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Abstract. In European countries, the increasing number of elderly with
dementia causes serious problems for the society, especially with regard
to the caring sector. As technical support systems can be of assistance
to caregivers and patients, a mobility assessment system for demented
people is presented. The grade of mobility is measured by means of the
person’s pose and movements in a monitored area. For this purpose, pose
estimation and movement detection algorithms have been developed.
These algorithms process 3-D data, which are provided by an optical
stereo sensor installed in a living environment. The experiments demon-
strated that the algorithms work robustly. In connection with a human
machine interface, the system facilitates a mobilisation as well as a more
valid assessment of the patient’s medical condition than it is presently
the case. Moreover, recent advances with regard to action recognition as
well as an outlook about necessary developments are presented.
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1 Introduction

The increasing life expectancy is an important achievement of modern medicine.
Over the coming years, the number of elderly people will continually rise and with
it the number of demented people [3]. Due to this development, care facilities
will encounter challenges in maintaining the quality of human care.

People in an early state of dementia should remain in their familiar household
as long as possible in order to mitigate these problems. The encouragement of
their cognitive, social and physical functions will also help to keep their quality of
life at high level. Next to activation, assessing the need of care in regular intervals
is another task medical experts are facing. Since the health status of a person is
examined only irregularly at present, the result is highly dependent on the form
on the inspection day and might be further influenced by the fact that patients
can prepare for the inspection. Additionally, many patients put particular concern
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on personal hygiene on that day and when questioned about their physical and
psychological comfort, they usually feel embarrassed and avoid talking about their
problems. The medical findings are therefore not always reliable.

In this paper, only persons living alone at home without the care of a part-
ner are considered. The focus lies on the physical capabilities of the demented
person – and particularly his or her mobility. This parameter was measured by
the detection of the general pose (i. e. standing, sitting and lying) and of the
person’s movements in the living environment. To this end, a single, wide angle
stereo camera was mounted at the ceiling. The information gathered about the
general pose and the movements were recorded over a certain period of time. If
long periods of inactivity were detected, the demented person was encouraged
to do some exercises or to go for a walk. The communication was realized via
a human machine interface, i. e. a tablet or a monitor, on which the messages
appeared, optionally in combination with an acoustic signal. Furthermore, statis-
tics were calculated from the recorded data. At a later time, such statistics could
be analysed by medical personnel to notice considerable changes in a patient’s
mobility and to draw reliable conclusions about the need of care.

2 Related Work

Various works address the subject of supporting elderly people in their home
environment. The assistance concepts are closely related to the topic of AAL
(Ambient Assisted Living). Their unobtrusive integration into the living
environment is one of the most important requirement for AAL systems.

Clement et al. detected ADLs (Activities of Daily Living) with the help of
‘Smartmeters’, which measure the energy consumption of household devices [5].
A Semi-Markov model was trained in order to construct behaviour profiles of per-
sons and to draw conclusions about their state of health. Kalfhues et al. analysed
a person’s behaviour by means of several sensors integrated in a flat, e. g. motion
detectors, contact sensors and pressure sensors [8]. Link et al. employed opti-
cal stereo sensors to discern emergencies, i. e. falls and predefined emergency
gestures [10]. Chronological sequences of the height of the body centre and the
angle between the main body axis and the floor were analysed. Belbachier et al.,
who also applied stereo sensors to detect falls [2], used a neural network-based
approach to classify the fall event. The major advantage of optical sensors is their
easy integration into a flat. A considerable amount of additional information can
be obtained by applying image processing algorithms, especially in connection
with RGB-D sensors, which deliver red, blue and green channel images as well
as depth information. Therefore, we decided to use a stereo camera in our study.
Although other sensors that provide RGB-D data, such as the Kinect, could also
be installed in a flat, they show features that have proved to be disadvantageous
with regard to the application field of AAL: Firstly, if the Kinect is mounted at
the ceiling, the range and the field of view do not cover the complete room. It
would be necessary to integrate several Kinect sensors at different places in a
flat, which is hardly applicable. Secondly, the resolution is not sufficient enough
for the recognition of objects that are far away from the sensor. When, thirdly,
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several Kinects are installed for better coverage of the room, they are apt to
influence each other, due to their active technique for determining depth infor-
mation. Consequently, although the Kinect is highly performant for a variety of
applications, we considered this sensor as unsuitable for AAL purposes.

