assumption LW2 [44]: Let g,X1 ←$ G1, X2, Y2 ←$ G2, Y3, Z3 ←$ G3, and

T ←$ G. Given (g,X1X2, Z3, Y2Y3) and T , it is infeasible to decide if T ←$ G

or T ←$ G1,3.
12 In the original assumption LW1 [44], given g ←$ G1, X3 ←$ G3, and T ∈ G, it is

infeasible to decide if T ←$ G1 or T ←$ G1,2.

210 J.H. Seo et al.

Assumption ALP3 [17]: Let g, f, gξ,X1 ←$ G1 where ξ ←$ ZN , X2, Y2, Z2 ←$

G2, and X3, Y3, Z3 ←$ G3. Given (g, f, gξ,X1X2,X3, Y2Y3) and T , it is infea-
sible to decide if T = fξZ3 or fξZ2Z3.

Assumption ALP4 [17]: Let g ←$ G1, X2, Y2, Z2 ←$ G2, X3 ←$ G3, and
a, b, c ←$ ZN . Given (g, ga, gb, gabX2,X3, g

cY2, Z2), it is infeasible to com-
pute e(g, g)abc.

5.2 VEHS in Composite-Order Pairing Groups

Our scheme is based on the Attrapadung-Libert-Peters linearly-homomorphic
signature scheme [17], the ALP12 scheme in short, which is based on the Lewko-
Waters signature scheme [44] in the composite-order pairing groups, and the
ElGamal encryption scheme [50]. Thanks to the pairing, we can verify a VES,
i.e., an encrypted signature.

One might wonder why we employ the composite-order setting because we
already have VES schemes and HS schemes in the prime-order setting. The
reason is that there are technical hurdles we cannot solve by our best efforts,
although we can simply construct VEHSs from HS schemes in the prime-order
setting and the ElGamal encryption scheme. Let σ = (σ1, σrest) be an ordinary
signature. Let apk = y = gβ be the adjudicator’s public key. Then, we let a VES
ω = (ω1, ω2, ω3) as ω1 ← σ1 ·yt, ω2 ← σrest, and ω3 ← gt. The main hurdle is the
security proof on class-III opacity in Definition 3.4. Roughly speaking, we have
to solve the problem in an assumption by using the adversary’s power to strip
yt off ω1. With VES schemes, one can guess which VES will be stripped out
and thus embed the problem into ω. We fail to adopt this technique in the HS
setting: it is hard to guess which vector vi on τ∗ the adversary will use to forge
y∗. Fortunately, we can prove class-III opacity in the composite-order setting by
using the dual-form signature technique as we discuss in the introduction.

Our VEHS Scheme

– Setup(1κ, 1n): Choose bilinear groups (G,GT) of order N = p1p2p3 such that
(G, GT , e,N) ←$ G. Choose g, u, v, h1, . . . , hn ←$ G1 and Xp3 ←$ G3. pp =
(G,GT , e,N, g,Xp3 , u, v, {hi}i∈[n]). Here, we let Hhom(v) :=

∏
i∈[n] h

vi
i , where

v = (v1, . . . , vn) ∈ Z
n
N . Note that

∏
i∈[�] Hhom(vi)γi = Hhom(

∑
i∈[�] γivi)

holds. We omit the public parameter pp from inputs of following algorithms.
– AdjGen(1κ): Choose β ←$ ZN and compute y ← gβ . Output (apk, ask) =

(y, β).
– Gen(1κ): Choose α ←$ ZN and compute gα. Output vk = gα and sk = α.
– Sign(sk, τ,v): Return ⊥ if v = 0. Choose r ←$ ZN and R3, R

′
3 ←$ G3.

Compute σ1 ← Hhom(v)α ·(uτv)r ·R3 and σ2 ← gr ·R′
3. Output σ = (σ1, σ2).13

– Vrfy(vk, τ,v, σ): Parse σ = (σ1, σ2). Return 1 iff e(σ1, g) = e(Hhom(v), gα) ·
e(uτv, σ2) holds. Otherwise, return 0.

