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Abstract. All real-world classification problems require a carefully
designed system to achieve the desired generalization performance.
Developers need to select a useful feature subset and a classifier with suit-
able hyperparameters. Furthermore, a feature preprocessing method (e.g.
scaling or pre-whitening) and a dimension reduction method (e.g. Princi-
pal Component Analysis (PCA), Autoencoders or other manifold learn-
ing algorithms) may improve the performance. The interplay of all these
components is complex and a manual selection is time-consuming. This
paper presents an automatic optimization framework that incorporates
feature selection, several feature preprocessing methods, multiple feature
transforms learned by manifold learning and multiple classifiers includ-
ing all hyperparameters. The highly combinatorial optimization problem
is solved with an evolutionary algorithm. Additionally, a multi-classifier
based on the optimization trajectory is presented which improves the
generalization. The evaluation on several datasets shows the effective-
ness of the proposed framework.

Keywords: Feature selection · Model selection · Evolutionary optimiza-
tion · Representation learning

1 Introduction

A classifier system that learns the connections from feature data to discrete
class labels is useful for many applications such as medical diagnose systems or
image-based object recognition. Several powerful methods have been established,
like Support Vector Machines (SVM), that perform well on a large amount of
tasks. However, the no-free-lunch theorem [1] states that there will never be a
single best machine learning concept for all tasks. In practice, a lot of expertise is
required for the development of a classification system to meet the generalization
requirements. Numerous challenges occur in real-world applications, like high-
dimensional and noisy feature data, too few training samples or suboptimal
hyperparameters1.
1 Hyperparameters control the learning algorithm itself – e.g. the number of hidden

layers in a neural network.
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Furthermore, the feature data itself has a huge impact on the classification
performance. There are three aspects that need to be considered: First, the selec-
tion of a reasonable subset of features is needed. A large amount of irrelevant,
redundant or too noisy features tend to disturb classifiers due to the curse of
dimensionality [2]. Secondly, the preprocessing of features usually improves the
performance [3], especially when the distribution and value ranges differ greatly.
Popular methods are e.g. feature scaling or pre-whitening. And third, represen-
tation learning with the goal of automatic feature construction out of low-level
data is helpful [4]. This approach has gained more importance in the field of deep
learning. Manifold learning is one variant of learning a simpler, low-dimensional
representation from high-dimensional data. A great variety of such algorithms
has been introduced, but their individual performance is highly dependent on
the learning task.

Automatic optimization frameworks are designed to help the developer of
machine learning systems to find an optimized combination of features, classi-
fiers and hyperparameters. This paper presents an extended version of the clas-
sification pipeline framework presented in [5] and contains the fully automatic
selection of features, feature preprocessing methods, manifold learning meth-
ods and classifiers. Furthermore, all hyperparameters – of the classifiers and the
manifold learning methods – are optimized as well. As the interplay of all these
components is complex an evolutionary optimization algorithm with an adapted
variant of cross-validation is used to find good pipeline configurations.

Additionally, the optimization trajectory is exploited for a multi-pipeline
classifier as well as graphical statistics to get deep insights into the classification
problem itself. We compare our framework performance with the state-of-the-art
optimization framework Auto-WEKA [6] with respect to classification accuracy
and optimization speed.

2 Automatic Optimization Frameworks

When the supervised classification task is considered, a training dataset T =
{(xi, yi)} with 1 ≤ i ≤ m training samples is provided. It contains feature vectors
x ∈ R

din and class labels yi ∈ {ω1, ω2, . . . , ωc}. The goal is to find a classifier
model that predicts the correct class labels of previously unseen instances.

Automatic machine learning optimization frameworks try to find a suitable
classifier model or a complete classification processing pipeline that fits to a given
dataset T . A standard approach is the tuning of hyperparameters of a single
classifier, e.g. the SVM. This problem is well discussed in many papers,e.g. in
[7–9], to name a few. Usually, search-based approaches are used that evaluate
different system configurations and hyperparameters with the goal to optimize
the classification accuracy. Methods like cross-validation are used to estimate
the generalization of a chosen algorithm [2].

