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Abstract. Feature extraction and learning play a critical role for visual per-
ception tasks. We focus on improving the robustness of the kernel descriptors
(KDES) by embedding context cues and further learning a compact and dis-
criminative feature codebook for feature reduction using Rényi entropy based
mutual information. In particular, for feature extraction, we develop a new set of
kernel descriptors−Context Kernel Descriptors (CKD), which enhance the
original KDES by embedding the spatial context into the descriptors. Context
cues contained in the context kernel enforce some degree of spatial consistency,
thus improving the robustness of CKD. For feature learning and reduction, we
propose a novel codebook learning method, based on a Rényi quadratic entropy
based mutual information measure called Cauchy-Schwarz Quadratic Mutual
Information (CSQMI), to learn a compact and discriminative CKD codebook.
Projecting the original full-dimensional CKD onto the codebook, we reduce the
dimensionality of CKD while preserving its discriminability. Moreover, the
latent connection between Rényi quadratic entropy and the mapping data in
kernel feature space further facilitates us to capture the geometric structure as
well as the information about the underlying labels of the CKD using CSQMI.
Thus the resulting codebook and reduced CKD are discriminative. We verify the
effectiveness of our method on several public image benchmark datasets such as
YaleB, Caltech-101 and CIFAR-10, as well as a challenging chicken feet dataset
of our own. Experimental results show that our method has promising potential
for visual object recognition and detection applications.

Keywords: Context Kernel Descriptors � Cauchy-Schwarz Quadratic Mutual
Information � Feature extraction and learning � Object classification and
detection

1 Introduction

Recognition and detection of real-world objects are challenging, because it is difficult
to model objects with significant variations in color, shape and texture. In addition, the
backgrounds in which the objects exist are often complex and cluttered, and we have to
account for changes of illumination, pose, size, and number of objects in the most
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contrived situations. Currently, local based image representations [1–13] prevail in the
state-of-the-art object recognition and detection algorithms. These local based image
representations follow the bag-of-features framework [5, 6]. It first extracts low-level
patch descriptors over a dense grid or salient points, then encodes them into mid-level
features in a unsupervised way using mix of Gaussian, K-means or sparse coding, and
finally derives the image-level representation using spatial pooling schemes [5–7].
Usually, carefully designed descriptors such as SIFT [8], SURF [9], LBP [10] and
HOG [11] are used as low-level descriptors to gather statistics of pixel attributes within
local patches. However, design of hand-crafted descriptors is non-trivial as sufficient
prior knowledge is required and well-tuned parameters are necessary to achieve a good
performance. Besides, we still lack a deep understanding on the design rules behind
them. Recently, Bo et al. [1, 2] tried to answer how SIFT and HOG measure the
similarity between image patches and interpret the design philosophy behind them from
a kernel’s view. They showed that the inner product of orientation histogram applied in
SIFT and HOG is a particular match kernel over image patches. This insight provides a
general way to turn pixel-level attributes into patch-level features with match kernels
comparing similarities between image patches. Based on that, they designed a set of
low-level descriptors called kernel descriptors (KDES) and kernel principal component
analysis (KPCA) [14, 15] was used to reduce the dimensionality of KDES. However,
KPCA only captures second-order statistics of KDES and cannot preserve its
high-order statistics. It inevitably degrades the distinctiveness of KDES for nonlinear
clustering and recognition where high-order statistics are needed. Wang et al. [4]
merged the image label into the design of patch-level KDES and derived a variant
KDES called supervised kernel descriptors (SKDES). Guiding KDES under a super-
vised framework with the large margin nearest neighbor criterion and low-rank regu-
larization, SKDES reported an improved performance on object recognition.

In this work, we focus on improving the original KDES by embedding context cues
into the descriptors and further learning a compact and discriminative Context Kernel
Descriptors (CKD) codebook for object recognition and detection using information
theoretic learning techniques. In particular, for feature extraction, we develop a set of
CKD that enhance the KDES with embedded spatial context. Context cues enforce
some degree of spatial consistency which improves the robustness of the resulting
descriptors. For feature learning, we adopt the Rényi entropy based Cauchy-Schwarz
Quadratic Mutual Information (CSQMI) [28], as an information theoretic measure, to
learn a compact and discriminative CKD codebook from a rich and redundant CKD
dictionary. In our method, codebook learning involves two steps including the code-
book selection and refinement. In the first step, a group of compact and discriminative
basis vectors are selected out of all available basis vectors to construct the codebook.
By maximizing the CSQMI between the selected basis vectors in the codebook and the
remaining basis vectors in the dictionary, we obtain a compact CKD codebook. By
maximizing the CSQMI between the low-dimensional CKD generated from the
codebook and their class labels, we also boost the discriminability of the learned CKD
codebook. In the second step, we further refine the codebook for improved discrim-
inability and low approximation error with a gradient ascent method that maximizes the
CSQMI between the low-dimensional CKD and their class labels, given the constraint
on a sufficient approximation accuracy. Projecting the full-dimensional CKD onto the
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learned CKD codebook, we derive the final low-dimensional discriminative CKD for
feature representation. Evaluation results on standard recognition benchmarks, and a
challenging chicken feet dataset show that our proposed CKD model outperforms the
original KDES as well as carefully tuned descriptors like SIFT and some sophisticated
deep learning methods.

