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Abstract. Most state-of-the-art approaches to object and face detec-
tion rely on intensity information and ignore color information, as it
usually exhibits variations due to illumination changes and shadows, and
due to the lower spatial resolution in color channels than in the inten-
sity image. We propose a new color descriptor, derived from a variant
of Local Binary Patterns, designed to achieve invariance to monotonic
changes in chroma. The descriptor is produced by histograms of encoded
color texture similarity measures of small radially-distributed patches.
As it is based on similarities of local patches, we expect the descrip-
tor to exhibit a high degree of invariance to local appearance and pose
changes. We demonstrate empirically by simulation the invariance of the
descriptor to photometric variations, i.e. illumination changes and image
noise, geometric variations, i.e. face pose and camera viewpoint, and dis-
criminative power in a face detection setting. Lastly, we show that the
contribution of the presented descriptor to face detection performance is
significant and superior to several other color descriptors, which are in
use for object detection. This color descriptor can be applied in color-
based object detection and recognition tasks.

1 Introduction

Most object and face detection algorithms rely on intensity-based features and
ignore color information. This is usually due to its tendency to exhibit variations
due to illumination changes and shadows [1], and also to the lower spatial reso-
lution in color channels than in the intensity image (e.g. the works of [2-5]). Face
detection performance by a human observer declines when color information is
removed from faces [6]. It has been argued that a detector which is based solely
on spatial information derived from an intensity image, e.g. histograms of gra-
dients, may fail when the object exhibits changes in spatial structure, e.g. pose,
non-rigid motions, occlusions etc. [7]. Specifically, an image color histogram is
rotation and scale-invariant.

We hereby review the topic of color representations and descriptors for object
detection. Color information has been successfully used for object detection and
recognition [1,7-13].

Color can be represented in various color spaces, e.g. RGB, HSV and CIE-
Lab, in which uniform changes are perceived uniformly by a human observer [14].

© Springer International Publishing Switzerland 2015
A. Fred et al. (Eds.): ICPRAM 2015, LNCS 9493, pp. 158-171, 2015.
DOI: 10.1007/978-3-319-27677-9_10



A Similarity-Based Color Descriptor for Face Detection 159

Various color descriptors can be designed. The color bins descriptor [7] is com-
posed of multiple 1-D color histograms by projecting colors on a set of 1-D lines
in RGB space at 13 different directions. These histograms are concatenated to
form the color bins features.

Two color descriptors were examined by [9] for object detection, the Robust
Hue descriptor, invariant with respect to the illuminant variations and lighting
geometry variations (assuming white illumination), and Opponent Angle (OPP),
invariant with respect to illuminant and diffuse lighting (i.e. light coming from
all directions).

The trade-off between photometric invariance and discriminative power was
examined in [11], where an information theoretic approach to color description
for object recognition was proposed. The gains of photometric invariance are
weighted against the loss in discriminative power. This is done by formulation
of an optimization problem with objective function based on KL-Divergence
between visual words and color clusters.

Deformable Part Model (DPM) is used to model objects using spring-like
connections between object parts [15,16]. Although DPM achieves very good
detection results, in particular through its ability to handle challenging objects
(e.g. deformations, view changes and partially occluded objects), the general
computational complexity of part-based methods is higher than global feature-
based methods [17,18].

The Three-Patch Local Binary Patterns (TPLBP) [19] is a robust variant of
the Local Binary Patterns (LBP) descriptor [20], based on histograms of encoded
similarity measures of local intensity patches. This descriptor was examined for
the face recognition task.

In the present work the focus is not on the design of a new face detection
framework, but rather on the design of a novel color descriptor, investigating its
possible contribution to face detection. We design a new color descriptor, based
on Three-Patch LBP. Our descriptor is computed from histograms of encoded
similarities of small local patches of chroma channels in a compact form, utilizing
the inter-correlation between image chroma channels. Consequently, the repre-
sentation of color in an image window is global, i.e. not part-based. We examine
the descriptor by ways of its robustness to photometric and geometric variations
and discriminative power. We evaluate the contribution of the descriptor in a
face detection setting, using the FDDB dataset [21], and show that it exhibits
significant contribution to detection rates.