Feature selection is one approach to dimension reduction with the strategy to
remove irrelevant dimensions to overcome disturbing effects due to the peaking
phenomenon [2]. Some frameworks, like [10–12], involve feature selection and
hyperparameter optimization using evolutionary algorithms (see Sect. 4.1).
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When more machine learning components should be optimized, the combi-
natorial complexity basically explodes. Furthermore, especially categorical vari-
ables and multiple algorithm portfolios introduce variable dependencies. The
combinatorial optimization community developed sophisticated general purpose
heuristics to handle problems with numerous and heterogeneous parameters
which is also known as the algorithm configuration problem. With this respect,
three approaches have to be mentioned. The ParamILS framework [13] is a local-
search-based algorithm that limits the time spent for evaluating single configu-
rations. Sequential model-based optimization (SMBO) [14] is a form of Bayesian
optimization that keeps track of all knowledge of the objective function and
its uncertainties to evaluate the next most promising configurations. SMBO is
used in the Auto-WEKA framework [6] that optimizes features, classifiers and
hyperparameters. A gender-based evolutionary approach is presented in [15] that
handles variable dependencies in a tree structure.

However, there is no framework that targets holistic machine learning
optimization covering feature selection, preprocessing, manifold learning and
dimension reduction, classifier selection and hyperparameter tuning.

3 Classification Pipeline

In order to include all the aforementioned machine learning components into a
holistic framework, a classification pipeline structure with 4 elements is proposed
which is depicted in Fig. 1. Generally, the processing works like the pipes and
filters pattern [16] while the pipeline has two modes: the training mode in which
the training dataset T is needed and the classification mode in which new samples
can be classified. A key design principle is a consecutive dimensionality reduction
of the feature vectors while they pass through the pipeline. All pipeline elements
contain important processing steps and multiple degrees of freedom that are
summarized in the pipeline’s configuration θ. It describes a set of important
hyperparameters which have to be optimized for each learning task (see Sect. 4).
The pipeline elements and their functionality are described in the following.

Fig. 1. Classification pipeline structure with expected data dimensionality.

3.1 Feature Selection Element

The first element is the feature selection element which removes irrelevant and
noisy feature dimensions that could disturb any following algorithm. In training
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and classification mode, it selects a subset SFeatSet ∈ P({1, 2, ..., din}) \ ∅ of
features. Feature selection is a difficult problem as O(2din) possible combinations
exist and it has a great impact on the classification performance. The feature
subset SFeatSet is included in θ.

3.2 Feature Preprocessing Element

The second element of the pipeline handles the preprocessing of the feature
vectors. Almost all machine learning algorithms perform better when the numeric
properties and value ranges of the features are stable. The preprocessing element
uses a portfolio set SPreProc of commonly used feature preprocessing methods:

– Rescaling scales each feature dimension to a specific range, such that all values
of all dimensions lie in the range of [0, 1].

– Standardization is similar to rescaling, but the data is scaled to a normal
distribution with zero mean and a standard deviation of 1.

– L2-Normalization scales each feature vector independently to unit length
which is equivalent to an L2-norm of 1.

– Pre-Whitening is a more complex preprocessing step that performs a decorre-
lation transformation resulting to a feature matrix with zero mean and having
a covariance matrix equal to the identity matrix [17].

– The identity function does not change any feature data in this pipeline ele-
ment. This leads to the best results for some datasets.

The preprocessing method fPreProc ∈ SPreProc is a part of the pipeline con-
figuration θ. In training mode, the selected method fPreProc is used to extract
model variables from the training dataset T , such as minimum and maximum
values in case of the rescaling method. In classification mode, incoming feature
vectors are processed with fPreProc.

3.3 Feature Transform Element

The third element is the feature transform element which uses manifold learn-
ing algorithms to obtain a transform for a better suitable feature representa-
tion. Manifold learning describes a family of linear and nonlinear dimensional-
ity reduction algorithms that analyze the topological properties of the feature
data distribution to build a transformation function which embeds feature data
into a low-dimensional space. In order to use manifold learning for real-world
applications the following definition from [18] is used that requires just a set
of D-dimensional data vectors. The assumption is that the datapoints lie on
a lower-dimensional manifold with an intrinsic dimensionality d < D which is
embedded in the D-dimensional space. In practice, the target dimensionality d is
not known and must be estimated. The manifold maybe non-Riemannian or dis-
connected which is likely for noisy real-world data. The goal is to find a feature
transform function that embeds sample vectors into the lower dimensional vec-
tor space using x̃i = ftrans(xi) ∈ R

