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Abstract. Multiparty computation can be used for privacy-friendly out-
sourcing of computations on private inputs of multiple parties. A com-
putation is outsourced to several computation parties; if not too many
are corrupted (e.g., no more than half), then they cannot determine the
inputs or produce an incorrect output. However, in many cases, these
guarantees are not enough: we need correctness even if all computation
parties may be corrupted; and we need that correctness can be verified
even by parties that did not participate in the computation. Protocols
satisfying these additional properties are called “universally verifiable”.
In this paper, we propose a new security model for universally verifi-
able multiparty computation, and we present a practical construction,
based on a threshold homomorphic cryptosystem. We also develop a
multiparty protocol for jointly producing non-interactive zero-knowledge
proofs, which may be of independent interest.

1 Introduction

Multiparty computation (MPC) provides techniques for privacy-friendly out-
sourcing of computations. Intuitively, MPC aims to provide a cryptographic
“black box” which receives private inputs from multiple “input parties”; performs
a computation on these inputs; and provides the result to a “result party” (an
input party, any third party, or the public). This black box is implemented by dis-
tributing the computation between multiple “computation parties”, with privacy
and correctness being guaranteed in case of passive corruptions (e.g., [BCD+09]),
active corruption of a minority of computation parties (e.g., [CDN01]), or active
corruption of all-but-one computation parties (e.g., [DPSZ12]).

However, multiparty computation typically does not provide any guarantees
in case all computation parties are corrupted. That is, the result party has to
trust that at least some of the computation parties did their job, and has no
way of independently verifying the result. In particular, the result party has
no way of proving to an external party that his computation result is indeed
correct. Universally verifiable multiparty computation addresses these issues by
requiring that the correctness of the result can be verified by any party, even if
all computation parties are corrupt [dH12]. It was originally introduced in the
context of e-voting [CF85,SK95], but it is relevant whenever MPC is applied in
a setting where not all of the parties that provide inputs or obtain outputs are
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participants in the computation. In particular, apart from contexts like e-voting
where “the public” or an external watchdog wants to be sure of correctness,
it is also useful in scenarios where (many) different input parties outsource a
computation to the cloud and require a correctness guarantee.

Unfortunately, the state-of-the-art on universally verifiable MPC is unsatis-
factory. The concept of universally verifiable MPC was first proposed in [dH12],
where it was also suggested that it can be achieved for MPC based on thresh-
old homomorphic cryptosystems. However, [dH12] does not provide a rigorous
security model for universal verifiability or analysis of the proposed construc-
tion; and the construction has some technical disadvantages (e.g., a proof size
depending on the number of computation parties). The scheme recently pro-
posed in [BDO14] solves part of the problem. Their protocols provide “public
auditability”, meaning that anybody can verify the result of a computation, but
only if that result is public. In particular, it is not possible for a result party to
prove just that an encryption of the result is correct, which is important if this
result is to be used in a later protocol without being revealed.

In this paper, we propose a new security model for universally verifiable
multiparty computation, and a practical construction achieving it. As in [dH12],
we adapt the well-known actively secure MPC protocols based on threshold
homomorphic cryptosystems from [CDN01,DN03]. Essentially, these protocols
perform computations on encrypted values; security against active adversaries
is achieved by letting parties prove correctness of their actions using interactive
zero-knowledge proofs. Such interactive proofs only convince parties present at
the computation; but making them non-interactive makes them convincing also
to external parties. Concretely, the result of a computation is a set of encryptions
of the inputs, intermediate values, and outputs of the computation, along with
non-interactive zero-knowledge proofs of their correctness. Correctness of the
result depends just on the correct set-up of the cryptosystem. Privacy holds
under the original conditions of [CDN01], i.e., if under half of the computation
parties are corrupted; but as we discuss, this threshold can be raised to n −
1 at the expense of sacrificing robustness. (Note that when computing with
encryptions, we cannot hope to achieve privacy if all computation parties are
corrupted: this would essentially require fully homomorphic encryption.)

We improve on [dH12] in two main ways. First, we provide a security model
for universal verifiability (in the random oracle model), and security proofs for
our protocols in that model. Second, we propose a new “multiparty” variant
of the Fiat-Shamir heuristic to make the zero-knowledge proofs non-interactive,
which may be of independent interest. Compared to [dH12], it eliminates the need
for trapdoor commitments. Moreover, it makes the proof size independent of the
number of parties performing the computation. We achieve this latter advantage
by homomorphically combining contributions from the different parties.

As such, universally verifiable MPC provides a practical alternative to recent
(single-party) techniques for verifiable outsourcing. Specifically, many papers
on verifiable computation focus on efficient verification, but do not cover pri-
vacy [PHGR13,WB13]. Those works that do provide privacy, achieve this by
combining costly primitives, e.g., fully homomorphic encryption with verifiable
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paillierdecode(x)

((x − 1) ÷ N)(4Δ2)−1 N
fsprove(Σ; v; w; aux) (a, s) := Σ.ann(v, w);

c := H(v||a||aux); r := Σ.res(v, w, a, s, c); π := (a, c, r)
fsver(Σ; v; a, c, r; aux) Σ

H(v||a||aux) = c ∧ Σ.ver(v; a; c; r)

Fig. 1. Notation in algorithms, protocols, and processes

computation [FGP14]; or functional encryption with garbled circuits [GKP+13].
A recent work [ACG+14] also considers the possibility of achieving verifiable
computation with privacy by distributing the computation; but it does not guar-
antee correctness if all computation parties are corrupted, nor does it allow third
parties to be convinced of this fact. In contrast, our methods guarantee correct-
ness even if all computation parties are corrupted, and even convince other par-
ties than the input party. In particular, any third party can be convinced, and
the computation may involve the inputs of multiple mutually distrusting input
parties. Moreover, in contrast to the above works, our methods rely on basic
cryptographic primitives such as Σ-protocols and the threshold homomorphic
Paillier cryptosystem, readily available nowadays in cryptographic libraries like
SCAPI [EFLL12].

Outline. First, we briefly recap the CDN scheme for secure computation in
the presence of active adversaries from [CDN01,DN03], instantiated using Pail-
lier encryption (Sect. 2). Then, we show how the proofs in this protocol can be
made non-interactive using the Fiat-Shamir heuristic and our new multiparty
variant (Sect. 3). Finally, we propose a security model for universally verifiable
MPC, and show that CDN with non-interactive proofs is universally verifiable
(Sect. 4). We conclude in Sect. 5. We list potentially non-obvious notation in our
pseudocode in Fig. 1.