The low-level patch features used in our work is built upon the KDES. Concep-
tually, it is related to [1], but our work departs from it in two distinct ways that improve
the robustness and discriminability of our feature representation. First, we propose an
enhanced match kernel called context match kernel (CMK). CMK strengthens the
spatial consistency of the original match kernel by embedding the extra neighboring
information into it. Spatial occurrence constraints implicit in the CMK significantly
improve the robustness of similarity matching between feature sets, even for
ambiguous or impaired features generated from partially occluded objects. Second,
rather than using KPCA for reduction of the feature dimensionality, we perform the
feature dimensionality reduction by projecting the original high-dimensional CKD onto
a compact and discriminative CKD codebook. The CKD codebook is learned from a
novel information theoretic feature selection algorithm based on the CSQMI.
Because CSQMI is derived from the Rényi quadratic entropy, we can efficiently
approximate it using a Parzen window [28]. In addition, considering the geometric
interpretation of the CSQMI [28], it allows us to learn a discriminative CKD codebook
that captures the cluster structure of input samples as well as the information about their
underlying labels. Hence, the low-dimensional CKD derived from our model is more
discriminative than the original KDES derived from KPCA.

2 Feature Extraction Using CKD

We enhance the original match kernel in [1] by embedding neighborhood constraints
into it. As neighborhood defines an adjacent set of pixels surrounding the center pixel,
neighborhood information can be regarded as the spatial context of the center pixel. So
we refer to this enhanced match kernel as Context Match Kernel and the resulting
descriptors as Context Kernel Descriptors. Intuition behind CMK is that pixels with
similar attributes from two patches should have a high probability to have neighboring
pixels whose attributes are also similar. Considering the spatial co-occurrence con-
straint, our CMK significantly improve the matching accuracy. CMK can be easily
applied to develop a set of local descriptors using any pixel attributes, such as gradient,
color, texture, and shape, etc. Next we derive the CMK, then we introduce several
specific CMKs used in this work.

2.1 Formulation of CMK

An image patch can be modelled as a set of pixels X ¼ xif gni¼1, where xi is the
coordinate of the ith pixel. Let ai be attribute vector of the ith pixel xi. The k-neigh-
borhood Nk

i of pixel xi in X is defined as a group of pixels (including itself) that are
closest to it. Mathematically, Nk

i = {xj2X| ∥xi− xj∥ ≤ k; k ≥ 1}. To eliminate the image
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noise, we smooth the image using a Haar wavelet filter and compute the local gradient
in the k-neighborhood. For the k-neighborhood centered at xp, we first normalize the
neighborhood’s attribute by voting the pixel’s attribute in Nk

p with its gradient mag-
nitude weighted by a Gaussian function centered at xp. The width of Gaussian function,
which normalizes the attributes contributed from off-center pixels, is controlled by the
neighborhood size k. Similarly, we also normalize the attribute in the k-neighborhood
centered at xq. With the normalized attributes in Nk

p and Nk
q, we then define the context

kernel of attributes a between xp and xq as

jcon½ðxp; apÞ; ðxq; aqÞ� ¼ jað�ap; �aqÞ

�ap ¼ 1
Np
k

�� ��
X
xu2Np

k

aumu exp � 8 xu � xp
�� ��2

k2

 !
; �aq ¼ 1

Nq
k

�� ��
X
xv2Nq

k

avmv exp � 8 xv � xq
�� ��2

k2

 !

ð1Þ

where mu and mv are the gradient magnitudes at pixels xu and xv, respectively; �ap and �aq
are the normalized image attributes in k-neighborhood centered at xp and xq, respec-
tively; jað�ap; �aqÞ ¼ expð�cajj�ap � �aqjj2Þ ¼ uað�apÞTuað�aqÞ is the Gaussian kernel
measuring the similarity of normalized attributes �ap and �aq. The context kernel κcon
provides a normalized measure of the attribute similarity between two k-neighborhoods
centered at pixels xp and xq. Merging κcon into match kernels [1] and replacing the
attribute a in Eq. (1) with specific attributes, we can derive a set of ad hoc attribute
based CMKs.

For example, let θ′p and m′p be normalized orientation and normalized magnitude
of the image gradient at pixel xp, such that θ′p = (sinθp, cosθp) and m0

p ¼
mp

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
p2P m2

p þ s
q

, with τ being a small positive number. To compare the similarity

of gradients between patches P and Q from two different images, the gradient CMK
Kgck can be defined as

KgckðP;QÞ ¼
X
p2P

X
q2Q

m0
pm

0
qjoðh0p; h0qÞjsðxp; xqÞjcon½ðxp; h0pÞ; ðxq; h0qÞ� ð2Þ

where κo(θ′p, θ′q) = exp(-γo∥θ′p− θ′q∥
2) = uo(θ′p)

T uo(θ′q) is the orientation kernel
measuring the similarity of normalized orientations at two pixels xp and xq; κs(xp,
xq) = exp (-γs∥xp− xq∥

2) = us (xp)
T us(xq) is the spatial kernel measuring how close two

pixels are spatially; and κcon[(xp, θ′p), (xq, θ′q)] is given by Eq. (1).
Similarly, to measure the similarity of color attributes between P and Q, the color

CMK Kcck can be defined as

KcckðP;QÞ ¼
X
p2P

X
q2Q

jcðcp; cqÞjsðxp; xqÞjcon½ðxp; cpÞ; ðxq; cqÞ� ð3Þ
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where jc cp; cq
� � ¼ exp �cc k cp � cq k2

� � ¼ uc cp
� �T

uc cq
� �

is the color kernel mea-
suring the similarity of color values cp and cq. For color images, we use normalized rgb
vector as color value, whereas intensity value is used for grayscale images.