The approaches listed above either address ADL detection or emergency
scenarios. In the context of assessing the health status of persons, several for-
mer projects have focused especially on the analysis of mobility. Scanaill et al.
employed body-worn sensors for mobility telemonitoring [13]. However, this type
of sensor unsuitable for demented persons, as this group tends to forget to put
them on or puts them off intentionally. In the work of Steen et al., another
way of measuring mobility was presented [14]. In first field tests, several par-
ticipants’ flats were equipped with laser scanners, motion detectors and contact
sensors. By means of these sensors, the persons could be localised within their
flats. Apart from this, the traversing time between the sensors as well as walking
speeds were computed. These field tests gave evidence that the evaluation of
sensor data allows conclusions about mobility.

In addition to a person’s location and the movements, we think that the
pose, i. e. standing, sitting and lying, provides also an indication of a person’s
mobility. We therefore introduce a pose estimation algorithm, which detects the
pose of a person within the area observed by a single stereo camera.

There is a variety of pose estimation algorithms that use optical sensors.
They differ, for example, with respect to such parameters as camera type (mono,
stereo), inclusion of temporal information and utilisation of explicit human mod-
els. Ning et al. discerned the human pose using a single monocular image [11]. By
modifying a bag-of-words approach, they were able to increase the discriminative
power of features. They also introduced a selective and invariant local descrip-
tor, which does not require background subtraction. The poses walking, boxing
and jogging could be classified after supervised learning. Agarwal et al. deter-
mined the pose from monocular silhouettes by regression [1] and thus needed
neither a body model nor labelled body parts. Along with spatial configurations
of body parts, Ferrari et al. additionally considered the temporal information in
their study [6]. Haritaoglu et al. employed an overhead stereo camera in order to
recognize the ’pick’ movement of customers while shopping [7]. In this study, a
three dimensional silhouette was computed by back-projecting image points to
their corresponding world points by the use of depth information and calibra-
tion parameters. The persons’ localizations were found at regions with significant
peaks in the occupancy map. The pose is determined by calculating shape fea-
tures instead of using an explicit model. Other approaches applied the Kinect
sensor. Their results proved that the Kinect, when suitable for the particular
application, leads to results of high quality. Ye et al. estimated the pose from a
single depth map of the Kinect [15]. They then compared this map with mesh
models from a database. In a first step, a similar pose was searched by point cloud
alignment using principal component analysis and nearest neighbour search. In
a second step, the found pose was refined. Missing information of occluded parts
could be replaced by data from the corresponding mesh model. As a result,
skeleton joints comparable to the Kinect skeleton output could be determined.
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Another study addressed the design of a scale and viewing angle robust feature
vector, which describes a person’s head-to-shoulder signature [9]: Points between
head and shoulder are first assigned to vertical slices. The points within each
slice are then projected to a virtual overhead view and the feature vector is
eventually composed of the slices’ spans. The authors aim at detecting persons
in a 3-D point cloud. However, this approach can also be adapted and utilized
for pose estimation.

3 Mobility Assessment

This section describes the algorithms for movement detection and pose estima-
tion. First of all, the person has to be detected and localized within the monitored
area. Therefore, the stereo camera is extrinsically calibrated with respect to a
defined world coordinate system. The 2-D position is measured in relation to
the origin of this coordinate system. On the basis of this position, the person is
classified as ’moving’ if the position changes considerably between two successive
frames in a video sequence. The pose estimation requires three steps. Firstly, 3-
D points belonging to the person are extracted from the back-projected point
cloud. Secondly, discriminative feature vectors, which allow a reliable classifica-
tion, are designed. Finally, a suitable machine learning technique is selected and
a model is trained with feature vectors generated from training examples.

3.1 Person Localisation

The person localisation is performed on the back-projected 3-D point cloud
obtained from the stereo camera [12]. Hypotheses of possible foreground regions
are generated in a first step, so a mixture of Gaussian algorithm is applied
to the world z-map, which represents the z component, i. e. the height, of the
corresponding world point for every pixel.