The paper is organized as follows. In Sect. 2 the Three-Patch LBP (TPLBP)
descriptor is described briefly, and a multi-scale variant is proposed; in Sect. 3 the
new color descriptor is described; in Sect. 4 invariance and discriminative power
are evaluated, compared to the Robust Hue and Opponent Angle descriptors [9];
in Sect.5 we evaluate the color descriptor in a face detection setting, and in
Sect. 6 conclusions to this work are provided.
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2 Three-Patch LBP Descriptor and a Multi Scale Variant

The Three-Patch LBP [19] descriptor was inspired by the Self-Similarity descrip-
tor [22], which compares a central intensity image patch to surrounding patches
from a predefined area, and is invariant to local appearance. For each central
pixel, a w X w patch is considered, centered at that pixel, and S additional
patches distributed uniformly in a ring of radius r around that pixel. Given a
parameter o (where o < S), we take S pairs of patches, a-patches apart, and
compare their values to the central patch. A single bit value for the code of the
pixel is determined according to which of the two patches is more similar to the
central patch. The code has S bits per pixel, and is computed for pixel p by:

TPLBP (p) = Y0, fr (d(Ci, Cp) = d(Cir, Cy)) - 21
(1)
i’ = (i+ «) mod S

where C; and C(i1a)mods are two w x w patches along the patches-ring, a-
patches apart, C), is the central patch, d(-,-) is a distance measure (metric),
e.g. Lo norm, and the function f, is a step threshold function, f; (z) = 1 iff
x > 7. The threshold value 7 is chosen slightly larger than zero, to provide sta-
bility in uniform regions. The values in the TPLBP code image are in the range
[0, 25 — 1]. Different code words designate different patterns of similarity. Once
the image is TPLBP-encoded, the code image is divided into non-overlapping
cells, i.e. distinct regions, and a histogram of code words with 2° bins is con-
structed for each cell. The histograms of all cells are normalized to unit norm
and concatenated to a single vector, which constitutes the TPLBP descriptor.

In the formulation of the LBP descriptor [20], a binary value is assigned
according to whether a surrounding pixel is higher or lower than a central pixel.
When LBP-encoding a PXP pixels window, Uniform binary patterns are defined
by limiting the number of transitions from 0 to 1 or vice versa in the circular
binary pattern. Patterns with more than two such transitions are designated
non-Uniform, and are assigned to a single label (and therefore a single bin in the
LBP histogram). The uniform patterns are considered to provide the majority
of micro texture patterns, e.g. edges, corners and spots, while the highly non-
uniform patterns, with many 0-1 transitions, can mostly be attributed to image
noise.

We stress out that differently from LBP, in TPLBP encoding, surrounding
pixels are not thresholded against a central pixel, but surrounding patches are
compared by measure of similarity to a central patch. Thus, if a TPLBP pattern
exhibits a high number of 0-1 transitions, it may indicate more complicated
patterns of similarity of surrounding patches, rather than noise, which is pixel-
wise variable.

We propose a Multi-Scale TPLBP descriptor (termed TPLBP-MS), cap-
turing spatial similarities at various scales and resolutions, by concatenating
TPLBP descriptors with various parameters r and w. The scale is affected by the
radius r and patch resolution by patch size w. Three sets of parameters are used
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for the encoding operator of Eq. 1, i.e. (r, S,w) = {(2,8,3), (3,8,4), (5,8,5)}, all
with S = 8 and a = 2, as in [19]. These 3 TPLBP descriptors are concatenated to
produce the TPLBP-MS descriptor. Parameters r and w are changed in similar
manner in the 3 sets above, thus observing larger scales at lower resolutions.

3 A New Color Descriptor - Coupled-Chroma TPLBP

Many color descriptors are histograms of color values in some color space, e.g.
rg-histogram and Opponent Colors histograms [12]. Image color channels contain
texture information that is disregarded by color histograms. Our motivation is
to formulate a color descriptor that captures the texture information embedded
in color channels in a robust manner.

Color descriptors can be evaluated by several main properties: (1) Invari-
ance to photometric changes (e.g. illumination, shadows etc.); (2) Invariance
to geometric changes (e.g. camera viewpoint, object pose, scale etc.); (3) Dis-
criminative power, i.e. the ability to distinguish a target object from the rest of
the world; (4) Stability, in a sense that the variance of a certain dissimilarity
measure between descriptor vectors of samples from a specific distribution (or
class) is low. We would like to formulate a color descriptor that adheres to these
properties.