For the texture attribute, we derive the texture CMK, Klbpck, based on Local Binary
Patterns (lbp) [10]

KlbpckðP;QÞ ¼
X
p2P

X
q2Q

r0pr
0
qjlbpðlbpp; lbpqÞjsðxp; xqÞjcon½ðxp; lbppÞ; ðxq; lbpqÞ� ð4Þ

where r0p ¼ rp
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p2N3
r2p þ s

q
is the normalized standard deviation of pixel values

within a 3 × 3 window around xp; κlbp(lbpp, lbpq) = exp(-γlbp∥lbpp − lbpq∥
2) is a

Gaussian match kernel for lbp operator.
As shown in Eqs. (2)-(4), each attribute based CMK consists of four terms:

(1) normalized linear kernel, e.g. m′p m′q for Kgck; 1 for Kcck and r0p r
0
q for Klbpck,

weighting the contribution of each pixel to the final attribute based CMK; (2) attribute
kernel evaluating the similarity of pixel attributes; (3) spatial kernel κs measuring the
relative distance between two pixels; (4) context kernel κcon comparing the spatial
co-occurrence of pixel attributes. In this sense, we formulate these attribute CMKs,
defined in Eqs. (2)-(4), in a unified way as

KðP;QÞ ¼
X
p2P

X
q2Q

wpwqjaðap; aqÞjsðxp; xqÞjcon½ðxp; apÞ; ðxq; aqÞ� ð5Þ

where wpwq and κa correspond to normalized linear weighting kernel and attribute
kernel, respectively.

2.2 Approximation of CMK

Using the inner product representation, we rewrite the match kernel matrix K as

KðP;QÞ ¼ wðQÞ;wðPÞh i ¼ wðPÞTwðQÞ
wðPÞ ¼

X
p2P

wpuaðapÞ � usðxpÞ � uconðxp; apÞ; wðQÞ ¼
X
q2Q

wquaðaqÞ � usðxqÞ � uconðxq; aqÞ

ð6Þ

where ⨂ is the tensor product and ψ(∙) gives the mapping features in kernel space,
namely the CKD. Note that the dimensions of ua; us and ucon are all infinite, since
Gaussian kernel is used. To obtain an accurate approximation of K, we have to uni-
formly sample ua, us and ucon using a dense grid along sufficient basis vectors. In
particular, for ua and ucon, we discretize a into G bins and approximate them with their
projections onto the subspaces spanned by G basis vectors ua agð Þf g (g = 1…G).
Similarly, for space vector x, we discretize spatial basis vectors into L bins and sample
along L basis vectors spatially. Finally, we can approximate ψ(∙) by its projections onto
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the G × L × G joint basis vectors: /lf gG�L�G
l¼1 ¼ ua a1ð Þ � us x

1ð Þ � ucon a1ð Þ; . . .;�
ua aGð Þ � us x

Lð Þ � ucon aGð Þg.

wð�Þ ’
XG�L�G

l¼1

fl/l ð7Þ

where fl is the projection coefficient onto the lth joint basis vector ϕl. Thus, dimen-
sionality of the resulting CKD ψ is G × L × G. Uniform sampling provides a set of
representative joint basis vectors, but does not guarantee their compactness. Projecting
onto these basis vectors usually yield a group of redundant CKD. Next, we show how
to learn a CKD codebook by selecting and refining a subset of compact and dis-
criminative joint basis vectors using a CSQMI based information theoretic feature
learning scheme. Projecting the original CKD ψ onto the codebook reduces the
redundancy of ψ and gives a low-dimensional discriminative CKD representation.

3 Feature Learning Using CSQMI

Shannon entropy and its related measures, such as mutual information and
Kullback-Leibler divergence (KLD) are widely used in feature learning [16–26].
However, Shannon entropy based feature learning methods share the common weak-
ness of high evaluation complexity involved in the estimation of probability density
function (pdf) in Shannon entropy [16]. Recently, Rényi entropy [27, 28] has attracted
more attentions in information theoretic learning. The most impressive advantage of
Rényi entropy is its moderate computational complexity because the estimate of Rényi
entropy can be efficiently implemented by the kernel density estimation [29] (e.g. the
Parzen windowing). Several novel information theoretic metrics derived from Rényi
entropy are introduced in feature learning [30–33].

3.1 Rényi Entropy and CSQMI

Let S 2ℛd be a discrete random variable which has a pdf of p(s), then its Rényi
entropy is defined as [27]

HaðSÞ ¼ 1
1� a

log2
X
s2S

paðsÞ ð8Þ

Rényi entropy defines a family of functions that quantify the diversity in a data dis-
tribution. Standard Shannon entropy can be treated as a special case of Rényi entropy
as α → 1. Rényi entropy of order α = 2, given in Eq. (9), is called Rényi quadratic
entropy H2(S).