2 Secure Computation from Threshold Cryptography

We review the “CDN protocol” [CDN01] for secure computation in the presence
of active adversaries based on a threshold homomorphic cryptosystem. The pro-
tocol involves m input parties i ∈ I, n computation parties i ∈ P, and a result
party R. The aim of the protocol is to compute a function f(x1, . . . , xm) (seen
as an arithmetic circuit) on private inputs xi of the input parties, such that the
result party obtains the result.
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2.1 Computation Using a Threshold Homomorphic Cryptosystem

The protocol uses a (t, n)-threshold homomorphic cryptosystem, with t = �n/2�.
In such a cryptosystem, anybody can encrypt a plaintext using the public key;
add two ciphertexts to obtain a (uniquely determined) encryption of the sum of
the corresponding plaintexts; and multiply a ciphertext by a constant to obtain a
(uniquely determined) encryption of theproduct of theplaintextwith the constant.
Decryption is only possible if at least t out of the n decryption keys are known. A
well-known homomorphic cryptosystem is the Paillier cryptosystem [Pai99]: here,
the public key is an RSA modulus N = pq; a ∈ ZN is encrypted with randomness
r ∈ Z

∗
N as (1+N)arN ∈ Z

∗
N2 ; and the product of two ciphertexts is an encryption

of the sum of the two corresponding plaintexts. (From now on, we suppress moduli
for readability.) A threshold variant of this cryptosystem was presented in [DJ01].
The (threshold) decryption procedure is a bit involved; we postpone its discussion
until Sect. 2.2. The CDN protocol can also be instantiated with other cryptosys-
tems; but in this paper, we will focus on the Paillier instantiation.

Computation of f(x1, . . . , xm) is performed in three phases: the input phase,
the computation phase, and the output phase. In the input phase, each input
party encrypts its input xi, and broadcasts the encryption Xi. In the computa-
tion phase, the function f is evaluated gate-by-gate. Addition and subtraction
are performed using the homomorphic property of the encryption scheme. For
multiplication1 of X and Y , each computation party i ∈ P chooses a random
value di, and broadcasts encryptions Di of di and Ei of di · y. The compu-
tation parties then compute X · D1 · · · Dn, and threshold decrypt it to learn
x + d1 + . . . + dn. Observe that this allows them to compute an encryption of
(x+d1+ . . .+dn) ·y, and hence, using the Ei, also an encryption of x ·y. Finally,
in the output phase, when the result of the computation has been computed as
encryption X of x, the result party obtains x by broadcasting random encryption
D of d and obtaining a threshold decryption x − d of X · D−1.

Active security is achieved by letting the parties prove correctness of all
information they exchange. Namely, the input parties prove knowledge of their
inputs Xi (this prevents parties from choosing inputs depending on other inputs).
The computation parties prove knowledge of Di, and prove that Ei is indeed a
correct multiplication of Di and Y ; and they prove the correctness of their con-
tributions to the threshold decryption of X ·D1 · · · Dn and X ·D−1. Finally, the
result party proves knowledge of D. We now discuss these proofs of correctness
and their influence on the security of the overall protocol.

2.2 Proving Correctness of Results

The techniques in the CDN protocol for proving correctness are based on Σ-
protocols. Recall that a Σ-protocol for a binary relation R is a three-move pro-
tocol in which a potentially malicious prover convinces a honest verifier that he
1 Here, we use the improved multiplication protocol from [DN03]: the multiplication

protocol from [CDN01] has a subtle problem, in which the subroutine for additively
sharing an encrypted value requires unknown encryption randomness to be returned.
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Σ-Protocol 1. ΣPK: Proof of plaintext knowledge
[Relation] R = {(X; x, r) | X = (1 + N)xrN}
[Announcement] Σ.ann(X; x, r) :=

a ∈R ZN ; u ∈R Z
∗
N ; A := (1 + N)auN ; return (A; a, u)

[Response] Σ.res(X; x, r; A; a, u; c) :=

t := �(a + cx)/N� ; d := a + cx; e := urc(1 + N)t; return (d, e)

[Verification] Σ.ver(X; A; c; d, e) := (1 + N)deN ?
= AXc

[Extractor] Σ.ext(X; A; c; c′; d, e; d′, e′) :=

α, β := “values such that α(c − c′) + βN = 1”; return ((d − d′)α, (e/e′)αXβ)

[Simulator] Σ.sim(X; c) :=

d ∈R ZN ; e ∈R Z
∗
N ; A := (1 + N)deNX−c; return (A; c; d, e)

knows a witness w for statement v such that (v;w) ∈ R. First, the prover sends
an announcement (computed using algorithm Σ.ann) to the verifier; the verifier
responds with a uniformly random challenge; and the prover sends his response
(computed using algorithm Σ.res), which the verifier verifies (using predicate
Σ.ver). Σ-protocols satisfy the following properties:

Definition 1. Let R ⊂ V × W be a binary relation and LR = {v ∈ V | ∃w ∈
W : (v;w) ∈ R} its language. Let Σ be a collection of p.p.t. algorithms Σ.ann,
Σ.res, Σ.sim, Σ.ext, and polynomial time predicate Σ.ver. Let C be a finite set
called the challenge space. Then Σ is a Σ-protocol for relation R if:

Completeness. If (a; s) ← Σ.ann(v;w), c ∈ C, and r ← Σ.res(v;w; a; s; c),
then Σ.ver(v; a; c; r).

Special Soundness. If v ∈ V , c �= c′, Σ.ver(v; a; c; r), and Σ.ver(v; a; c′; r′),
then w ← Σ.ext(v; a; c; c′; r; r′) satisfies (v;w) ∈ R.

Special Honest-Verifier Zero-Knowledgeness. If v ∈ LR, c ∈ C, then
(a; r) ← Σ.sim(v; c) has the same probability distribution as (a; r) obtained
by (a; s) ← Σ.ann(v;w), r ← Σ.res(v;w; a; s; c). If v /∈ LR, then (a; r) ←
Σ.sim(v; c) satisfies Σ.ver(v; a; c; r).