The mixture model is calculated for every pixel in the map and updated for
every new frame according to the new pixel value. The model was described by
[16] and is expressed as follows:

p(x(t)|χT;BG + FG) ∼
M∑

m=1

π̂(t)
m · N(x(t); μ̂(t)

m , σ̂2(t)
m ) (1)

p(x(t)|χT;BG+FG) is the probability density function for the value x of a pixel
in the z-map for frame t with the history χT. This density function models both
the background BG and the foreground FG. M denotes the number of Gaussian
distributions N . Each distribution is characterised by its mean value μ̂

(t)
m and

its variance σ̂
2(t)
m . π̂

(t)
m denotes the influence of every single distribution on the

mixture model.
In a second step, the points within the foreground mask are projected on a

virtual overhead plan view. The final determination of the persons’ positions is
executed on this view. The detected person is characterised by a centre point−→p = (x, y, z), the expansion in each direction – expansionx and expansiony –
and an orientation α related to the world coordinate system. An example of
detected persons is illustrated in Fig. 1.
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Fig. 1. Example point cloud with detected persons [12]. Detected persons are visualised
via red cuboids defined by a 3-D centre point and expansions in each direction. White
areas indicate regions, where 3-D world points cannot be calculated due to the lack of
depth information (Color figure online).

3.2 Movement Detection

For movement detection, only vectors −→p xy containing the x and y component of
the 3-D centre point −→p are processed.

The distance distanceframe that a person moves between two frames depends
on the frame rate and can be estimated with:

distanceframe = vmovement · tframe =
vmovement

frame rate
. (2)

Provided a person is walking with a speed vmovement of at least 0.5 m/s and
the frame rate is about 5 FPS, the distanceframe is estimated at 100 mm. We
consider a person to be moving when a threshold distance of more than X m
is covered. Therefore, we utilize a sliding window containing the vectors −→p (t−i)

xy

with i = {0, ..., 4}. Each distancej crossed between two successive frames is
calculated according to Eq. 3 with j = {0, ..., 3}. It is the Euclidean norm between
the person’s position in the frame t − j and the position in the previous frame
(t − j − 1).

distancej =
∥∥∥−→p (t−j)

xy − −→p (t−j−1)
xy

∥∥∥ . (3)

Afterwards, the distances are summed up to the final distance between the
five frames of the sliding window:

distance =
3∑

j=0

distancej. (4)

The distance between two frames is only added to the sum if its value exceeds
distanceframe. Furthermore, the threshold X mentioned above for this sum is
estimated according to the product of the estimated distance between two frames
distanceframe and the number of distances nDist within the window:
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X = distanceframe · nDist

= 100
mm

frame
· 4 frames = 400mm.

(5)

Moreover, the decision about movement or non-movement is realised via a
finite state machine consisting of the two states ‘movement’ and ‘non-movement’.
At the transitions, the distance is compared with two different thresholds Thigh

and Tlow that are slightly lower/higher than the estimated threshold distance X
(hysteresis):

Thigh = 500mm,
Tlow = 300mm.

(6)

The hysteresis suppresses oscillations near the estimated threshold value.
Finally, the value of movement(t) is recorded over time, so that it can be analysed
later. Generally, these threshold values can be adjusted when conditions in terms
of velocity and frame rate are altering.

3.3 Pose Estimation

Point Cloud Extraction. The presented pose estimation algorithm processes
3-D world points belonging to the person. Every point of the point cloud has
therefore to be classified as person or non-person. For that purpose, both the
previously calculated cuboid and the foreground mask are used for classification.
The algorithm is outlined in the following pseudo code, which is performed for
every detected person. The geometric context is illustrated in Fig. 2.