H2ðSÞ ¼ � log2
X
s2S

p2ðsÞ ð9Þ
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Similar to KLD defined using Shannon entropy, Cauchy-Schwarz divergence
(CSD) based on Rényi quadratic entropy also defines a measure of divergence between
different pdfs. Given two discrete random variables S1 and S2, with S1 having a pdf of
p1(s1) and S2 having a pdf of p2(s2), the CSD [28, 31] of p1 and p2 is given by

CSDðp1; p2Þ ¼ � log2

P
s12S1;s22S2

p1ðs1Þp2ðs2Þ
 !2

P
s12S1

p21ðs1Þ
P
s22S2

p22ðs2Þ
¼ 2H2ðS1; S2Þ � H2ðS1Þ � H2ðS2Þ

ð10Þ

where H2ðS1; S2Þ ¼ � log2
P

s12S1;s22S2
p1ðs1Þp2ðs2Þ measures the similarity (distance)

between the two pdfs and can be considered as the Rényi quadratic cross entropy. We
can interpret H2(S1, S2) as the information gain from observing p2 with respect to the
“true” density p1, and vice versa. Hence, the CSD derived from Rényi quadratic
entropy is semantically similar to Shannon’s mutual information. Note that CSD (p1;
p2) ≥ 0 is a symmetric measure that equals zero if and only if p1(s) = p2(s), and
increases towards positive infinity as the two pdfs are apart further and further. Based
on CSD (p1; p2), the Cauchy-Schwarz Quadratic Mutual Information between two
discrete random variables S1 and S2 is defined as [28].

ICSDðS1; S2Þ ¼ CSDðp12ðs1; s2Þ; p1ðs1Þp2ðs2ÞÞ
¼ log2

X
s12S1s22S2

p212ðs1; s2Þþ log2
X

s12S1s22S2
p21ðs1Þp22ðs2Þ � 2log2

X
s12S1s22S2

p12ðs1; s2Þp1ðs1Þp2ðs2Þ

ð11Þ

where p12(s1, s2) is the joint pdf of (S1, S2), and p1(s1) and p2(s2) are marginal pdf of S1
and S2, respectively. ICSD(S1; S2) ≥ 0 meets the equality if and only if S1 and S2 are
independent. So ICSD(S1; S2) is a measure of independence that reflects the information
shared between S1 and S2. In other words, it measures how much knowing S1 reduces
the uncertainty about S2, and vice versa.

To calculate CSD and ICSD, we have to estimate marginal pdf p(∙) and joint pdf
p12(∙,∙). Fortunately, Principe [28] showed that, for Rényi quadratic entropy and its
induced measures such as CSD and ICSD, these marginal and joint pdfs can be effi-
ciently estimated with a Parzen window density estimator [29], even in a
high-dimensional feature space like CDK. Whereas, it is not possible for Shannon
entropy [28]. This explains why we choose the Rényi quadratic entropy based ICSD,
instead of the Shannon entropy based mutual information, as information theoretic
measure in our codebook learning algorithm.

In addition, recent findings from Jenssen et al. [30, 31] uncovered the latent con-
nections between Rényi quadratic entropy and mapping features in the kernel space. It
shows that, when applying a Gaussian Parzen window estimator, Rényi quadratic
entropy estimator is equivalent to ||m||2, where m ¼ 1

M

P
st2S

uðstÞ is the mean vector of

mapping data samples u stð Þ (t = 1,···,M) in the kernel feature space. Meanwhile, the

Feature Extraction and Learning 75



CSD estimator is directly associated with the angle between the mean vectors m1 and
m2 of the clusters of mapping data samples in the kernel feature space. These clusters
correspond to the mapping data samples yielded from p1(s) and p2(s), respectively.
Consequently, CSQMI, measuring the CSD between a joint pdf and the product of two
marginal pdfs, also relates to the cluster structure in the kernel feature space. The
relationships between Rényi quadratic entropy, CSD/CSQMI and the mean vector of
mapping features in the kernel space provide us the geometric interpretation behind
H2(S) and CSD/CSQMI. It means that the Rényi quadratic entropy based measures are
very suitable for the analysis of nonlinear data (even in high-dimensional spaces)
because they are able to capture the geometric structure of the data. In contrast, the
Shannon entropy and the KLD do not have such good properties.

3.2 Codebook Selection and Refinement Using CSQMI

As mentioned in Sect. 2.2, we approximate the original CKD ψ with a group of
redundant joint basis vectors /lf gG�L�G

l¼1 .We define these joint basis vectors as dic-
tionary, and represent it as U (U has a cardinality of G × L×G). Assuming that we are
given CKD, ψ1,···, ψ M, of M samples from C classes, for each class c (c = 1,···,C), it
has Mc samples and the corresponding CKD are denoted as Wc = [ψc

1,···, ψc
Mc]. Then

we formulate the CKD of all samples as W ¼ fWcgCc¼1. Similarly, we denote
F ¼ fFcgCc¼1, where Fc = [Fc

1,···,

Fc
Mc] = ðf 1c1; � � � ; f 1cG�L�GÞT; � � � ; ðf Mc

c1 ; � � � ; f Mc
cG�L�GÞT

h i
. Then, Eq. (7) can be repre-

sented as W ¼ UF, where U = [ϕ1,···, ϕG×L×G] and F ¼
f 111 � � � f MC

C1

..