d, while xi ∈ R
D, without losing important

information about the geometrical structure and distribution.
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The pipeline element contains a portfolio set of possible transformations
SFeatTrans. Currently we use a set of 30 – mostly unsupervised – transforms
provided by [19] which are listed in the appendix. Examples of linear transforms
are e.g. Principal Component Analysis (PCA) or Linear Discriminant Analysis
(LDA). Nonlinear techniques are e.g. Isomap, Kernel-PCA, Local Linear Embed-
ding (LLE) or Autoencoders. References to these methods can be found e.g. in
[18] or [20].

Furthermore, many of these manifold learning algorithms have – like classi-
fiers – hyperparameters (see Sect. 3.5 for definition) that influence the perfor-
mance. An example is the number of neighbors for neighborhood-based graph
algorithms like Isomap [21]. The set of hyperparameters of a specific algorithm
fFeatTrans ∈ SFeatTrans is denoted as SH(fFeatTrans). The choice of a method
fFeatTrans, the corresponding target dimensionality d and the hyperparameters
SH(fFeatTrans) are included into the pipeline configuration θ.

In training mode, the incoming feature vectors (and labels for the supervised
methods like LDA) are used to learn the parameters of the manifold learning
algorithm. In classification mode, previously unseen vectors need to be trans-
formed to the new feature space. Unfortunately, not all methods directly sup-
port the so-called out-of-sample embedding. A direct extension is available only
for parametric methods [18], e.g. PCA and Autoencoders. For spectral meth-
ods, like LLE, Isomap or Laplacian Eigenmaps, the Nyström theorem [22] can
be used for an extension. For all other methods a rather naive non-parametric
out-of-sample extension can be used (see [18,19]). It requires the storage of the
complete set of base vectors and their corresponding transformed vectors. For
each new feature vector, the nearest vector in the training dataset T and its cor-
responding transformed vector are determined which are used for an estimated
linear projection.

3.4 Classifier Element

The last element is the classifier element which uses a classifier fClassifier ∈
SClassifiers. The framework currently contains 6 “popular” classifier concepts:
the naive Bayes classifier, k-nearest neighbors (kNN), Support Vector Machine
(SVM) with different kernels (linear, polynomial and Gaussian), random forest,
extreme learning machine (ELM) and multilayer perceptron (MLP). References
to these concepts can be found e.g. in [17,23]. Each classifier can have an arbi-
trary number of hyperparameters (see Sect. 3.5 for definition) which are tuned
during the optimization phase. The selection of the classifier fClassifier and its
hyperparameters SH(fClassifier) are included into θ.

In training mode, the chosen classifier is trained using the data processed by
all previous pipeline elements while the labels stay the same as in the training
set T . In classification mode, the classifier classifies the incoming vectors.
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3.5 Hyperparameters

Most machine learning algorithms have hyperparameters that need to be care-
fully adapted to the current learning task. This is also true for manifold learning
algorithms. Almost all hyperparameters can be categorized into two basic types:

– A numerical hyperparameter hnum can be either real or integer values hnum ∈
{R,Z} that are usually bounded within a reasonable minimum and maximum
value hmin ≤ hnum ≤ hmax.

– For categorical hyperparameters an item hcat ∈ Hcat has to be selected out of
a set Hcat.

In order to facilitate a simpler notation, SH(f) = {h1, h2, . . . , hN} with
hj ∈ {hnum, hcat} denotes the set of hyperparameters of an algorithm f . Note
that the sets of hyperparameters of different algorithms are independent.

4 Optimization of the Pipeline Configuration

The pipeline configuration finally contains all important hyperparameters

θ = (SFeatSet, fPreProc, fFeatTrans, SH(fFeatTrans), dFeatTrans,

fClassifier, SH(fClassifier)) (1)

which have to be optimized for each learning task. First, a suitable evaluation
metric has to be involved to estimate the predictive performance of a pipeline
configuration. Secondly, the highly combinatorial search problem to find the
best configuration has to be solved within a reasonable time. Furthermore, the
objective function is expected to be non-smooth with numerous local optima.