13 As a remark, a client Alice needs to compute Hhom for a vector v =
(0, 0, . . . , 0, 1, 0, . . . , 0) in the AOFE protocol based on our VEHS scheme. There-
fore, no n-dependent computation is required for Alice in our AOFE protocol.

Accumulable Optimistic Fair Exchange 211

– Create(sk, apk, τ,v): Run σ := (σ1, σ2) ← Sign(sk, τ,v). Choose t ←$ ZN and
R′′

3 ←$ G3, compute ω1 ← σ1 · yt, ω2 ← σ2, and ω3 ← gt · R′′
3 . Output

ω = (ω1, ω2, ω3).
– VesVrfy(apk, vk, τ,v, ω): Parse ω = (ω1, ω2, ω3). Return 1 iff e(ω1, g) = e(Hhom

(v), gα) · e(uτv, ω2) · e(y, ω3) holds. Otherwise, return 0.
– Derive(vk, τ, {γi,vi, σ

(i)}�
i=1): Parse σ(i) = (σi,1, σi,2). Choose r̃ ←$ ZN and

R̃3, R̃
′
3 ←$ G3. Compute σ1 ←

(∏
i∈[�]σ

γi

i,1

)
·(uτv)r̃·R̃3 and σ2 ←

(∏
i∈[�]σ

γi

i,2

)
·

gr̃ · R̃′
3. Output σ = (σ1, σ2).

– VesDerive(vk, apk, τ, {γi,vi, ω
(i)}�

i=1): Parse ω(i) = (ωi,1, ωi,2, ωi,3). Choose r̃,

t̃ ←$ ZN and R̃3, R̃
′
3, R̃

′′
3 ← G3. Compute ω1 ←

(∏
i∈[�]ω

γi

i,1

)
· (uτv)r̃ · yt̃ · R̃3,

ω2 ←
(∏

i∈[�]ω
γi

i,2

)
· gr̃ · R̃′

3, and ω3 ←
(∏

i∈[�]ω
γi

i,3

)
· gt̃ · R̃′′

3 . Output ω =
(ω1, ω2, ω3).

– Adj(ask, apk, vk, ω, τ,v): Parse ω = (ω1, ω2, ω3). Return ⊥ if VesVrfy(apk, vk,
τ,v, ω) → 0. Choose r̃ ←$ ZN and R̃3, R̃

′
3 ←$ G3. Compute σ1 ← (ω1/ωβ

3) ·
(uτv)r̃ · R̃3 and σ2 ← ω2 · gr̃ · R̃′

3. Output σ = (σ1, σ2).

Remark 5.1. We note that a HS scheme HS = (Setup,Gen,Sign,Vrfy,Derive)
is the ALP12 scheme [17, Sect. 4]. We build our VEHS scheme upon them by
introducing AdjGen, Create, VesVrfy, VesDerive, and Adj.

Security. We show correctness and security of our VEHS scheme.

Theorem 5.1 (Informal). VEHS is correct, resolution-independent, and
extractable unconditionally. VEHS is unforgeable and opaque under the assump-
tions LW1′, LW2, ALP3, and ALP4.

Due to space limit, we defer the proofs of correctness and security to the full
version.

References

1. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

2. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing
contracts. IEEE Trans. IT 36(1), 40–46 (1990)

3. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

4. Bahreman, A., Tygar, J.D.: Certified electronic mail. In: NDSS 1994, pp. 3–19
(1994)

5. Coffey, T., Saidha, P.: Non-repudiation with mandatory proof of receipt. ACM
SIGCOMM Comput. Commun. Rev. 26(1), 6–17 (1996)

6. Cox, B., Tygar, J.D., Sirbu, M.: NetBill security and transaction protocol. USENIX
Workshop on Electronic Commerce 1995, 77–88 (1995)

7. Deng, R.H., Gong, L., Lazar, A.A., Wang, W.: Practical protocols for certified
electronic mail. J. Netw. Syst. Manage. 4(3), 279–297 (1996)