R = sqrt(expansion.x^2 + expansion.y^2);
for all points:
if (foregound

&& z < 2*expansion.z
&& expansion.x < R
&& expansion.y < R )

{
(xT,yT) = CoordinateTransformation(x, y);
if (!( xT < expansion.x

&& yT < expansion.y ))
{

deletePoint(x,y);
}

}
else
{

deletePoint(x,y);
}

Points are removed from the cloud if they belong neither to the foreground
nor to the interior of the cuboid. In order to reduce processing power, it is first
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checked whether a point (xpc, ypc) is within the person’s radius R. If this is
the case, the point is transformed from the world coordinate system (xw, yw) to
the person’s coordinate system (xp, yp), which enables a direct comparison of the
point coordinate with the corresponding expansion expansionx and expansiony.
The person’s coordinate system is defined by its origin, namely the 2-D centre
point −→p xy, and its rotation angle α.

pxy

yw

xw

α

(xpc, ypc)

Fig. 2. Classifying points from the point cloud as person or non-person by means of
coordinate transformation. If a point in the point cloud lies inside the circle defined
by radius R, this very point is transformed from the world coordinate system to the
person’s coordinate system. Provided that the point has been classified as foreground, it
belongs to the person if its x and y component fall below the corresponding expansion.

The remaining points are denoted as the person’s point cloud pointsperson.
Figure 3 shows the extracted point clouds of three persons.

Fig. 3. Point clouds of three persons.



Pose Estimation and Movement Detection for Mobility Assessment 179

Feature Vector Generation. The determination of a person’s pose is based
on the points extracted in the previous step. In order to train a machine, a
discriminative feature vector has to be designed first. For that purpose, the
point cloud is divided into 20 vertical bins of 110 mm height each, which start at
a z value of −100 mm. During the extrinsic calibration, the origin of the world
coordinate system is set on the floor plane of the room. The plane formed by
the x and the y axis runs parallel to the floor while the z axis is directed at the
ceiling. Therefore, the floor is defined by a z value around zero. According to
their z component, all points are assigned to one of these bins. Consequently,
each bin contains the number of points that fall within a certain z range. All bins
together form a feature vector. In a final step, the feature vector is normalized
by dividing every item by the total number of points n. The process of feature
vector generation is visualised in Fig. 4.

Fig. 4. Feature vector generation from point cloud. All numbers in mm.

Training. After the feature vector generation, a machine was trained in a super-
vised manner, i. e. with labelled training samples . Video sequences with three
different persons (P3, P4 and P7) were recorded for this purpose in a laboratory
flat and manually labelled (about 3000 images). Furthermore, a linear Support
Vector Machine (SVM) was chosen. The SVM is a discriminative, maximum mar-
gin classifier. The term ‘discriminative’ means that the variable to be predicted,
i. e. the posterior probability, is modelled whereas ‘maximum margin’ refers to
the fact that an optimization problem is formulated: A separating hyperplane
has to be determined, so that the margin between two adjacent classes is maxi-
mized. The outer vectors of the classes form the support vectors. These are the
vectors with the minimum distance to the separating hyperplane. We decided to
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Fig. 5. Design for all: Interface for both patients and for medical personnel. The images
at the top show the interface for the patient. Reminders appear time-controlled. The
patient can remove the messages either by touching the display (touch screen) or by
performing the action, e. g. when movement is detected by the sensor. The image at
the bottom shows a graph that presents pose and movements over a month. Other
intervals can also be selected.

use this type of classifier, because it ranks among the classifiers with the best
performance if the amount of training data is limited [4].

3.4 Human Machine Interface

The medical staff can view the statistically prepared mobility data via a web
interface. Additionally, if no movement is detected over a certain period of time,
which can be specified beforehand, a reminder appears on a tablet as well as
on a touch display. This touch display might be a TV set, so that the person
is activated while watching TV, for example. In that way, the person can be
immediately addressed in an unobtrusive way. Examples of such scenarios are
illustrated in Fig. 5.

4 Experimental Results

In order to determine the performance of the trained pose classifier, we recorded
several test sequences. A total number of 2958 samples was classified during
the test.

The first test case consisted of realistic scenarios in the laboratory flat with
two elderly volunteers (P1 and P2). In the second test case, we attached high
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importance to the fact that the test sequences had been recorded in a completely
different environment compared to the scene where the training sequences have
been recorded. We installed, therefore, a test set-up with a stereo camera similar
to the one in the laboratory flat. The sequences were recorded with four persons
(P3 - P6), of whom two had already participated in the training sequences (P3
and P4).