4.1 Extended Evolution Strategies

We choose evolutionary optimization because it is well-suited to solve com-
plex optimization problems and can easily be parallelized. These algorithms are
inspired by Darwin’s Theory of Evolution [24] in which the fitness in terms of
adaptation to the environment has a great impact on the survival and reproduc-
tion of individuals in a species. A key part of these algorithms is randomization
which is helpful for objective functions with many local optima. Especially evo-
lution strategies (ES) with extensions are suitable for the optimization of het-
erogeneous hyperparameters [25,26]. ES uses sets of solution candidates which
are called population of individuals. Evolutionary operators for random initial
population of individuals, selection, recombination and mutation perform the
actual optimization. The variables of an optimization problem can conveniently
be coded directly as real or integer number search space VR and VZ. Extensions
allow the use of a binary search space VB to form bitstrings as well as a discrete
set search space VS to model categorical parameters [27]. Furthermore, numeric
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hyperparameters with an exponential value range occur (e.g. Gaussian kernel
parameters). In this case, the exponent log10(hnum) is used for optimization in
combination with VR.

The parameters for the ES strategies can be coded in the (μ, κ, λ, ρ) notation.
The number of individuals that survive in each generation is denoted as μ. In each
generation λ children from ρ parents are derived. The selection operator selects
individuals for mating depending on their fitness which is directly connected to
the objective function (see Sect. 4.2). Finally, individuals have a limited lifetime
of κ generations.

Pipeline Configuration Coding. The classification pipeline configuration θ
is transformed into a suitable ES variable representation in the following way
(see Fig. 2). The feature subset is coded as binary mask consisting of din binary
variables of type VB which is the same idea than in [10]. All algorithm selec-
tion problems, namely feature preprocessing, feature transform and classifier,
are handled as categorical variables VS. For the target dimensionality a factor
α ∈ [0, 1] is coded as VR genotype. It determines the fraction of the number
of dimensions delivered by the feature selection that should be used as target
dimensionality d = �α · |SFeatSet|� and d ≥ 1.

Fig. 2. Coding schema of a pipeline configuration θ for ES with four variable types VR,
VZ, VB and VS. Note that FTi refers to the ith feature transform and Clj to the jth
classifier.

The handling of hyperparameters is more difficult as they depend on the
selection of the corresponding algorithm. In [5], the pipeline configuration only
contained one set of hyperparameters, namely the classifier’s. Two variants have
been proposed: a combination of ES with grid search and a “complete” evolu-
tionary optimization. Grid search is likely not feasible to optimize both hyperpa-
rameter sets from classifier and feature transform. Therefore, a similar approach
as the proposed complete evolutionary strategy (denoted as CES ) is used that
concatenates all hyperparameters of all algorithms in a linear way with their cor-
responding type (typically VR, VZ or VS). Another benefit is that numeric values
can be adapted much finer compared to the grid search approach. All hyperpa-
rameters are evolved in parallel, but the selection of a specific algorithm acts as
a switch that activates only the corresponding values when the configuration is
used for a classification pipeline.

Evolutionary Parameters. First, an initial population of 200 random indi-
viduals is generated to get a reasonably large sample of the huge search space.
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In each generation λ = 100 individuals from ρ = 3 parents are generated. The
selection operator selects μ = 25 individuals out of the newly generated offspring
and the parent generation. In order to increase the diversity of solutions to over-
come local optima, all individuals have a limited lifespan of κ = 5 generations.

The algorithm terminates when the improvement of the best fitness is less
than ε = 10−3 (equal to 0.1 % of accuracy) after at least three consecutive
generations. However, to prevent a premature end of the optimization, at least
10 generations are evaluated.

Mutation. Standard ES algorithms just define a mutation operator for real
vectors. However, the proposed system needs to be extended to mutate the het-
erogeneous variable types. For numerical variables VR and VZ, an additive, nor-
mally distributed random variable is used whose standard deviation is initialized
depending on the expected value boundaries of the corresponding hyperparame-
ter σ = 0.2 · (hmax − hmin). Each of the categorical and binary variables VS, VB

have a probability variable pmut which is initialized with pmut = 0.1. This proba-
bility defines a mutation to select either a random item or a bit flip, respectively.
All mutation parameters are adapted during the optimization process as well.
However, the originally proposed correlation between mutation variables [25] is
not considered due to high number of additional variables that would be needed.