. ..
.

f 11G�L�G � � � f MC
CG�L�G

2
64

3
75 is

the projection coefficients matrix. Given a CKD ψ from a random sample, the
uncertainty of its class label L in terms of the class prior probabilities can be measured
by H2(L), given in Eq. (9). Whereas, the CSQMI ICSD(ψ; L) defined in Eq. (11)
measures the decrease in uncertainty of the pattern ψ due to the knowledge of the
underlying class label L.

Given W and an initial dictionary Φ, we aim to learn a compact and discriminative
subset of joint basis vectors Φ* out of Φ, such that cardinality (Φ*) < cardinality (Φ).
We refer to Φ* as codebook. Projecting the original CKD W onto the codebook U�

gives a low-dimensional CKD, W� = U� F*. We expect W� should be compact and
discriminative. To learn a compact codebook, we maximize the CSQMI between U�:

and the unselected basis vectors U�U� in U, i.e. ICSD U�; U�U�ð Þ. As
ICSD U�; U�U�ð Þ signifies how compact the codebook Φ*is, a higher value of
ICSD U�;U�U�ð Þ means a more compact codebook. However, that codebook may not
be discriminative, because it does not give any information regarding the new CKD W�

from their class label L. Therefore, we also need to maximize the CSQMI between W�

and L, i.e. ICSD(W
�; L), which provides the discriminability of the new CKD generated

from the codebook U�. To this end, the codebook learning problem can be mathe-
matically formulated as
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argmax
U�

ICSDðU�;U�U�Þ þ kICSDðW�; LÞ½ � ð12Þ

where λ is the weight parameter to make a tradeoff between the compactness and
discriminability terms. We use a two-step strategy to optimize the compactness and
discriminability of the codebook simultaneously. In the first step (Codebook Selection),
the codebook that maximizes Eq. (12) is selected from the initial dictionary in a greedy
search manner. In the second step (Codebook Refinement), the selected codebook is
refined via a gradient ascent method to further maximize the discriminability term
ICSD W�; Lð Þ while keeping the approximation error as low as possible.

3.2.1 Codebook Selection
The first term in Eq. (12), i.e. ICSD U�;U�U�ð Þ, is a compactness term which mea-
sures the compactness of the codebook U�. The second term, i.e. ICSD W�; Lð Þ, mea-
sures the discriminability of the codebook U�. Based on [34], the probability of Bayes
classification error resulted from the final CKD W�, i.e. PðeW� Þ, has its upper bound
given by PðeW� Þ � 1

2 H2ðLÞ � ICSDðW�; LÞð Þ. Thus, the selected discriminative code-
book U� corresponding to the minimal Bayes classification error bound should max-
imize the ICSD W�; Lð Þ.

During the codebook selection, we start with an empty set of U� and iteratively
select the next best basis vector ϕ * out of the remaining set U�U�, such that the
mutual information gain between the new codebook U� [ ϕ * and the remaining set, as
well as the mutual information gain between the CKD derived from the new codebook
and the class label, are maximized, i.e.

argmax
/�2U�U�

ICSDðU�[/�;U� ðU�[/�ÞÞ � ICSDðU�;U�U�Þ½ � þ ICSDðWU�[/�
; LÞ � ICSDðWU�

; LÞ
h in o

ð13Þ

3.2.2 Codebook Refinement
Once the initial codebook U� is achieved, we refine U� to further enhance its dis-
criminability by maximizing the discriminability term in Eq. (12), i.e.
max
U� kICSD W�; Lð Þ. To guarantee a compact codebook, we assume that cardinality

(U�) ≪ cardinality (U). Under such an assumption, the projection coefficient is solved

by F� ¼ UyW which minimizes the approximation error e ¼k W�U�F� k2, where
Uy ¼ pinv U�ð Þ ¼ U�TU�� ��1

U�T is the pseudo-inverse of U�. Thus, the problem of
refining U� for improving the discriminability of codebook while keeping its
approximation accuracy is converted to the following constraint optimization problem.

max
U� ICSD W�; Lð Þ; subject to F� ¼ UyW ð14Þ

Since ICSD(∙;∙) is a quadratic symmetric measure, the objective function ICSD W�; Lð Þ is
differentiable. We use the gradient ascend method to iteratively refine U� such that
ICSD W�; Lð Þ is maximized. In each iteration, U� is updated with a step size υ. After k-th
iteration, U�

k becomes
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U�
k ¼ U�

k�1 þ t
@ICSD W�; Lð Þ

@U� U�¼U�
k�1

��

@ICSD W�; Lð Þ
@U� ¼

XC
c¼1

XMc

i¼1

@ICSD W�; Lð Þ
@w�i

c

@w�i
c

@U� ¼
XC
c¼1

XMc

i¼1

Fi
c

� �T @ICSD W�; Lð Þ
@w�i

c

ð15Þ

Once U� is refined, we update the projection coefficients F* and the low-dimensional

discriminative CKD W� according to F� ¼ UyW and W� ¼ U�F�, respectively. The
bound of ICSD W�; Lð Þ guarantees the convergence of codebook refinement.