We represent color in CIE-Lab space, due to its perceptual uniformity to a
human observer. Using Euclidean distance in CIE-Lab space approximates the
perceived distance by an observer, hence a detector based on this color space
can in some sense approximate the perception of human color vision. In CIE-
Lab space, L is the luminance, a and b are the chroma channels. We consider
first a color descriptor produced by applying TPLBP to both chroma channels
and concatenating the single-channel descriptors to a single descriptor. Images
in JPEG format are analyzed, in which the chroma channels are sub-sampled
[23], thus spatial resolution in chroma channels is lower than in intensity. Hence,
to extract meaningful features from chroma, the appropriate operator should be
applied at a coarse resolution, relative to the operator applied to the intensity
image. The values of the parameters are chosen accordingly, (r, S,w) = (5,8,4),
i.e. both the radius and patch dimension are increased. This descriptor is termed
Chroma TPLBP (C-TPLBP). It has twice the dimension of TPLBP.

A degree of correlation exists between the chroma channels in CIE-Lab space.
This can be observed either from the derived equations of CIE-Lab color space
from CIE-XYZ space, or from an experimental perspective, by constructing a
2-D chroma histogram of face images. Elliptically cropped face images from
the FDDB dataset [21] with 2500 images are used to fit a 2-D Gaussian den-
sity of chroma values ¢ and b by mean and covariance of the data. From the
covariance matrix, we have that o4, = 53.7, i.e. nonzero correlation between the
chroma channels. We presume that coupling the chroma channels information
may lead to a robust descriptor, which is also more compact than C-TPLBP,
where chroma channels descriptions are computed separately. We propose the
following operator:
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CC —TPLBP (p) =
S e (Zicap (@(Cris Cp) = (G, Cy))) -2 -

i = (i +a) mod S

where C}, ; is the 7th patch of chroma channel £ and the inner summation is over
chroma channels, a and b. The thresholding function f, operates on the sum
of differences of patches distance functions, for both chroma channels. Given a
parameter «, we take S pairs of patches from each chroma channel, a-patches
apart, and for each pair we compare distances to the central patch of the appro-
priate channel. A single bit value for the code of a pixel is determined as follows -
if similarities in both chroma channels correlate, e.g. if in both chroma channels
patch Cj is more similar to the central patch C}, than patch C;, ., then the appro-
priate bit will be assigned value 0 (value 1 in the opposite case). Conversely, if
dissimilarities of the two channels do not correlate, then by viewing the argu-
ment of the function fr as >, d(Chi, Crp) =y d (Ch(i+a)mod s Crp)
the patch with lower sum of distances in both chroma channels is more similar
to the center, and the code bit is derived accordingly. The computed code has S
bits per pixel, and this descriptor is of the same dimension as TPLBP, i.e. half
the dimension of C-TPLBP. This descriptor is termed Coupled-Chroma TPLBP
(CC-TPLBP). The parameters are chosen in accordance with those of C-TPLBP,

Cy,
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Fig.1. CC-TPLBP code computation. (a) CC-TPLBP operator for a single chroma
channel, with parameters @ = 2, S=8 and w=3. (b) An example of CC-TPLBP code
for a color face image. Upper left - face image; upper right - CIE-Lab a chroma; lower
left - CIE-Lab b chroma (a and b are presented as gray-level images); lower right -CC-
TPLBP code image. The parameters used are r=5, S=8, w=4 (Color figure online).
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(r,S,w) = (5,8,4) and o = 2. We emphasize that different values for the radius
(r), number of patches (S), patch dimension (w) and a may be chosen, however,
preliminary experiments showed that good discriminative ability was obtained
with the parameter values specified above. The histograms are computed on
small cells of (20, 20) pixels, thus maintaining the spatial binding of color and
shape information in the image by cells delimitation, i.e. late fusion of color and
shape [1,24]. CC-TPLBP is invariant to monotonic variations of chroma and
luminance. Such variations do not cause any change to the resulting descriptor.
In Fig. 1 we present the CC-TPLBP operator, where the index k = {a,b} des-
ignates the chroma channel, as in Eq. (2), with an example code computation
for a color face image. CC-TPLBP can be combined with intensity-based shape
features for classification tasks.