Completeness states that a protocol between a honest prover and verifier
succeeds; special soundness states that there exists an extractor Σ.ext that can
extract a witness from two conversations with the same announcement; and spe-
cial honest-verifier zero-knowledgeness states that there exists a simulator Σ.sim
that can generate conversations with the same distribution as full protocol runs
without knowing the witness. While special honest-verifier zero-knowledgeness
demands an identical distribution for the simulation, statistical indistinguisha-
bility is sufficient for our purposes; in this case, we speak of a “statistical Σ-
protocol”. In the remainder, we will need that our Σ-protocols have “non-trivial
announcements”, in the sense that when (a; r) and (a′; r′) are both obtained
from Σ.sim(v; c), then with overwhelming probability, a �= a′. (Indeed, this will
be the case for all Σ-protocols in this paper.) This property, which is required
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Σ-Protocol 2. ΣCM: Proof of correct multiplication
[Relation] R = {(X, Y, Z; y, r, s) | Y = (1 + N)yrN ∧ Z = XysN}
[Announcement] Σ.ann(X, Y, Z; y, r, s) :=

a ∈R ZN ; u, v ∈R Z
∗
N ; A := (1 + N)auN ; B := XavN ; return (A, B; a, u, v)

[Response] Σ.res(X, Y, Z; y, r, s; A, B; a, u, v; c) :=

t := �(a + cy)/N� ; d := a + cy; e := urc(1 + N)t; f := vXtsc; return (d, e, f)

[Verification] Σ.ver(X, Y, Z; A, B; c; d, e, f) := (1 + N)deN ?
= AY c ∧ XdfN ?

= BZc

[Extractor] Σ.ext(X, Y, Z; A, B; c; c′; d, e, f ; d′, e′, f ′) :=
α, β := “values such that α(c − c′) + βN = 1”

return ((d − d′)α, (e/e′)αY β , (f/f ′)αZβ)

[Simulator] Σ.sim(X, Y, Z; c) :=

d ∈R ZN ; e, f ∈R Z
∗
N ; A := (1 + N)deNY −c; B := XdfNZ−c

return (A, B; c; d, e, f)

by the Fiat-Shamir heuristic [AABN08], essentially follows from the hardness of
the relation; see [SV15] for details.

The CDN protocol uses a sub-protocol in which multiple parties simulta-
neously provide proofs based on the same challenge, called the “multiparty Σ-
protocol”. Namely, suppose each party from a set P wants to prove knowledge
of a witness for a statement vi ∈ LR with some Σ-protocol. To achieve this, each
party in P broadcasts a commitment to its announcement; then, the computa-
tion parties jointly generate a challenge; and finally, all parties in P broadcast
their response to this challenge, along with an opening of their commitment.
The multiparty Σ-protocol is used as a building block in the CDN protocol by
constructing a simulator that provides proofs on behalf of honest parties with-
out knowing their witnesses (“zero-knowledgeness”), and extracts witnesses from
corrupted parties that give correct proofs (“soundness”).

The CDN protocol uses three Σ-protocols: ΣPK proving plaintext knowledge,
ΣCM proving correct multiplication, and ΣCD proving correct decryption. The
first two are due to [CDN01] (which also proves that they are Σ-protocols). ΣPK

(Σ-Protocol 1) proves knowledge of x, r such that X = (1+N)xrN is an encryp-
tion of x with randomness r. ΣCM (Σ-Protocol 2) proves knowledge of (y, r, s)
for (X,Y,Z) such that Y = (1+N)yrN is an encryption of y with randomness
r and Z = XysN is an encryption of the product of the plaintexts of X and Y
randomised with s.

Proof ΣCD of correct decryption (Σ-protocol 3) is due to [Jur03]. In the
threshold variant of Paillier encryption due to Damg̊ard and Jurik [DJ01,Jur03],
safe primes p = 2p′ + 1, q = 2q′ + 1 are used for the RSA modulus N = pq. Key
generation involves generating a secret value d such that, given c′ = c4Δ2d,
anybody can compute the plaintext of c by “decoding” c′ as paillierdecode(c′) :=
((c′ − 1) ÷ N)(4Δ2)−1 mod N . Here, Δ = n! and ÷ denotes division as integers
(using N |c′ −1). The value d is then (t, n) Shamir-shared modulo Np′q′ between
the computation parties as shares si. Threshold decryption is done by letting t
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Σ-Protocol 3. ΣCD: Proof of correct decryption (statistical)
[Relation] R = {(d, di, v, vi; Δsi) | d2

i = d4Δsi ∧ vi = vΔsi}
[Announcement] Σ.ann(d, di, v, vi; Δsi) := // k = log2 N ; k2 stat. sec. param

u ∈R [0, 22k+2k2 ]; a := d4u; b := vu; return (a, b; u)

[Response] Σ.res(d, di, v, vi; Δsi; a, b; u, c) :=
r := u + cΔsi; return r

[Verification] Σ.ver(d, di, v, vi; a, b; c; r) := d4r ?
= a(di)

2c ∧ vr ?
= b(vi)

c

[Extractor] Σ.ext(d, di, v, vi; a, b; c; c′; r; r′) := return (r − r′)/(c − c′)

[Simulator] Σ.sim(d, di, v, vi; c) :=

r ∈R [0, 22k+2k2 ]; return(d4r(di)
−2c, vr(vi)

−e; c; r)

parties each compute ci = c2Δsi ; the value c4Δ2d is obtained by applying Shamir
reconstruction “in the exponent”. Correct decryption is proven with respect to
a public set of verification values. Namely, the public key includes values v,
v0 = vΔ2d, and vi = vΔsi for all computation parties i ∈ P. Hence, in ΣCD,
parties prove correctness of their decryption shares ci of c by proving knowledge
of Δsi = logc4(c2i ) = logv(vi) for (c, ci, v, vi). (In the same way, v0 can be used
to prove correctness of c′ with respect to c using a single instance of ΣCD.) Note
that this is a statistical Σ-protocol: this is because witness Δsi is a value modulo
the secret value Np′q′, so modulo reduction is not possible.

2.3 Security of the CDN Protocol

In [CDN01], it is shown that the CDN protocol implements secure function
evaluation in Canetti’s non-concurrent model [Can98] if only a minority of com-
putation parties are corrupted. Essentially, this means that in this case, the com-
putation succeeds; the result is correct; and the honest parties’ inputs remain
private. This conclusion is true assuming honest set-up and security of the Pail-
lier encryption scheme and the trapdoor commitment scheme used. If a majority
of computation parties is corrupted, then because threshold �n/2� is used for the
threshold cryptosystem, privacy is broken. As noted [ST06,IPS09], this can be
remedied by raising the threshold, but in that case, the corrupted parties can
make the computation break down at any point by refusing to cooperate. In
Sect. 4.1, we present a variant of this model in which we prove the security of
our protocols (using random oracles but no trapdoor commitments).