4 Experiments

To verify the effectiveness of our method in the context of object recognition and
detection, we first investigate the performance of CSQMI based codebook learning on
the extended YaleB face dataset [35], then we test our model on Caltech-101 [36] and
CIFAR-10 [37] for recognition and on our own chicken feet dataset for detection. We
also compare our results with other state-of-the-art works, including the original KDES
[1], supervised kernel descriptors [4], handcrafted dense SIFT features [7, 8], and the
popular deep feature learning approaches [44, 51–53].

4.1 Parameter Configuration

We adopt the code provided from www.cs.washington.edu/robotics/projects/kdes/ to
implement the original KDES. To make a fair comparison, in all experiments, except
for the final feature dimensionality, we follow the setting of [1] for common parameters
used in our method. Namely, basis vectors for κo, κc, and κs are sampled using 25,
5 × 5 × 5, and 5 × 5 uniform grids, respectively. For κlbp, we choose all 256 basis
vectors. For all CKD, κcon shares the same basis vectors with their attribute kernels κa.
We use a 3-level spatial pyramid for pooling CKD at different levels. The pyramid
level is set as 1 × 1, 2 × 2 and 4 × 4. Gaussian Parzen windows are used to estimate the
CSQMI, and the width parameter σ is tuned using a grid search in the range [0.01σd,
100σd], where σd is the median distance of all training samples. The best window width
is selected by cross-validation. The optimal neighborhood distance parameter, k, is
decided using a grid search between 1 and 8. Linear SVM classifiers used in all
experiments are implemented with the LIBlinear, downloaded from www.csie.ntu.edu.
tw/*cjlin/liblinear/.

4.2 Evaluation of Codebook Learning

We first evaluate the discriminability of our CSQMI based codebook learning method by
comparing it with other popular kernel based dimensionality reduction methods on the
extended YaleB face dataset [35] that contains 16128 face images from 28 individuals.
This dataset is challenging due to varying illumination conditions and expressions.
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For each individual, half of the frontal face images are used to train the relevant
codebook and feature subset. The remaining frontal face samples are used to test the
distinctiveness of the learned codebook. LBP_CKD is applied to extract the face fea-
tures. KPCA [14, 15], Kernel Fisher Discriminant Analysis (KFDA) [38], and Kernel
Locality Preserving Projections (KLPP) [39] are compared with our codebook learning
method. For each method, as suggested in [1], a reduced 200-dimensional feature
subset is learned. To visualize the results, we randomly select five subjects and plot the
distributions of projected samples onto the leading three most significant feature
subsets yielded from each method in Fig. 1. As shown in Fig. 1, the clusters of the face
samples resulted from our codebook represents a significant improvement on the class
separation over that obtained from the alternative kernel based dimensionality reduc-
tion methods. This is because that the feature subset derived from CSQMI captures the
angular pattern of the cluster distribution of the analyzing face patterns. Consequently,
it is more discriminative than the feature subset selected from principal component
vectors based only on magnitude of eigenvalues, such as KPCA.

4.3 Evaluation of Object Recognition

Caltech-101: This dataset is one of the most popular benchmarks for multiclass image
recognition. It collects 9144 images from 101 object categories and a background
category. Each category has 31 to 800 images with significant color, pose and lighting
variations. We use this dataset for a comprehensive comparison on the recognition
performance of the original KDES, supervised kernel descriptor (SKDES) [4] and our
CKD. A 4-neighborhood which achieves the best performance is used to evaluate the
context information for CKD. For each category, following the experimental setup of

(a). Our method (b). KPCA

(c). KFDA (d). KLPP

Fig. 1. Visualization of the leading 3-dimensional LBP_CKD features from different methods.
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original KDES [1], we train one-vs-all linear SVM classifiers on 30 images and test on
no more than 80 images for KDES and our method. We run five rounds of testing for a
confident evaluation. Results of SKDES are quoted from the original papers. Table 1
lists the average recognition accuracy and standard deviation of different options of
kernel descriptors. Some recently reported results are also provided for comparison.

From Table 1, we observe that our CKD consistently outperforms KDES and
SKDES, for both individual and combined version. Except for the gradient CKD
(G_CKD), both color CKD (C_CKD) and texture CKD (LBP_CKD) are significantly
better than their original KDES. In particular, compared with the original color and
texture KDES, the recognition accuracy of C_CKD and LBP_CKD is increased by
62.97 % and 5.69 %, respectively. For the combined version, the accuracy of combined
CKD is 83.3 %, which is 6.9 % higher than the original KDES combination and 4.1 %
higher than the SKDES combination. We also notice the smaller standard deviation of
recognition accuracy in our results compared with that of the SKDES. It means CKD is
more robust than SKDES, thanks to the spatial co-occurrence constraints embedded in
the CKD. We argue that the performance improvement of CKD comes from two facts:
(1) compared with KDES and SKDES, the additional spatial co-occurrence constraint
defined in CKD further improves its robustness to the semantic ambiguity, caused by
the lack of features in case of partial occlusion; (2) KDES applies KPCA to reduce
feature dimensionality, whereas we use CSQMI to learn low-dimensional CKD. KPCA
only keeps KDES components that contribute most significantly to image recon-
struction. In contrast, our CSQMI criterion selects the CKD that minimize the infor-
mation redundancy and approximation error while maximize the mutual information
between the CKD and its class label in terms of the ‘angle distance’. Therefore, the
resulting low-dimensional CKD are more discriminative than KDES in that they reveal
the cluster structure of density distribution of pixel attributes and relate to the angular
manifold of the object category.