Initial Population Improvement of the Feature Subset. Due to the large
search space – especially due to the feature selection – an improvement of the
initial subsets compared to pure random subsets is expected to improve both
optimization runtime and accuracy. Before every main optimization with the full
set of framework components, a fast pre-optimization is performed that usually
is done within less than a minute. This pre-optimization just contains feature
selection and preprocessing methods in combination with the hyperparameter-
free naive Bayes classifier. The initial population size contains 200 individuals,
while 5 generations are performed using λpre = 50, ρpre = 3 and μpre = 20.
The feature subsets of the last surviving individuals of the pre-optimization are
used as initial pool of feature subsets for the main optimization. One of the
“good” subsets from the pool is chosen randomly for each individual of the
initial generation of the main optimization.

4.2 Optimization Target Function

The evaluation metric of a configuration θ plays a central role to evaluate the
generalization of the whole pipeline and is, of course, needed for the fitness of
individuals. A common way to minimize the risk of overfitting of classifiers is
k-fold cross-validation [2]. In the proposed pipeline multiple processing steps
influence the generalization. Especially, the feature transform element with its
out-of-sample function has a special role as the “intelligence” is potentially
moved from the classifier to the feature transform: A highly nonlinear feature
transform might work best with a simple, e.g. linear classifier. Furthermore, the
preprocessing element also extracts model parameters from the training data
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and processes unseen feature vectors with these parameters. Problems may occur
even with the simple rescaling method to [0, 1]: single outlier values with a very
high value compared to the others make this method unstable.

Adapted Cross-Validation. In order estimate the generalization of a pipeline
configuration θ, all components of the pipeline have to be involved into an
adapted cross-validation process which is depicted in Fig. 3. The training set T is
separated into K = 5 cross-validation tuples with disjoint training and validation
datasets {(Ttrain,l, Tvalid,l)}. In each round, all models and parameters are esti-
mated using only the training data Ttrain,l. The validation dataset is processed
separately and the predictions of the classifier are used to calculate the accuracy
accl. Finally, the average cross validation accuracy accavg = 1

K

∑K
l=1 accl and

the standard deviation accsd =
√

1
K

∑K
l=1(accl − accavg)2 are computed.

Fig. 3. Processing of the lth cross-validation round with training and validation data
Ttrain,l and Tvalid,l that incorporates feature selection, preprocessing, manifold learning
and classifier into the generalization estimation. Note that the validation set is never
used to estimate parameters or train any algorithm.

Early Rejection. The random character of ES leads to a relatively high frac-
tion of suboptimal solutions that need to be evaluated. We propose an early
rejection strategy that discards inferior configurations as soon as possible during
cross-validation to save computation time for potentially better solutions. Two
criteria lead to an early rejection: At first, if any configuration performs worse
than guessing, thus accl < 1/number classes, the cross-validation is stopped.
The second criterion uses a statistical method to test if a configuration will
likely be equal or better than the currently best one. The cross-validation per-
formance value accavg,best and accsd,best of the overall best configuration are
stored. In each cross-validation round, a one-sided confidence interval for the
accuracy mean is calculated that determines a minimum average accuracy of
the lth round accmin,l = accavg,best − z · accsd,best/

√
l. The parameter z is the

confidence level; we use z = 1.96 which is equal to an error probability of 2.5%.
The cross-validation is stopped if any accl < accmin,l.

4.3 Multi-pipeline Classifier

The presented optimization method leads to a result list of NRes configurations
R = {(θj , qj)}, 1 ≤ j ≤ NRes, with a corresponding fitness qj . The configurations
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can be sorted by their fitness qj and, at first glance, the configuration with the
highest fitness is the most interesting result. However, this solution could be
randomly picked and therefore quite “unusual” and also potentially overfitted
to the training dataset, even though cross-validation is used.

The distribution of the top-n configurations can be used to generate a multi-
pipeline classifier. Multi-classifier systems have the potential to improve the gen-
eralization capabilities compared to a single classifier when the diversity of the
different models is large enough [28]. A multi-pipeline classifier is defined such
that the top-n configurations are used to set up n pipelines with the correspond-
ing configuration θj . In classification mode, all pipelines are classifying the input
vector parallelly and finally, a majority voting is performed to select the most
frequent label.