3 Multiparty Non-interactive Proofs

In this section, we show how to produce non-interactive zero-knowledge proofs in
a multiparty way. At several points in the above CDN protocol, all parties from
a set P prove knowledge of witnesses for certain statements; the computation
parties are convinced that those parties that succeed, do indeed know a witness.
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In CDN, these proofs are interactive; but for universal verifiability, we need non-
interactive proofs that convince any third party. The traditional method to make
proofs non-interactive is the Fiat-Shamir heuristic; in Sect. 3.1, we outline it,
and show that it is problematic in a multiparty setting. In Sect. 3.2, we present
a new, “multiparty” Fiat-Shamir heuristic that works in our setting, and has
the advantage of achieving smaller proofs by “homomorphically combining” the
proofs of individual parties. In the remainder, C ⊂ I ∪ P ∪ {R,V} denotes the
set of corrupted parties; and F denotes the set of parties who failed to provide
a correct proof when needed; this only happens for corrupted parties, so F ⊂ C.

Our results are in the random oracle model [BR93,Wee09], an idealised model
of hash functions. In this model, evaluations of the hash function H are modelled
as queries to a “random oracle” O that evaluates a perfectly random function.
When simulating an adversary, a simulator can intercept these oracle queries
and answer them at will, as long as the answers look random to the adversary.
Security in the random oracle model does not generally imply security in the
standard model [GK03], but it is often used because it typically gives simple,
efficient protocols, and its use does not seem to lead to security problems in
practice [Wee09]. See [SV15] for a detailed description of our use of random
oracles; and Sect. 5 for a discussion of the real-world implications of the particular
flavour of random oracles we use.

3.1 The Fiat-Shamir Heuristic and Witness-Extended Emulation

The obvious way of making the proofs in the CDN protocol non-interactive, is
to apply the Fiat-Shamir heuristic to all individual Σ-protocols. That is, party
i ∈ P produces proof of knowledge π of a witness for statement v as follows2:

(a; s) := Σ.ann(v;w); c := H(v||a||aux); r := Σ.res(v;w; a; s; c);π := (a; c; r).

Let us denote this procedure fsprove(Σ; v;w; aux). A verifier accepts those proofs
π = (a; c; r) for which fsver(Σ; v;π; aux) holds, where fsver(Σ; v; a, c, r; aux) is
defined as H(v||a||aux) = c ∧ Σ.ver(v; a; c; r).

Recall that security proofs require a simulator that simulates proofs of honest
parties (zero-knowledgeness) and extracts witnesses of corrupted parties (sound-
ness). In the random oracle model, Fiat-Shamir proofs for honest parties can be
simulated by simulating a Σ-protocol conversation (a, c, r) and programming the
random oracle so that H(v||a||aux) = c. Witnesses of corrupted parties can be
extracted by rewinding the adversary to the point where it made an oracle query
for v||a||aux and supplying a different value; but, as we discuss in [SV15], this
extraction can make the simulator very inefficient. In fact, if Fiat-Shamir proofs
take place in R different rounds, then extracting witnesses may increase the run-
ning time of the simulator by a factor O(R!). The reason is that the oracle query
2 Here, aux should contain at least the prover’s identity. Otherwise, corrupted parties

could replay proofs by honest parties, which breaks the soundness property below
because witnesses for these proofs cannot be extracted by rewinding the adversary
to the point of the oracle query and reprogramming the random oracle.
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for a proof in one round may have in fact already been made in a previous round,
in which case rewinding the adversary to extract one witness requires recursively
extracting witnesses for all intermediate rounds. Hence, we can essentially only
use the Fiat-Shamir heuristic in a constant number of rounds.

Moreover, in the CDN protocol, applying the Fiat-Shamir heuristic to each
individual proof has the disadvantage that the verifier needs to check a num-
ber of proofs that depends linearly on the number of computation parties. In
particular, for each multiplication gate, the verifier needs to check n proofs of
correct multiplication and t proofs of correct decryption. Next, we show that
we can avoid both the technical problems with witness extended emulation and
the dependence on the number of computation parties by letting the computa-
tion parties collaboratively produce “combined proofs”. (As discussed in [SV15],
there are other ways of just solving the technical problems with witness extended
emulation, but they are not easier than the method we propose.)

3.2 Combined Proofs with the Multiparty Fiat-Shamir Heuristic

The crucial observation (e.g., [Des93,KMR12]) allowing parties to produce non-
interactive zero-knowledge proofs collaboratively is that, for many Σ-protocols,
conversations of proofs with the same challenge can be “homomorphically com-
bined”. For instance, consider the classical Σ-protocol for proving knowledge of
a discrete logarithm due to Schnorr [Sch89]. Suppose we have two Schnorr con-
versations proving knowledge of x1 = logg h1, x2 = logg h2, i.e., two tuples
(a1; c; r1) and (a2; c; r2) such that gr1 = a1(h1)c and gr2 = a2(h2)c. Then
gr1+r2 = (a1a2)(h1h2)c, so (a1a2; c; r1 + r2) is a Schnorr conversation prov-
ing knowledge of discrete logarithm x1 + x2 = logg(h1h2). For our purposes, we
demand that such homomorphisms satisfy two properties. First, when conver-
sations of at least �n/2� parties are combined, the result is a valid conversation
(the requirement of having at least �n/2� conversations is needed for decryption
proofs to ensure that there are enough decryption shares). Second, when fewer
than �n/2� parties are corrupted, the combination of different honest announce-
ments with the same corrupted announcements is likely to lead to a different
combined announcement. This helps to eliminate the rewinding problems for
Fiat-Shamir discussed above.

Definition 2. Let Σ be a Σ-protocol for relation R ⊂ V ×W . Let Φ be a collec-
tion of partial functions Φ.stmt, Φ.ann, and Φ.resp. We call Φ a homomorphism
of Σ if:

Combination. Let c be a challenge; I a set of parties such that |I| ≥ �n/2�; and
{(vi; ai; ri)}i∈I a collection of statements, announcements, and responses. If
Φ.stmt({vi}i∈I) is defined and for all i, Σ.ver(vi; ai; c; ri) holds, then also
Σ.ver(Φ.stmt({vi}i∈I);Φ.ann({ai}i∈I); c;Φ.resp({ri}i∈I)).