To investigate the impact of codebook size on the recognition performance, we
train classifiers using different codebook sizes and compare the recognition accuracy of

Table 1. Comparison of mean recognition accuracy (%) and standard deviation of KDES,
SKDES and CKD on Caltech-101.

Features KDES[1] SKDES [4] CKD

gradient 75.2±0.4 77.3±0.7 77.8±0.6
color 42.4±0.5 68.4±1.4 69.1±0.9
texture(lbp) 70.3±0.6 71.6±1.3 74.3±0.8
combination 76.4±0.7 79.2±0.6 83.3±0.6
Method Accuracy Method Accuracy
Jia et al. [40] 75.3±0.7 Feng et al. [45] 82.60
SLC [47] 81±0.2 SDL [41] 75.3±0.4
Adaptive deconvolutional net [44] 71.0±1.0 SSC [46] 80.02±0.36
Boureau et al. [42] 77.3±0.6 M-HMP [48] 82.5±0.5
LSAQ [43] 74.21±0.8 SPM_SIFT [7] 64.6±0.8
Pyramid SIFT (P-SIFT) [49] 80.13 PHOW [50] 81.3±0.8
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the combined CKD (COM_CKD) with that of the combined KDES (COM_KDES) in
Fig. 2(a). As expected, COM_CKD outperforms COM_KDES consistently over all
codebook sizes. We also note a relative small performance drop (14 %) of COM_CKD
when codebook size decreases from 500 to 50, whereas for COM_KDES the accuracy
drop is 26 %. This verifies the effectiveness of our codebook learning model, which can
select discriminative CKD codebook even in low-dimensional situations. We also
compare the recognition performance of CKD yielded under different neighborhood
distances. As shown in Fig. 2(b), neighborhoods with moderate distances perform
better than neighborhoods with small distances, and recognition accuracy tends to
decrease for neighborhoods with large distances. This can be understood by the fact
that the discriminability of CKD tends to be smoothed, as more noises and outlier data
may be included when the neighborhood distance becomes larger.

CIFAR-10: This dataset consists of 60000 tiny images with a size of 32 × 32 pixels. It
has 10 categories, with 5000 training images and 1000 test images per category. We
choose this dataset to test the performance of our method on recognition of tiny objects.
Similar to [1], we calculate CKD around 8 × 8 image patches on a dense grid with a
spacing of 2 pixels. A 3-neighborhood which gives the best performance is applied
to calculate CKD. The whole training images are split into 10,000/40,000
training/validation set, and the validation set is used to optimize the kernel parameters
of γs, γo, γc, and γlbp using a grid search. Finally, a linear SVM classifier is trained on the
whole training set using the optimized kernel parameters.

We compare the performance of COM_CKD with several recent feature learning
approaches using deep learning (stochastic pooling based Deep Convolutional Neural
Network − spDCNN [52], tiled Convolutional Neural Networks − tCNN [53],
Multi-column Deep Neural Networks − MDNN [51]), sparse coding (improved local
Coordinate Coding − iLCC [54], spike-and-slab Sparse Coding − ssSC [55]), hierar-
chical kernel descriptor (HKDES) [2] and spatial pyramid dense SIFT (SPM_SIFT) [7].
For SPM_SIFT, we use a 3-layer spatial pyramid structure and calculate dense SIFT
feature in an 8 × 8 patch over a regular grid with a spacing of 2 pixels. Table 2 reports
the recognition accuracy of various methods. As we see, COM_CKD and MDNN
defeat other methods by a large margin. Compared with MDNN, COM_CKD achieves
a comparable performance with only a 0.37 % deficit in classification rate. However,

(a). recognition performance at different codebook sizes (b). recognition performance at different neighborhood
       distances 

Fig. 2. Performance comparison at different codebook sizes and neighborhood distances on
Caltech-101.
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our method is much more simple and efficient than MDNN model. For example, for a
32 × 32 pixel image, our method takes 224.63 ms to calculate the full-dimensional
3-neighborhood COM_CKD and 320.21 s to learn a 200-dimensional discriminative
codebook using CSQMI on average on a platform with Intel Core i7 2.7 GHz CPU and
16G RAM. Merging different pixel attributes in the kernel space, CKD tune low-level
complementary cues into image-level discriminative descriptors. Even coupled with
simple linear SVM classifier, our method still achieves superior performance compared
with other sophisticated models.

To further analyze the classification performance of our method, we visualize the
confusion matrix in Fig. 3. The confusion matrix shows that our COM_CKD is able to
clearly distinguish animals from rigid artifacts, except for planes and birds. It is
understandable because flying birds look very similar to planes (as shown in Fig. 4),
especially in low-resolution images. Due to the non-rigid and deformable property of
articulated objects, we also observe many confusions between different animals.

Table 2. Comparison of recognition accuracy (%) of various methods on CIFAR-10.