5 Experiments

For the evaluation of the presented framework 11 classification problems from
the UCI database [29] have been used with different dimensionalities and classes
(see Table 1). In order to test the generalization capabilities the instances of
all datasets have been divided randomly into 50 % train and 50 % test sets.
The proposed optimization algorithm, denoted as CES (complete evolutionary
strategy), is evaluated and compared to a baseline classifier. For the baseline we
choose a popular standard approach with an SVM with a Gaussian kernel, in
combination with the full feature set (no feature selection), no preprocessing, no
feature transform and grid-based tuned hyperparameters.

The proposed evolutionary algorithm uses random components which may
lead to non-reproducible results and local optima. In order to overcome this prob-
lem in the evaluations, all experiments have been repeated 3 times. Currently,
the framework is implemented in Matlab 2014 using the Parallel Computing
Toolbox and is run on an Intel Xeon workstation with 6 × 2.5 Ghz and 32 GB
of RAM2.

Table 1. Dataset information from the UCI database [29].

Index Tataset Dimensions Classes Index Dataset Dimensions Classes

1 iris 4 3 7 australian 14 2

2 diabetes 8 2 8 vehicle 18 4

3 breast-cancer 9 2 9 ionosphere 34 2

4 contraceptive 9 3 10 sonar 60 2

5 glass 9 6 11 semeion-digits 256 10

6 statlogheart 13 2

2 The average memory consumption of the proposed system is below 8 GB.



62 F. Bürger and J. Pauli

5.1 Evaluation of the Optimization Process

First, the optimization process on the training datasets itself is evaluated. Table 2
shows the average cross-validation accuracies compared to the baseline SVM.
The accuracy values for CES are significantly higher compared to the SVM for all
datasets – the average accuracy improvement is 6.36 ± 6.02 %. These results show
that the proposed classification pipeline is able to adapt very well to any learning
task due do its large repertoire of algorithms and hyperparameters. The results
are mostly stable, however the standard deviation is slightly higher for three
datasets, namely glass, vehicle and sonar. This indicates that the optimization
algorithm was stuck in local optima.

The optimization runtimes for each dataset can be found in Table 3. The
average runtime for the 11 datasets is 131.4 ± 96.0 min. There is no general link
between the runtime and the dimensionality of the dataset. The main runtime
heavily depends on the complexity of the selected algorithms in the pipeline con-
figuration. Especially some feature transforms need much more time than others.
Note that the runtime of the algorithms is not considered in the optimization
process yet.

Table 2. Average training cross-validation accuracies compared to the baseline SVM.

Dataset Baseline CES Dataset Baseline CES

1 96.00 98.67 ± 0.00 7 68.76 88.35 ± 0.43

2 76.81 81.17 ± 0.60 8 75.94 82.55 ± 2.05

3 97.07 98.15 ± 0.45 9 92.65 95.48 ± 0.56

4 52.70 55.68 ± 0.27 10 85.71 89.21 ± 1.98

5 68.96 80.43 ± 2.24 11 92.12 93.21 ± 0.69

6 74.07 87.90 ± 1.54

Table 3. Average optimization runtimes in minutes.

Dataset CES Dataset CES Dataset CES

1 29.1 ± 5.0 5 59.8 ± 36.0 9 131.4 ± 18.6

2 132.0 ± 30.3 6 39.4 ± 22.1 10 47.6 ± 1.1

3 182.0 ± 73.8 7 124.8 ± 48.7 11 287.5 ± 118.5

4 313.3 ± 55.6 8 99.0 ± 26.9

5.2 Analysis of the Optimization Trajectory

In the following the optimization processes of two datasets, namely statlogheart3

and glass4, are discussed in detail. Figures 4 (a) and 5 (a) show the fitness
3 The statlogheart dataset is a medical application in which diagnoses are correlated

with absence of presence of serious heart diseases.
4 The glass dataset is a forensic application in which glass is classified by oxide contents

with the goal to identify the origins of the glass.
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developments during the optimization. In both cases, a fast and steep gain of
the mean fitness of the populations can be observed. The best fitness values per
generation start at a relatively high level and increase much slower than the
mean fitness. This indicates that the initial population already contains very
well performing individuals which are fine-tuned in the main optimization.