Randomness. Let c be a challenge; C ⊂ I sets of parties such that |C| <
�n/2� ≤ |I|; {vi}i∈I statements s.t. Φ.stmt({vi}i∈I) is defined; and {ai}i∈I∩C

announcements. If (ai; ·), (a′
i; ·) ← Σ.sim(vi; c) ∀i ∈ I \ C, then with over-

whelming probability, Φ.ann({ai}i∈I) �= Φ.ann({ai}i∈I∩C ∪ {a′
i}i∈I\C).
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Protocol 4. MΣ: The Multi-Party Fiat-Shamir Heuristic
1. // pre: Σ is a Σ-protocol with homomorphism Φ, P is a set of non-failed
2. // parties (P ∩ F = ∅), vP = {vi}i∈P statements w/ witnesses wP = {wi}i∈P

3. // post: if |P \ F | ≥ �n/2�, then vP\F is the combined statement
4. // Φ.stmt({vi}i∈P\F ), and πP\F is a corresponding Fiat-Shamir proof
5. // invariant: F ⊂ C: set of failed parties only includes corrupted parties
6. (vP\F , πP\F ) ← MΣ(Σ, Φ, P, vP , wP , aux) :=
7. repeat
8. parties i ∈ P \ F do
9. (ai; si) := Σ.ann(vi; wi); hi := H(ai||i); bcast(hi)

10. parties i ∈ P \ F do bcast(ai)
11. F ′ := F ; F := F ∪ {i ∈ P \ F | hi �= H(ai||i)}
12. if F = F ′ then // all parties left provided correct hashes
13. c := H(Φ.stmt({vi}i∈P\F )||Φ.ann({ai}i∈P\F )||aux)
14. parties i ∈ P \ F do ri := Σ.res(vi; wi; ai; si; c); bcast(ri)
15. F := F ∪ {i ∈ P \ F | ¬Σ.ver(vi; ai; c; ri)}
16. if F = F ′ then // all parties left provided correct responses
17. return (Φ.stmt({vi}i∈P\F ),
18. (Φ.ann({ai}i∈P\F ); c; Φ.resp({ri}i∈P\F )))
19. until |P \ F | < �n/2� // until not enough parties left
20. return (⊥, ⊥)

Given a Σ-protocol with homomorphism Φ, parties holding witnesses {wi} for
statements {vi} can together generate a Fiat-Shamir proof (a;H(v||a||aux); r) of
knowledge of a witness for the “combined statement” v = Φ.stmt({vi}). Namely,
the parties each provide announcement ai for their own witness; compute a =
Φ.ann({ai}) and H(v||a||aux); and provide responses ri. Taking r = Φ.resp({ri}),
the combination property from the above definition guarantees that we indeed
get a validating proof. However, we cannot simply let the parties broadcast their
announcements in turn, because to prove security in that case, the simulator
needs to provide the announcements for the honest parties without knowing the
announcements of the corrupted parties, hence without being able to program
the random oracle on the combined announcement. We solve this by starting
with a round in which each party commits to its announcement (the same trick
was used in a different setting in [NKDM03])3.

The multiparty Fiat-Shamir heuristic (Protocol 4) let parties collaboratively
produce Fiat-Shamir proofs based on the above ideas. Apart from the above
procedure (lines 8, 9, 10, 13, and 14), the protocol also contains error handling.
Namely, we throw out parties that provide incorrect hashes to their announce-
ments (line 11) or incorrect responses (line 15). If we have correct responses
for all correctly hashed announcements, then we apply the homomorphism (line
17–18); otherwise, we try again with the remaining parties. If the number of
parties drops below �n/2�, the homomorphism can no longer be applied, so we

3 As in [NKDM03], it may be possible to remove the additional round under the
non-standard known-target discrete log problem.
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return with an error (line 20). Note that, as in the normal Fiat-Shamir heuristic,
the announcements do not need to be stored if they can be computed from the
challenge and response (as will be the case for the Σ-protocols we consider).

Concerning security, recall that we need a simulator that simulates proofs
of honest parties without their witnesses (zero-knowledgeness) and extracts the
witnesses of corrupted parties (soundness). In [SV15], we present such a simula-
tor. Essentially, it “guesses” the announcements of the corrupted parties based
on the provided hashes; then simulates the Σ-protocol for the honest parties;
and programs the random oracle on the combined announcement. It obtains wit-
nesses for the corrupted parties by rewinding to just before the honest parties
provide their announcements: this way, the corrupted parties are forced to use the
announcements that they provided the hashes of (hence special soundness can
be invoked), whereas the honest parties can provide new simulated announce-
ments by reprogramming the random oracle. The simulator requires that fewer
than �n/2� provers are corrupted so that we can use the randomness property of
the Σ-protocol homomorphism (Definition 2). (When more than �n/2� provers
are corrupted, we use an alternative proof strategy that uses witness-extended
emulation instead of this simulator.)

3.3 Homomorphisms for the CDN Protocol

In the CDN protocol, the multiparty Fiat-Shamir heuristic allows us to obtain a
proof that multiplication was done correctly that is independent of the number
of computation parties. Recall that, for multiplication of encryptions X of x and
Y of y, each computation party provides encryptions Di of di and Ei of di · y,
and proves that Ei encrypts the product of the plaintexts of Y and Di; and each
computation party provides decryption share Si of encryption XD1 · · · Dn, and
proves it correct. As we will show now, the multiplication proofs can be combined
with homomorphism ΦCM into one proof that

∏
Ei encrypts the product of the

plaintexts of Y and
∏

Di; and the decryption proofs can be combined with
homomorphism ΦCD into one proof that a combination S0 of the decryption
shares is correct. In the CDN protocol, the individual Di, Ei, and Si are not
relevant, so also the combined values convince a verifier of correct multiplication.

In more detail, the homomorphism ΦCM for ΣCM is defined on statements
{(X,Yi, Zi)}i∈I which share encryption X, and it proves that the multiplication
on plaintexts of X with

∏
Yi is equal to

∏
Zi. We let Φ.stmt({(X,Yi, Zi)}i∈I) =(

X,
∏

i∈I Yi,
∏

i∈I Zi

)
and Φ.ann({Ai, Bi}i∈I) =

(∏
i∈I Ai,

∏
i∈I Bi

)
. For the

response, we would like to define d =
∑

i∈I di, e =
∏

i∈I ei, and f =
∏

i∈I fi; but
because

∑
i∈I di is computed modulo N , we need to add correction factors to e

and f : e =
(∏

i∈I ei

)
(1+N)k and f =

(∏
i∈I fi

)
Y k (where k =

⌊
(
∑

i∈I di)/N
⌋
).

The homomorphism ΦCD for ΣCD combines correctness proofs of decryption
shares into a proof of correct decryption with respect to an overall verification
value. Let I ≥ �n/2� be sufficiently many parties to decrypt a ciphertext, let
{λi}i∈I be Lagrange interpolation coefficients for these parties. (Note that λi are
not always integral; but we will always use Δλi, which are integral.) Let si be
their shares of the decryption key d =

∑
i∈I Δλisi. Recall that decryption works
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by letting each party i ∈ I provide decryption share ci = c2Δsi ; computing c′ =∏
i∈I c2Δλi

i ; and from this determining the plaintext as paillierdecode(c′). Parties
prove correctness of their decryption shares ci by proving that logc4 c2i = logv vi,
where v, vi are publicly known verification values such that vi = vΔsi . Now, if
logc4 c2i = logv vi for all i, then

logc4 c′ = logc4

∏

i∈I

c2Δλi
i = logv

∏

i∈I

vΔλi
i = logv

∏

i∈I

(vΔsi)Δλi = logv vΔ2d.