Method Accuracy Method Accuracy

spDCNN [52] 84.88 SPM_SIFT [7] 65.60
tCNN [53] 73.10 HKDES [2] 80.00
iLCC [54] 74.50 MDNN [51] 88.79
ssSC [55] 78.80 COM_CKD 88.42

Fig. 3. Confusion matrix for CIFAR-10 using COM_CKD. Vertical axis shows the ground truth
labels and the predicted labels go along the horizontal axis.
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Among all animal classes, the frog class obtains the highest false positive rate of
18.07 % from other animal classes, but it has with very few false negatives. As
expected, car and truck are the most confusing artifact classes, which collectively cause
a classification error rate of 8.78 %. Whereas, cat and dog are the most confusing
animal classes, which collectively cause a classification error rate of 11.24 %.

4.4 Evaluation of Object Detection

To adapt our method for object detection, we train a two-class linear SVM classifier as
the detector using COM_CKD features. For an instance image, we decompose it into
several scales and detect possible locations of all candidate objects using a sliding
window at each scale. Finally, we merge detection results at different scales and remove
the duplicate detections at the same location. We test our detector on a chicken feet
dataset collected in a chicken slaughter house. The aim of our detector is to find and
localize chicken feet. As illustrated in Fig. 6, this chicken feet dataset is very chal-
lenging due to the following facts: chicken feet themselves are very small compared
with other parts of the body, usually more than forty chickens are squeezed in a box,
multiple chicken feet may appear in one image, in many cases feet are severely
occluded (most part of feet are hidden under feather), the appearance of feet changes
drastically due to different poses, and finally the color of the feet is very similar to
feather and chest.

We crop a total of 717 image patches containing chicken feet as positive training
examples, and 2000 patches without chicken feet as negative training examples.
Another set of 318 images containing chicken feet patches never occurred in the
training set are used as test set. Since chicken feet are also tiny, we use the same patch
size and sampling grid for the CIFAR-10 dataset to evaluate CKD. The parameters of
CKD and SVM are tuned by a 10-fold cross-validation on the training set. To judge the
correctness of detections, we adopt standards of the PASCAL Challenge criterion [56],
i.e. a detection is considered as correct only if the predicted bounding box overlaps at
least 50 % area with the ground-truth bounding box. All other detections of the same
object are counted as false positives. We compare the detection performance of our
model with that of the HKDES model [2] and a 3-level SPM_SIFT [7] in terms of the
Equal Error Rate (EER) on the Precision-Recall (PR) curves, i.e. PR-EER. PR-EER
defines the point on the PR curve, where the recall rate equals the precision rate.

(a) Images from plane wrongly classified as bird 

(b) Images from bird wrongly classified as plane 

Fig. 4. Some wrongly classified samples between plane and bird.
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Figure 5 plots the Precision-Recall curves for all methods. As we see, among all
tested models, COM_CKD achieves the best overall performance (EER = 78.53 %),
followed by the HKDES model (EER = 75.61 %) that combines gradient, color and
shape cues into KDES. This further confirms that merging different visual cues into
object representation can significantly boost the performance of the classifier. One
interesting observation is that, expect for C_CKD, results from our single CKD models
are better than the sophisticated SIFT method. In particular, EERs of LBP_CKD and

Fig. 5. Precision-Recall curves of all methods tested on chicken feet dataset.

Fig. 6. Detection examples resulting from COM_CKD feature.
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G_CKD model are 71.23 % and 69.55 %, respectively, whereas EER of SPM_SIFT is
only 59.41 %. Considering individual CKD, C_CKD gives the worst result with
EER = 44.10 %. Both LBP_CKD and G_CKD perform well, with LBP_CKD achieving
a slightly better average accuracy. This is not surprising. Color difference between
chicken feet and other parts (feather and chest) is marginal (refer to Fig. 6). Color
distributions of chicken feet and other parts overlap quite much. In particular, the color
distribution of feet and chest can hardly allow an acceptable separation based on color
cue alone. In contrast, feet show a moderate difference in texture structures from feature
and chest. Hence, texture based LBP_CKD outperforms other single feature for this
dataset. Figure 6 shows some detection examples resulting from the best COM_CKD
feature. Due to the influence of shadow caused by the box boundary and severe
occlusions, some small chicken feet under the box shadow (in left images) or hidden by
the feather (in right images) are missed by the detector, which give the false negative
detections. But for these images no false positive detections appear.

5 Conclusion

Based on the context cue and Rényi quadratic entropy based CSQMI, we propose a set
of novel kernel descriptors called context kernel descriptors and an information theo-
retic measure to select a compact and discriminative codebook for object representation
in kernel feature space. We evaluate the performance of our algorithm in applications
of object recognition and detection. The highlights of our work lie in: (1) the new CKD
enhances the original KDES by adding extra spatial co-occurrence constraints to reduce
the mismatch of image attributes (features) in kernel space; (2) instead of applying the
traditional KPCA for feature dimensionality reduction, CSQMI criterion is employed in
our method to learn a subset of low-dimensional discriminative CKD that correspond to
the cluster structure of the density distribution of CKD. Evaluation results on both
popular benchmark and our own datasets show the effectiveness of our method for
generic (especially tiny) object recognition and detection.
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