212 J.H. Seo et al.

8. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
ACM CCS 1997, pp. 7–17 (1997)

9. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer,
Heidelberg (1998)

10. Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair
exchange. In: IEEE Symposium on S&P 1998, pp. 86–99 (1998)

11. Dodis, Y., Reyzin, L.: Breaking and repairing optimistic fair exchange from PODC
2003. In: Digital Rights Management Workshop 2003, pp. 47–54 (2003)

12. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007)

13. Huang, X., Mu, Y., Susilo, W., Wu, W., Xiang, Y.: Further observations on
optimistic fair exchange protocols in the multi-user setting. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 124–141. Springer, Hei-
delberg (2010)

14. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
PODC, pp. 12–19 (2003)

15. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. Comput. Netw.
56(1), 50–63 (2012)

16. Freeman, D., Katz, J., Waters, B., Boneh, D.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

17. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

18. Zhu, H., Bao, F.: Stand-alone and setup-free verifiably committed signatures. In:
Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 159–173. Springer, Hei-
delberg (2006)

19. Camenisch, J., Damg̊ard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 331. Springer, Hei-
delberg (2000)

20. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003, vol. 2656,
pp. 416–432. Springer, Heidelberg (2003)

21. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

22. Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a con-
struction without random oracles. In: Shacham, H., Waters, B. (eds.) Pairing 2009.
LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009)

23. Nishimaki, R., Xagawa, K.: Verifiably Encrypted Signatures with Short Keys Based
on the Decisional Linear Problem and Obfuscation for Encrypted VES. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 405–422. Springer,
Heidelberg (2013)

24. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

Accumulable Optimistic Fair Exchange 213

25. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public
keys: design, analysis and implementation studies. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 423–442. Springer, Heidelberg (2013)

26. Lee, K., Lee, D.H., Yung, M.: Aggregating CL-Signatures revisited: extended func-
tionality and better efficiency. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 171–188. Springer, Heidelberg (2013)

27. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol.
4596, pp. 411–422. Springer, Heidelberg (2007)

28. Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signa-
tures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 113–130.
Springer, Heidelberg (2012)

29. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

30. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

31. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

32. Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual form signatures: an app-
roach for proving security from static assumptions. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012)

33. Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW 1993,
pp. 160–166 (1993)

34. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002)

35. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

36. Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (2011)

37. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)

38. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

39. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

40. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) Public-Key Cryptography – PKC 2011, vol. 6571, pp. 1–16.
Springer, Heidelberg (2011)

41. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142–160. Springer, Heidelberg (2010)

214 J.H. Seo et al.

42. Agrawal, S., Boneh, D., Boyen, X., Freeman, D.M.: Preventing pollution attacks in
multi-source network coding. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 161–176. Springer, Heidelberg (2010)

43. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)

44. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

45. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

46. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous optimistic fair exchange.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer,
Heidelberg (2008)

47. Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-free optimistic contract sign-
ing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999)

48. Zhou, J., Gollmann, D.: A fair non-repudiation protocol. In: IEEE Symposium on
S&P 1996, pp. 55–61 (1996)

49. Calderon, T., Meiklejohn, S., Shacham, H., Waters, B.: Rethinking verifiably
encrypted signatures: a gap in functionality and potential solutions. In: Benaloh,
J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 349–366. Springer, Heidelberg (2014)

50. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. IT 31(4), 469–472 (1985)

	Accumulable Optimistic Fair Exchange from Verifiably Encrypted Homomorphic Signatures
	1 Introduction
	1.1 Motivation
	1.2 This Work

	2 Definitions of Accumulable Optimistic Fair Exchange
	3 Definitions of Verifiably Encrypted Homomorphic Signature
	4 Constructions of Accumulable Optimistic Fair Exchange
	4.1 Simple Construction and Its Limitation
	4.2 Generic Construction of AOFE from VEHS
	4.3 Security
	4.4 Extension to General Setting

	5 Construction of Verifiably Encrypted Homomorphic Signature
	5.1 Bilinear Groups with Composite Order
	5.2 VEHS in Composite-Order Pairing Groups

	References