4 Evaluation of Color Descriptors

CC-TPLBP is invariant to monotonic changes of both luminance and color chan-
nels. Moreover, we expect it to exhibit a high degree of robustness to geometrical
changes, e.g. pose, local appearance and camera viewpoint, as it is computed by
similarities of radially-distributed image patches. We evaluate CC-TPLBP with
respect to properties (1)—(4) described in Sect. 3, compared to the Robust Hue
and Opponent Angle (OPP) color descriptors [9]. Opponent Colors are invariant
with respect to lighting geometry variations, and are computed from RGB by:

Olz%(R—G)

1 )
02 = %(R+G723)
The Robust Hue descriptor is computed as histograms on image patches
over hue, which is computed from the corresponding RGB values of each pixel,
according to:

B o1\ V3(R-G)
hue = arctan (02) = arctan <R+G2B> (4)

Hue is invariant with respect to lighting geometry variations when assuming
white illumination. Hue is weighted by the saturation, to reduce error. The
Opponent Derivative Angle descriptor (OPP) is computed on image patches, by
the histogram over the opponent angle:

01
o _ x
ang, = arctan ( 2I> (5)

where O1, and O2, are spatial derivatives of the chromatic opponent channels.
OPP is weighted by the chromatic derivative strength, i.e. by /O12 + 022, and is
invariant with respect to diffuse lighting and spatial sharpness. Color histograms
are generally considered more invariant to pose and viewpoint changes than shape
descriptors [10], but are sensitive to changes of illumination and shading,.
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We evaluate invariance and discriminative power by the Kullback-Leibler
Divergence, a non-symmetric dissimilarity measure between two probability dis-
tributions, p and ¢, expressed as:

D1 (pllg) sz log <p1> (6)

where ¢ is considered a model distribution.

We consider descriptors that are constructed from M histograms of M dis-
tinct image cells. Referring to CC-TPLBP, each histogram has 2° bins, produc-
ing a descriptor of size M x 2. Given two images, each with M cells, we compute
M histograms for each image. To compare CC-TPLBP descriptors of these two
images, we compute the KL Divergence for each pair of approprlate hlstograms
from both images, i.e. {Dxr (h1,m, h2m)},, =1 a» where {h;, m b 2 Mis the
mth histogram of image i. We define the KL Divergence of image 1 with respect to
image 2 by averaging over all image cells, i.e. D}(QL = ﬁ fo:l (Drr (h1,m, hom)).
Each single-cell histogram contains 2% = 256 bins.

We evaluate the CC-TPLBP, Hue and OPP descriptors by three experiments,
described as follows:

4.1 Invariance to Photometric and Geometric Variations

In the first experiment we evaluate invariance to combined photometric and
geometric variations, i.e. illumination and background, face pose and viewpoint.
While this does not allow for independent evaluations of invariance to photomet-
ric and geometric variations, it simulates a realistic setting for face detection.
We use several groups of images of single persons from the LEFW Face Recogni-
tion dataset [25], each group displays a single person with the above variations.
We compute the CC-TPLBP, Hue and OPP histograms for all images in a set,
normalized to unit sum, and the KL Divergence between histograms of all image
pairs (which is non-symmetric, i.e. Drr (pi, pj) # Drr (pj, pi)). Table1 con-
tains statistics of KL Divergence values of all descriptors for several image sets.
While the number of images is relatively small, the number of resulting pairing
is large and therefore indicative. CC-TPLBP appears to be most robust to these
variations, as its mean KL Divergence is by far the lowest from all descriptors on
all image sets. CC-TPLBP also exhibits a higher degree of stability than other
descriptors, by its lowest variance.

4.2 Invariance to Gaussian Noise

In the second experiment, we test the effects of added noise, using 2500 face
images from the FDDB dataset [21], normalized to size 63 x 39 pixels. Accord-
ing to [10], sensor noise is normally distributed, as additive Gaussian noise is
widely used to model thermal noise, and is a limiting behavior of photon count-
ing noise. High Gaussian noise is added to R, G and B channels of all images, i.e.
{R,G,B}, = {R+nf, G+nS,, B+nb }, where {nf, =n"(

xy? xy? x’ y>}k=R,G,B’
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Table 1. Statistics of KL-Divergence, combined evaluation of photometric and geo-
metric invariance, for several sets of single-person images. KL-Divergence is calculated
for all pairs of images in a set. For further explanation, see text.