Additionally, the effectiveness of the early rejection strategy during cross-
validation can be seen in Figs. 4 (b) and 5 (b). These graphs depict the percent-
age of saved cross-validation rounds depending on the generation. The generation
number zero is the initial population of the main optimization and during these
evaluations, only the “worse-than-guessing” criterion is applied. In generation
one, the fitness values of the best individuals from the initial generation are
available to apply the confidence interval criterion to save more cross-validation
rounds. As a large fraction of individuals perform inferiorly in the first genera-
tion, the ratio of saved evaluations is maximal there – for both datasets. Totally,
34.6 % of cross-validation rounds have been saved for the statlogheart dataset
and and 41.5 % for the glass dataset, respectively.

5.3 Top Configuration Graph

The trajectory of the optimization can be exploited to get insight into the classi-
fication problem and its solutions. After the optimization terminates, the sorted
result list R (see Sect. 4.3) is available. However, it is hard to analyze the con-
figurations in text or table form. One way of visually analyze the solutions in R
is the top configuration graph which is depicted in Fig. 6. The graph shows the
distribution of frequencies of features, feature preprocessing methods, feature
transforms and classifiers with a different shading. Additionally, components are
considered as connected if they appear in the same configuration. These con-
nections are shown as edges which are also shaded according to their frequency.
The idea behind this graph is that features and algorithms which have been
selected more often play a more important role for the classification problem.

Fig. 4. Exemplary optimization statistics for the statlogheart dataset.
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Fig. 5. Exemplary optimization statistics for the glass dataset.

The two examples found in Fig. 6 show the top-50 configuration graphs for the
statlogheart dataset in (a) and the glass dataset in (b).

Fig. 6. Examples of graphical analyses of the distribution of the top-50 configurations.
The asterisk (*) denotes elements that occur in the overall best configuration.



A Holistic Classification Optimization Framework 65

For the statlogheart dataset, many different feature preprocessing and trans-
forms perform well. Standardization, Kernel-PCA with a polynomial kernel and
the LDA methods perform best. The feature preprocessing and transforms seem
to make the problem linearly separable, as a linear SVM performs best in most
cases. The shading of the features indicate their importance and, e.g. the feature
numberMajorVessels and ChestPainType are very relevant, while the features
fastingBloodSugar and Age seem to be the most irrelevant for predicting heart
diseases.

For the glass dataset, no feature preprocessing method and transform have
been successful. The distribution of features seems to be highly non-smooth as
only the random forest performed well in most cases. The feature analysis reveals
that the features Magnesium, Silicon, Potassium, Barium, RefractiveIndex and
Aluminium are much more important than Calcium, Iron and Sodium to classify
glass samples.

5.4 Evaluation of the Generalization

The huge accuracy improvements during cross-validation are promising, but the
risk of overfitting is evident. Table 4 shows the accuracies of the proposed clas-
sification pipelines on the test datasets which have not been used during cross-
validation. The generalization of a single classification pipeline using the best
configuration in terms of fitness (denoted as top-1) is in many cases better than
the generalization of the baseline classifier, but the average improvement is mar-
ginal (0.73 % with a high standard deviation). This would usually not justify
the optimization time of several hours. The multi-pipeline classifier improves
the accuracy greatly for many datasets; the average accuracy improvement

Table 4. Average generalization accuracies on test datasets compared to baseline and
Auto-WEKA (24h of time budget). The number of pipelines for the best top-n multi-
pipeline classifier is denoted in parentheses (n).