Hence, decryption proofs for shares ci with respect to verification values vi can
be combined into a decryption proof for c′ with respect to verification value
v0 := vΔ2d. Formally, Φ.stmt({(d, di, v, vi)}i∈I =

(
d,

∏
i∈I cΔλi

i , v,
∏

i∈I vΔλi
i

)
;

Φ.ann({(ai, bi)}i∈I) =
(∏

i∈I aΔλi
i ,

∏
i∈I bΔλi

i

)
; and Φ.resp({ri}i∈I) =

∑
Δλiri.

For the combination property of Definition 2, note that we really need I ≥ �n/2�
in order to apply Lagrange interpolation. For the randomness property, note that
if |C| < �n/2�, then at least one party in I /∈ C has a non-zero interpolation
coefficient, hence the contribution of this party to the announcement ensures
that the two combined announcements are different.

4 Universally Verifiable MPC

In the previous section, we have shown how to produce non-interactive zero-
knowledge proofs in a multiparty way. We now use this observation to obtain uni-
versally verifiable MPC. We first define security for universally verifiable MPC;
and then obtain universally verifiable MPC by adapting the CDN protocol.

4.1 Security Model for Verifiable MPC

Our security model is an adaptation of the model of [Can98,CDN01] to the
setting of universal verifiability in the random oracle model. We first explain
the general execution model, which is as in [Can98,CDN01] but with a random
oracle added; we then explain how to model verifiability in this execution model
as the behaviour of the ideal-world trusted party. The general execution model
compares protocol executions in the real and ideal world.

In the real world, a protocol π between m input parties i ∈ I, n computation
parties i ∈ P, a result party R and a verifier V is executed on an open broadcast
network with rushing in the presence of an active static adversary A corrupting
parties C ⊂ I ∪ P ∪ {R,V}. The protocol execution starts by incorruptibly
setting up the Paillier threshold cryptosystem, i.e., generating public key pk =
(N, v, v0, {vi}i∈P) with RSA modulus N and verification values v, v0, vi, and
secret key shares {si}i∈P (see Sect. 2.2). Each input party i ∈ I gets input
(pk, xi); each computation party i ∈ P gets input (pk, si); and the result party
R gets input pk. The adversary gets the inputs (pk, {xi}i∈I∩C , {si}i∈P∩C) of
the corrupted parties, and has an auxiliary input a. During the protocol, parties
can query the random oracle; the oracle answers new queries randomly, and
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Process 5. TVSFE: trusted party for verifiable secure function evaluation
1. // compute f on {xi}i∈I for R with corrupted parties C; V learns encryption
2. TVSFE(C, (N, v, v0, {vi}i∈P)) :=
3. // input phase
4. foreach i ∈ I \ C do xi := recv(Ii) // honest inputs
5. {xi}i∈I∩C := recv(S) // corrupted inputs
6. if |P ∩ C| ≥ �n/2� then send({xi}i∈I\C , S) // send to corrupted majority
7. // computation phase
8. r := f(x1, . . . , xm)
9. // output phase

10. if R /∈ C then // honest R: adversary learns encryption, may block result

11. s ∈R Z
∗
N ; R := (1 + N)rsN ; res := (r, s); send(R, S)

12. if |P ∩ C| ≥ �n/2� and recv(S) = ⊥ then res := ⊥; R := ⊥
13. send(res, R)
14. else // corrupted R: adversary learns output, may block result to V
15. send(r, S); s := recv(S)

16. if s = ⊥ then R := ⊥ else R := (1 + N)rsN

17. // proof phase
18. if V /∈ C then send(R, V)

repeated queries consistently. At the end of the protocol, each honest party
outputs a value according to the protocol; the corrupted parties output ⊥; and
the adversary outputs a value at will. Define EXECπ,A(k, (x1, . . . , xm), C, a) to
be the random variable, given security parameter k, consisting of the outputs
of all parties (including the adversary) and the set O of oracle queries and
responses.

The ideal-world execution similarly involves m input parties i ∈ I, n compu-
tation parties i ∈ P, result party R, verifier V, and an adversary S corrupting
parties C ⊂ I ∪P ∪{R,V}; but now, there is also an incorruptible trusted party
T . As before, the execution starts by setting up the keys (pk, {si}i∈P) of the
Paillier cryptosystem. The input parties receive xi as input; the trusted party
receives a list C of corrupted parties and the public key pk. Then, it runs the code
TVSFE shown in Process 5, which we explain later. The adversary gets inputs
(pk, C, {xi}i∈I∩C , {si}i∈P∩C), and outputs a value at will. In this model, there
is no random oracle; instead, the adversary chooses the set O of oracle queries
and responses (typically, those used to simulate a real-world adversary). As in
the real-world case, IDEALTSFE,S(k, (x1, . . . , xm), C, a) is the random variable,
given security parameter k, consisting of all parties’ outputs and O.

Definition 3. Protocol π implements verifiable secure function evaluation in the
random oracle model if, for every probabilistic polynomial time real-world adver-
sary A, there exists a probabilistic polynomial time ideal-world adversary SA such
that, for all inputs x1, . . . , xm; all sets of corrupted parties C; and all auxiliary
input a: EXECπ,A(k;x1, . . . , xm;C; a) and IDEALTVSFE,SA(k;x1, . . . , xm;C; a)
are computationally indistinguishable in security parameter k.
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We remark that, while security in non-random-oracle secure function evalua-
tion [Can98,CDN01] is preserved under (subroutine) composition, this is not the
case for our random oracle variant. The reason is that our model and protocols
assume that the random oracle is not used outside of the protocol. Using the
random oracle model with dependent auxiliary input [Unr07,Wee09] might be
enough to obtain a composition property; but adaptations are needed to make
our protocol provably secure in that model. See Sect. 5 for a discussion.