Person set (No. images / No. pairs) | Descriptor | Mean | Median | STD
Jennifer Aniston (21 / 420) CC-TPLBP | 0.1034 | 0.096 | 0.0353
Hue 0.9666 | 0.8321 | 0.5885
OPP 0.3555 | 0.2637 |0.288
Arnold Schwarzenegger (42 / 1722) | CC-TPLBP |0.1154 | 0.1 0.0519
Hue 1.3682 | 1.2901 | 0.6468
OPP 0.6535|0.482 | 0.551
Vladimir Putin (49 / 2352) CC-TPLBP |0.1124 | 0.0988 |0.0515
Hue 1.1799 | 1.0515 | 0.6268
OPP 0.467 |0.3582 |0.3737

n(z, y) ~ N (0,0,), with o, = 5. We calculate KL Divergence between descrip-
tor histograms of original and corrupted images. Statistics of the KL Divergence
values are displayed in Table 2. While Hue has an average KL Divergence slightly
lower than CC-TPLBP, the latter has significantly lower variance than other
descriptors, indicating higher stability under addition of Gaussian noise.

4.3 Discriminative Power

In the third experiment, we examine discriminative power. A descriptor based on
color histograms would be effective in distinguishing face patches from distinct
objects, e.g. trees or sky patches, but may be less effective in distinguishing a
face from skin, e.g. neck, torso. Here a color texture descriptor may be more
efficient. We choose randomly 200 face images from the FDDB dataset, and
pick 200 background images that give a degree of diversity and challenge for
the considered descriptors, i.e. versatility of chroma and texture. Half of the
background images do not contain skin at all, and the other half partially contain
skin, with variable backgrounds. This image set is constructed to represent the
kind of natural setting where the function of the descriptor is to be able to
discriminate face patches from non-face skin patches together with versatile non-
skin background. Several examples are presented in Fig. 2.

To evaluate discriminative power, we use the KL Divergence similar to [1]. We
define a KL-ratio for face sample, considering all face and background samples
in the set:

N%a ZjeB KL (pj7 Dk)

KL —ratiop, = —
No T 2ier, iz KL (Di Pr)

Vke F (7)

where py, is the descriptor of face patch k € F, p; is the descriptor of background
patch j € B, N and Npg are the number of face and background samples, respec-
tively. For a face sample k, Eq. (7) defines the ratio of the average KL Divergence
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Fig. 2. Example of face and background images used to examine discriminative power.
Top line - sample face images, bottom line - sample background images.

with all non-face patches, divided by the average KL Divergence with all face
patches. The higher this ratio for a face patch k € F , the more discrimina-
tive the descriptor with respect to this face and data set, as the intra-class KL
Divergence is lower than the inter-class KL Divergence. The KL-ratio values of
all descriptors on the dataset are displayed in Fig. 3, after low-pass filtering by
a uniform averaging filter of size 7. Smoothing is performed in order to reduce

Discriminative power - KL-ratios for CC-TPLBP, Hue and OPP histograms

£,
WV

KL-ratio

20 40 60 80 100 120 140 160 180 200
Face samples

Fig. 3. Discriminative power measure. KL-ratios of 200 face images with 200 back-
ground images. Horizontal axis: face sample numbers; vertical axis: KL-ratio values
computed by Eq. (7). The displayed KL-ratios are smoothed using a uniform averag-
ing filter of size 7, for further explanation see text. It can be seen that CC-TPLBP
(blue curve) has the highest mean KL-ratio and lowest variance, as also seen in Table 3
(Color figure online).
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Table 2. Statistics of KL-Divergence, noisy images.

Desc Mean | Median | STD
CC-TPLBP | 0.0553 | 0.0543 |0.0168
Hue 0.0492 | 0.0397 | 0.0405
OPP 0.0968 | 0.0818 | 0.0579

Table 3. Statistics of KL-ratios; discriminative power. CC-TPLBP is found most
discriminative.

Desc Mean | Median | STD
CC-TPLBP | 1.7402 | 1.7506 |0.1678
Hue 1.456 | 1.3835 | 0.361
OPP 1.6671|1.6712 | 0.2185

the noisiness in the original KL-ratio curves. Statistics of the KL-ratios (prior
to low-pass filtering) are given in Table 3. We observe that the average KL-ratio
for CC-TPLBP is higher than that of Hue and OPP (i.e. higher discriminative
power), and that the variance of CC-TPLBP is the lowest, indicating high sta-
bility (i.e. low variability of KL-ratios for data samples from a specific class in a
dataset).

5 Evaluation of Color Descriptors in a Face
Detection Setting

We evaluate the CC-TPLBP color descriptor in a face detection setting.