Dataset Baseline Top-1 Top-10 Best Top-n AutoWEKA

1 97.33 97.33 ± 0.00 98.22 ± 1.54 99.11 ± 1.54 (5) 92.27

2 73.96 74.91 ± 0.15 74.57 ± 0.60 74.91 ± 0.15 (1) 75.83

3 96.77 86.12 ± 17.96 96.29 ± 0.45 96.77 ± 0.78 (15) 96.72

4 54.29 56.19 ± 0.59 57.23 ± 1.19 57.55 ± 1.30 (11) 57.17

5 63.81 65.71 ± 7.19 68.57 ± 7.44 69.52 ± 8.30 (4) 74.86

6 72.59 81.73 ± 1.86 82.22 ± 2.22 82.96 ± 2.96 (23) 83.70

7 71.51 85.47 ± 0.77 85.95 ± 0.17 86.24 ± 0.61 (6) 85.29

8 77.49 80.25 ± 4.12 81.99 ± 0.24 83.10 ± 1.68 (30) 81.18

9 96.57 92.57 ± 1.98 95.24 ± 0.87 96.76 ± 0.87 (50) 96.11

10 87.38 79.94 ± 1.48 82.52 ± 3.88 83.17 ± 2.24 (21) 85.63

11 95.21 94.75 ± 0.65 95.71 ± 0.44 96.47 ± 0.13 (38) 94.13

Delta Baseline: 0.73 ± 6.88 2.87 ± 5.38 3.60 ± 5.29 3.27 ± 6.11
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Fig. 7. Exemplary accuracy on test dataset of a multi-pipeline classifier for the
ionosphere dataset depending on the number of pipelines n. The plot shows means
and standard deviations of the repetitions.

compared to the baseline is 2.87 % if the 10 best pipelines are used. However, the
optimal number of pipelines with the best generalization depends on the dataset.
It can be observed for many datasets that a fusion of a higher number of pipelines
leads to a better classification performance. Figure 7 shows the increasing per-
formance depending on the number of fused pipelines for the ionosphere dataset.

The classifiers optimized by the Auto-WEKA framework with a time budget
of 24 h also show a good performance on many datasets that is in the range of the
best multi-pipeline classifiers. However, it performed rather poorly on the very
simple iris5 dataset. This shows that overfitting is also an issue for Auto-WEKA.

6 Conclusions

In this work, a holistic classification pipeline framework with feature selection,
portfolios of feature preprocessing methods, feature transforms and classifiers is
presented. An evolutionary algorithm is used that optimizes the configuration
of the pipeline consisting of feature subset, algorithm selection and hyperpara-
meters relatively efficiently. An adapted variant of cross-validation is proposed
that incorporates the generalization performance of feature preprocessing, fea-
ture transforms and the classifier. A multi-pipeline classifier is used to improve
the generalization of the classifier system. The framework does not require expert
knowledge to reach state-of-the-art performance within a few hours. Addition-
ally, graphical analyses of the best configurations help to reveal information
about latent properties of the learning task.

The evaluation of the framework shows that overfitting is still a problem even
though cross-validation is used. Sometimes, the standard SVM without special
preprocessing generalizes best. However, the fusion of multiple pipelines shows a
much better generalization performance, but introduces a higher computational
cost. On the other hand, the datasets were rather low-dimensional and the per-
formance improvement is expected to be larger in higher dimensional feature

5 The popular iris dataset correlates variants of the iris plant with leaf dimensions.
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spaces. In future work, the generalization estimation needs to be improved with
advanced methods like e.g. bootstrapping. The runtime of the selected algo-
rithms should also be considered during the optimization process to make it
faster.

Acknowledgements. This work was funded by the European Commission within the
Ziel2.NRW programme “NanoMikro+Werkstoffe.NRW”.

Appendix

List of feature transforms and manifold learning methods that are used in the
portfolio SFeatTrans of the feature transform element:
Autoencoder, CFA (Coordinated Factor Analysis), Diffusion Maps, Factor
Analysis, FastICA (Independent Component Analysis), GPLVM (Gaussian
Process Latent Variable Models), Hessian LLE, Identity (no transform), Isomap,
Kernel-LDA (extension to LDA with e.g. Gaussian or polynomial kernels),
Kernel-PCA (extension to PCA with e.g. Gaussian or polynomial kernels),
Landmark Isomap, Laplacian Eigenmaps, LDA (Linear Discriminant Analysis /
Fisher Discriminant Analysis / FDA), LLC (Locally Linear Coordination),
LLE (Locally Linear Embedding), LLTSA (Linear LTSA), LMNN (Large-
Margin Nearest Neighbor), LPP (Locality Preserving Projection), LTSA (Local
Tangent Space Analysis), Manifold Charting, MCML (Maximally Collapsing
Metric Learning), NCA (Neighborhood Components Analysis), NPE (Neighbor-
hood Preserving Embedding), PCA (Principal Component Analysis), Sammon
Mapping, SNE (Stochastic Neighbor Embedding), SPE (Structure Preserving
Embedding), Symmetric SNE, t-SNE (parametric).
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