Table 1 shows the results for the elderly persons in the laboratory flat while
Tables 2 and 3 indicate the classification results for both types of test persons
in the special test set-up. The letters L and C in the table headings stand for
classified pose and labelled pose respectively. All numbers are percentages.

The experiments show that the classification results are of high quality. These
first tests also revealed that the algorithm does work reliably in different sur-
roundings and with different persons. The misclassification rate for ‘Lying’ in
Table 1 is obviously very high compared to the other scenarios. This is, however,
caused by the sparse and noisy point cloud at the place, where the person was

Table 1. Classification results for persons P1 and P2.

C
L Standing Sitting Lying

Standing 100 0 6.5
Sitting 0 100 0
Lying 0 0 93.5

Table 2. Classification results for persons P3 and P4.

C
L Standing Sitting Lying

Standing 97.6 0 0
Sitting 0 100 0
Lying 2.4 0 100

Table 3. Classification results for persons P5 and P6.

C
L Standing Sitting Lying

Standing 100 0 0
Sitting 0 100 1
Lying 0 0 99
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lying at this time. The location was relatively far away from the stereo sensor,
so that the stereo matching algorithm reached its limits.

For the purpose of movement evaluation, we recorded and labelled a video
sequence, in which persons were either walking through the room or standing
somewhere at the spot. We could thus compare the labels with the output of the
algorithm (moving/non-moving) and calculate the true-positive rate TPR and
the false-positive rate FPR were calculated. movdetected|neg denotes the number
of frames where movement was detected although the label was non-movement,
movdetected|pos the number of frames where movement was detected and the label
was movement, movneg,labelled the number of frames labelled as non-movement,
movpos,labelled the number of frames labelled as movement.

TPR =
movdetected|pos
movpos,labelled

=
288
298

≈ 96.6% (7)

FPR =
movdetected|neg
movneg,labelled

=
5

193
≈ 2.6% (8)

These values show that significant movements between different positions in
the monitored area are detected by the algorithm.

5 Action Recognition

Latest developments of our system aim at monitoring and analysing activities
important for the need of care of demented persons. Such activities are related
to nourishment, social contacts and personal hygiene. On the basis of the reg-
istered activities, assistance, such as reminders or activation messages, can be
provided for patients. Caring personnel could benefit from the generated infor-
mation by involving it in their care planning. New advances in our project show
that activities, such as drinking, can be reasonably well detected by means of
machine learning techniques. Figure 6 shows a feature vector example that has
been used for training a machine in order to recognise drinking from a bottle.

Fig. 6. Feature vector for recognising drinking.
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Further activities can be recognised by combining the person’s position and
pose with context information, for example the knowledge about the location of
furniture or of different utensils in the flat. When a person is localised in the bed
and at the same time is detected to be lying for a longer time, then it is assumed
that the person is sleeping. In addition to sleeping in the bed, actions such as
resting in an armchair, taking a shower and washing hands while standing in
front of a basin are several examples of activities the system is capable to detect
at the moment.

6 Conclusions

In this paper, we presented an approach to measure significant indicators for
mobility, i. e. a person’s pose and movement. The most significant finding to
emerge from this study is that the proposed machine learning technique works
reliably in different environments and with different persons. In combination
with movement detection (e. g. crossing a room), conclusions about a person’s
mobility can be drawn. In that way, long-term diagnostics involving mobility
observations can lead to more reliable diagnoses of the health status, which
will result in a better assessment of the need of care. Moreover, activation and
mobilization by means of a HMI can support the demented persons in preserving
their functional abilities.

7 Future Work

Further work needs to be done to increase the accuracy of the action registration
and to extend the range of detectable activities.

An essential aspect of our future studies will be the conduction of field tests in
cooperation with our medical partners. The application of the system in the field
over a longer period of time will provide data for a long-term statistical data
analysis and for system validation. Since the focus of the presented approach
lies on the patient, the HMI has to be attuned to the special needs of demented
people, which shall result in a patient-oriented assistance and assessment system.

With regard to the demographic developments, the quality of care for
demented people has to be ensured. The proposed approach can contribute to
a more valid assessment and to the preservation of the patient’s quality of life.
Not only would this be of high benefit for our caring sector, but it could also
increase the quality of life of demented persons and their relatives.
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