5.1 Dataset

We use the FDDB benchmark [21], which contains annotations of 5171 faces in
2845 images, divided into 10 folds. five folds are used for training, and five for
testing. Training face images are normalized to size 63 x 39. The background set
is constructed from random 63 x 39 - sized patches from background images of
the NICTA dataset [26], i.e. of same size as the face patches.

5.2 Evaluation Protocol

In our face detection system, we use Support Vector Machines [27], a classifi-
cation method that has been successfully applied for face detection [28,29], as
the face classifier. We examine various descriptors combinations, i.e. (1) TPLBP,
(2) TPLBP-MS, (3) TPLBP-MS + Hue, (4) TPLBP-MS + OPP, (5) TPLBP-
MS + C-TPLBP and (6) TPLBP-MS + CC-TPLBP. For each of (1)—(6) we
train a linear-kernel SVM classifier with Soft Margin, where the regularization
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Face Detection ROC Curves, Continuous Score (FDDB)
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Fig. 4. Face detection ROC curves on FDDB, for various descriptors combinations. It
is clearly discerned that both CC-TPLBP and C-TPLBP (red and green lines, respec-
tively) outperform all the other descriptor combinations. In addition, CC-TPLBP is
twice more compact than C-TPLBP, making it the more efficient representation (Color
figure online).

parameter C is determined by K-fold cross-validation (K =5). To reduce false
alarm rate, we add a confidence measure for an SVM classifier decision, as a
probability for a single decision [30]:

1
T+ oxp (—y (w-x 1))

p(w.x,y) = (8)
where w is the SVM separating hyperplane normal vector, x is a test sample
and y is the classification label. This logistic (sigmoid) function assigns high
confidence (i.e. close to 1) to correctly-classified samples which are distant from
the hyperplane.

Preprocessing of an image is performed by applying skin detection in CIE-
Lab color space, to reduce image area to be scanned by a sliding window method.
Various skin detection methods and color spaces can be used [31-35]. We train
offline a skin histogram based on chroma (a, b), omitting the luminance L as it
is highly dependent on lighting conditions [36]. Skin detection in a test image is
performed pixel-wise, by the application of threshold 7, i.e. for pixel p = (zp, yp)
with quantized chroma values (dp, l_)p) and histogram value h (dp, l_)p) = hyp, the
pixel is classified as skin if h, > 7. After skin is extracted, we perform a sliding
window scan to examine windows at various positions and scales. The confidence
measure of Eq. (8) is used by applying a threshold, i.e. if p (w,x,y) > psp, the
window is classified as a face.
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5.3 Results

Face detection performance was evaluated by following the evaluation scheme
proposed in [21]. Receiver Operating Characteristic (ROC) were computed, with
True Positive rate (PR € [0, 1]) vs. number of False Positives (FP). In Fig. 4,
ROC curves of continuous score [21] are depicted for various descriptor com-
binations. We observe that each of the descriptor combinations, TPLBP-MS,
C-TPLBP and CC-TPLBP produce significant improvements in detection rates,
compared to TPLBP. CC-TPLBP leads to similar performance as C-TPLBP,
but with a more compact representation.

6 Conclusions

In the present work the focus is not on the design or optimization of a face
detection framework, but rather on color representation, or description, for the
task of face detection. We proposed a novel color descriptor, CC-TPLBP, which
captures the texture information embedded in color channels. CC-TPLBP is by
definition invariant to monotonic changes in chroma and luminance channels.
A multi-scale variant of TPLBP is designed, termed TPLBP-MS. All experi-
ments were performed in a face detection setting. We examined the invariance
of CC-TPLBP, jointly for photometric and geometric variations, i.e. illumina-
tion, background, face pose and viewpoint changes, and separately for addi-
tion of Gaussian noise, and compared to the Robust Hue and Opponent Angle
(OPP) descriptors. Discriminative power was evaluated with respect to the above
mentioned descriptors. CC-TPLBP is superior to the other two descriptors. It
achieves higher discriminative power and much higher invariance to combined
photometric and geometric variations, compared to Hue and OPP, as demon-
strated in Sect. 4. The evaluation experiments in a face detection setting demon-
strated that (1) TPLBP-MS improves detection rates compared to TPLBP, (2)
the addition of CC-TPLBP produces a sharp improvement over TPLBP-MS and
(3) CC-TPLBP leads to superior detection rates compared to Hue and OPP.

The CC-TPLBP color-based descriptor can be integrated into face detection
frameworks to achieve a substantial improvement in performance using existent
color channels information. It can also be used in general color-based object
recognition tasks.
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