We now discuss the trusted party TVSFE for verifiable secure function eval-
uation. Whenever the computation succeeds, TVSFE guarantees that the results
are correct. Namely, TVSFE sends the result r of the computation and random-
ness s to R (line 13), and it sends encryption (1 + N)rsN of the result with
randomness s to V (line 18); if the computation failed, R gets (⊥,⊥) and V
gets ⊥.4 Whether TVSFE guarantees privacy (i.e., only R can learn the result)
and robustness (i.e., the computation does not fail) depends on which parties
are corrupted. Privacy and robustness with respect to R are guaranteed as long
as only a minority of computation parties are corrupted. If not, then in line 6,
TVSFE sends the honest parties’ inputs to the adversary; and in line 12, it gives
the adversary the option to block the computation by sending ⊥. Note that the
adversary receives the inputs of the honest parties after it provides the inputs of
the corrupted parties, so even if privacy is broken, the adversary cannot choose
the corrupted parties’ inputs based on the honest parties’ inputs. For robustness
with respect to V, the result party needs to be honest. If not, then in line 15,
TVSFE gives the adversary the option to block V’s result by sending ⊥; in any
case, it can choose the randomness. (Note that these thresholds are specific to
CDN’s “honest majority” setting; e.g., other protocols may satisfy privacy if all
computation parties except one are corrupted.)

Note that this model does not cover the “universality” aspect of universally
verifiable MPC. This is because the security model for secure function evaluation
only covers the input/output behaviour of protocols, not the fact that “the
verifier can be anybody”. Hence, we design universally verifiable protocols by
proving that they are verifiable, and then arguing based on the characteristics
of the protocol (e.g., the verifier does not have any secret values) that this
verifiability is “universal”.

4.2 Universally Verifiable CDN

We now present the UVCDN protocol (Protocol 6) for universally verifiable
secure function evaluation. At a high level, this protocol consists of the input,
4 Although we only guarantee computational indistinguishability and the verifier does

not know what value is encrypted, this definition does guarantee that V receives
the correct result. This is because the ideal-world output of the protocol execution
contains R’s r and s and V’s (1 + N)rsN , so a distinguisher between the ideal and
real world can check correctness of V’s result. (If s were not in R’s result, this would
not be the case, and correctness of V’s result would not be guaranteed.) Also, note
that although privacy depends on the security of the encryption scheme, correctness
does not rely on any knowledge assumption.
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Protocol 6. UVCDN: universally verifiable CDN
1. // pre: pk/{si}i∈P threshold Paillier public/secret keys, {xi}i∈I function input
2. // post: output R according to ideal functionality ITM 5
3. R ← UVCDN(pk = (N, v, v0, {vi}i∈P), {si}i∈P , {xi}i∈I) :=
4. parties i ∈ I do // input phase

5. ri ∈R Z
∗
N ; Xi := (1 + N)xirN

i ; πPK,i := fsprove(ΣPK; Xi; xi, ri; i)
6. hi := H(Xi||πPK,i||i); bcast(hi); bcast(Xi, πPK,i)
7. F := {i ∈ I | hi �= H(Xi||πPK,i||i) ∨ ¬fsver(ΣPK; Xi; πPK,i; i)}
8. foreach i ∈ F do Xi := 1
9. foreach gate do // computation phase

10. if 〈constant gate c with value v〉 then Xc := (1 + N)v

11. if 〈addition gate c with inputs a, b〉 then Xc := XaXb

12. if 〈subtraction gate c with inputs a, b〉 then Xc := XaX−1
b

13. if 〈multiplication gate c with inputs a, b〉 then // [DN03] multiplication
14. parties i ∈ P \ F do

15. di ∈R ZN ; ri, ti ∈R Z
∗
N ; Di := (1 + N)dirN

i ; Ei := (Xb)
ditN

i

16. bcast(Di, Ei)
17. (·, Dc, Ec; πCMc) :=
18. MΣ(ΣCM, ΦCM, P \ F, {(Xb, Di, Ei)}i∈P\F , {(di, ri, ti)}i∈P\F )
19. if |P \ F | < �n/2� then break
20. Sc := Xa · Dc

21. parties i ∈ P \ F do Si := (Sc)
2Δsi ; bcast(Si)

22. (·, S0,c, ·, ·; πCDc) :=
23. MΣ(ΣCD, ΦCD, P \ F, {(Sc, Si, v, vi)}i∈P\F , {Δsi}i∈P\F )
24. if |P \ F | < �n/2� then break

25. s := paillierdecode(S0,c); Xc := (Xb)
s · E−1

c

26. if |P \ F | < �n/2� then parties i ∈ I ∪ P ∪ {R} do return ⊥
27. party R do d ∈R ZN ; s ∈R Z

∗
N ; D := (1 + N)dsN // output phase

28. party R do πPKd := fsprove(ΣPK; D; d, s; R); bcast(D, πPKd)
29. if ¬fsver(ΣPK; D; πPKd; R) then parties i ∈ I ∪ P ∪ {R} do return ⊥
30. Y := Xoutgate · D−1;parties i ∈ P \ F do Yi := Y 2Δsi ; bcast(Yi)
31. (·, Y0, ·, ·; πCD; y) := MΣ(ΣCD, ΦCD, P \ F, {(Y, Yi, v, vi)}i∈P\F , {Δsi}i∈P\F , D)
32. if |P \ F | < �n/2� then parties i ∈ I ∪ P ∪ {R} do return ⊥
33. party R do
34. y := paillierdecode(Y0); r := y + d
35. send({(Dc, Ec, ΠCMc, S0,c, ΠCDc)}c∈gates, (D, πPKd, Y0, πCDy); V) // proof
36. return (r, s) // phase
37. parties i ∈ I ∪ P do return ⊥
38. party V do π := recv(R); return vercomp(pk, {Xi}i∈I , π)

computation, and multiplication phases of the CDN protocol, with all proofs
made non-interactive, followed by a new proof phase. As discussed, we can use
the normal Fiat-Shamir (FS) heuristic in only a constant number of rounds; and
we can use the multiparty FS heuristic only when it gives a “combined state-
ment” that makes sense. Hence, we choose to use the FS heuristic for the proofs
by the input and result parties, and the multiparty FS heuristic for the proofs
by the computation parties.
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Algorithm 7. vercomp: verifier’s gate-by-gate verification of the computation
1. // pre: pk public key, {Xi}i∈I encryptions, ({Πmuli}, Πresult) tuple
2. // post: if ({Πmuli}, Πresult) proves correctness of Y , Xo = Y ; otherwise, Xo = ⊥
3. Xo ← vercomp(pk = (N, v, v0, {vi}i∈P), {Xi}i∈I , ({Πmuli}, Πresult)) :=
4. // verification of input phase: see lines 6–8 of UVCDN
5. // verification of computation phase
6. foreach gate do
7. if 〈constant gate c with value v〉 then Xc := (1 + N)v

8. if 〈addition gate c with inputs a, b〉 then Xc := XaXb

9. if 〈subtraction gate c with inputs a, b〉 then Xc := XaX−1
b

10. if 〈multiplication gate c with inputs a, b〉 then

11. (D; E; a, c, r; S0; a
′, c′, r′) := Πmulc; S := Xa · D−1

12. if ¬fsver(ΣCM; Xb, D, E; a; c; r) then return ⊥
13. if ¬fsver(ΣCD; S, S0, v, v0; a

′; c′; r′) then return ⊥
14. s := paillierdecode(S0); Xc := (Xb)

sE−1

15. // verification of output phase
16. (D; aout, cout, rout; Y0; adec, cdec, rdec) := Πresult

17. if ¬fsver(ΣPK; D; aout, cout, rout; R) then return ⊥
18. Y := Xoutgate · D−1

19. if ¬fsver(ΣCD; Y, Y0, v, v0; adec, cdec, rdec; D) then return ⊥
20. y := paillierdecode(Y0)
21. return (1 + N)yD // encryption of y + d = r

In more detail, during the input phase of the protocol, the input parties
provide their inputs (lines 4–8). As in the CDN protocol, each party encrypts
its input and compiles a FS proof of knowledge (line 5). In the original CDN
protocol, these encryptions and proofs would be broadcast directly; however, if a
majority of computation parties are corrupted, then this allows corrupted parties
to adapt their inputs based on the inputs of the honest parties. To prevent this,
we let each party first broadcast a hash of its input and proof; only after all
parties have committed to their inputs using this hash are the actual encrypted
inputs and proofs revealed (line 6). All parties that provide an incorrect hash or
proof have their inputs set to zero (line 7–8).

The remainder of the computation follows the CDN protocol. During the
computation phase, the function is evaluated gate-by-gate; for multiplication
gates, the multiplication protocol from [DN03] is used, with proofs of correct
multiplication and decryption using the multiparty FS heuristic (lines 14–25).
During the output phase, the result party obtains the result by broadcasting an
encryption of a random d and proving knowledge using the normal FS heuristic
(lines 27–28); the computation parties decrypt the result plus d, proving cor-
rectness using the multiparty FS heuristic (line 31). From this, the result party
learns result r (line 34); and it knows the intermediate values from the protocol
and the proofs showing they are correct.

Finally, we include a proof phase in the UVCDN protocol in which the result
party sends these intermediate values and proofs to the verifier (line 35). The
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verifier runs procedure vercomp (Algorithm 7) to verify the correctness of the
computation (line 38). The inputs to this verification procedure are the public
key of the Paillier cryptosystem; the encrypted inputs {Xi}i∈I by the input
parties; and the proof π by the result party (which consists of proofs for each
multiplication gate, and the two proofs from the output phase of the protocol).
The verifier checks the proofs for each multiplication gate from the computation
phase (lines 6–14); and the proofs from the output phase (lines 16–20), finally
obtaining an encryption of the result (line 21). While not specified in vercomp,
the verifier does also verify the proofs from the input phase: namely, in lines
7–8 of UVCDN, the verifier receives encrypted inputs and verifies their proofs
to determine the encrypted inputs {Xi}i∈I of the computation.

Apart from checking the inputs during the input phase, the verifier does not
need to be present for the remainder of the computation until receiving π from
R. This is what makes verification “universal”: in practice, we envision that a
trusted party publicly announces the Paillier public keys, and the input parties
publicly announce their encrypted inputs with associated proofs: then, anybody
can use the verification procedure to verify if a given proof π is correct with
respect to these inputs. In [SV15], we prove that:

Theorem 1. Protocol UVCDN implements verifiable secure function evaluation
in the random oracle model.

The proof uses two simulators: one for a honest majority of computation
parties; one for a corrupted majority. The former simulator extends the one
from [CDN01], obtaining privacy with a reduction to semantic security of the
threshold Paillier cryptosystem. The latter does not guarantee privacy, and so
can simulate the adversary by running the real protocol, ensuring correctness by
witness-extended emulation.

5 Concluding Remarks

Our security model is specific to the CDN setting in two respects. First, we
explicitly model that the verifier receives a Paillier encryption of the result (as
opposed to another kind of encryption or commitment). We chose this formula-
tion for concreteness; but our model generalises easily to other representations
of the result. Second, it is specific to the setting where a minority of parties may
be actively corrupted; but it is possible to change the model to other corruption
models. For instance, it is possible to model the setting from [BDO14] where
privacy is guaranteed when there is at least one honest computation party (and
our protocols can be adapted to that setting). The combination of passively
secure multiparty computation with universal verifiability is another interesting
possible adaptation.

Our protocols are secure in the random oracle model “without dependent
auxiliary input” [Wee09]. This means our security proofs assume that the ran-
dom oracle has not been used before the protocol starts. Moreover, our simulator
can only simulate logarithmically many sequential runs of our protocol due to
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technical limits of witness-extended emulation. These technical issues reflect the
real-life problem that a verifier cannot see if a set of computation parties have
just performed a computation, or they have simply replayed an earlier computa-
tion transcript. As discussed in [Unr07], both problems can be solved in practice
by instantiating the random oracle with a keyed hash function, with every com-
putation using a fresh random key. Note that all existing constructions require
the random oracle model; achieving universally verifiable (or publicly auditable)
multiparty computation in the standard model is open.

Several interesting variants of our protocol are possible. First, it is easy to
achieve publicly auditable multiparty computation [BDO14] by performing a
public decryption of the result rather than a private decryption for the result
party. Another variant is basic outsourcing of computation, in which the result
party does not need to be present at the time of the computation, but afterwards
gets a transcript from which it can derive the computation result. Finally, it is
possible to achieve universal verifiability using other threshold cryptosystems
than Paillier. In particular, while the threshold ElGamal cryptosystem is much
more efficient than threshold Paillier, it cannot be used directly with our pro-
tocols because it does not have a general decryption operation; but universally
verifiable multiparty using ElGamal should still be possible by instead adapting
the “conditional gate” variant of the CDN protocol from [ST04].

Finally, to close the loop, we note that our techniques can also be applied to
reduce the cost of verification in universally verifiable voting schemes. Namely,
for voting schemes relying on homomorphic tallying, we note that the Σ-proofs
for correct decryption of the election result by the respective talliers can be
combined into a single Σ-proof of constant size (independent of the number
of talliers). Similarly, for voting schemes relying on mix-based tallying, the Σ-
proofs for correct decryption of each vote by the respective talliers is reduced to
a constant size per vote.
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