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Abstract. The emergence of cheap structured light sensors, like the
Kinect, opened the door to an increased interest in all matters related to
the processing of 3D visual data. Applications for these technologies are
abundant, from robot vision to 3D scanning. In this paper we go through
the main steps used on a typical 3D vision system, from sensors and
point clouds up to understanding the scene contents, including key point
detectors, descriptors, set distances, object recognition and tracking and
the biological motivation for some of these methods. We present several
approaches developed at our lab and some current challenges.

1 Introduction

There are currently many application fields for 3D computer vision (3DCV). One
of the recent pushes to the 3D computer vision was the appearance of cheap 3D
sensors, such as the Microsoft Kinect. This was not developed for 3D computer
vision but for the (console) video gaming industry. 3DCV is used in games as
a means to receive user input. Other applications of 3DCV can be found in
biometrics, such as for 3D facial and expression recognition, in robotic vision,
industrial quality control systems or even in online shopping’.

We present the current 3D technologies and the most used sensors in Sect. 2.
In Sect. 3 the focus will be on keypoint extraction from 3D point clouds. Section 4
discusses 3D descriptors and the following section presents methods used on 3D
object recognition. Section 6 presents a 3D tracking method based on keypoint
extraction and Sect.7 indicates some current challenges in this field. The final
section contains the conclusion.

2 3D Sensors

There are several possible technologies for obtaining 3D images. These 3D images
are in fact sets of points in space called point clouds. These points have, besides
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their 3D coordinates, typically at least a gray scale value or RGB value but can
have other measures associated, such has a local curvature. The 3D images can
also be represented by two 2D images: one containing the illumination intensity
of color values for scene locations and the other the respective depth or distance
to the sensor.

A basic approach to obtaining 3D images is by inferring the depth from two
different views of a scene (parallax). This can be done by using a single camera
and positioning it in different locations (for a static scene) or more commonly,
by using two cameras, mimicking the animal’s visual sensors (eyes) layout, as
in Fig.1. The major difficulty in this approach is identifying the same scene
point in both images to obtain the point disparity. Many approaches have been
proposed to achieve this?.
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Fig. 1. Parallax-based stereo vision (left) and examples of sensors based on this app-
roach (right-top, a “home-made” stereo vision system and right-bottom, a Bumblebee2
camera,).

Another way to obtain 3D visual data is by using active vision and projecting
a pattern in the scene that is used to identify the scene points’ relative position.
This approach is called a structured light approach. Figure 2 presents the idea
and shows several sensors based on this approach. The pattern projection is
usually made using infrared light such that it doesn’t appear in the visible image.
A third approach to obtaining 3D images is by inferring the scene points’ distance
to the sensor by measuring the time light takes to travel from an emitter located
near the sensor, to the scene point and returning to the sensor. Since the speed

2 Check for instance the disparity algorithms at the Middlebury Stereo Vision Page
http://vision.middlebury.edu/stereo/.
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Fig. 2. Projection of a structured light pattern onto the scene (left) and several struc-

tured light sensors (from top to bottom): Microsoft Kinect, Asus Xtion Live, IDS
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Fig. 3. The principle behind ToF sensors (left) and several sensors (from top left to
bottom right): Microsoft Kinect 2, DepthSense, Creative Senz3D, Intel RealSense F200,
Fotonic, PMD CamBoard pico®.
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of light in the air is known, the time taken is enough to infer the distance, or
depth. Figure 3 illustrates this and presents some commercial available sensors
based on this idea.

Size and weight have been falling to the point of currently having a 3D sensor
inside a cell phone (see project Tango by Google), something that opens the way
to many possible new mobile applications.

These sensors eventually produce a point cloud, typically at 30 fps. For 30k
points with RGB at 30 fps (typical Kinect specification), more than 30 MB/s of
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data are generated. This can be too much data specially for embedded applica-
tions, so some form of sub-sampling must be used to reduce the computational
burden of processing this type of data stream.

3 Keypoints

Keypoints are a set of points considered representative of the point cloud. They
are extracted from a point cloud when the full data stream is considered too
much data for real-time processing. So keypoints are a way to do sub-sampling.
Figure 4 presents two different approaches to keypoint extraction: regular spaced
sub-sampling using a voxel grid with two different voxel sides (left 1cm and
center 2 cm) and a Harris3D extractor (right). The figure also shows the location
of the keypoints (the black dots) and the number of extracted keypoints.

148 82

Fig. 4. Examples of keypoint extraction: left and center shows the keypoints obtained
using voxel grid sub-sampling; right shows the result of the Harris3D keypoint extrac-
tor. Keypoints appear as black dots superimposed on the original point cloud.

Humans don’t process every “input pixel”, but focus their attention on salient
points.

We have recently proposed [6] a 3D keypoint detector based on a computa-
tional model of the human visual system (HVS): the Biologically Inspired 3D
Keypoint based on Bottom-Up Saliency (BIK-BUS). This approach is inspired
on the visual saliency and the method mimics the following HVS mechanisms:

— Center-surround cells: sensitive to the center of their receptive fields and are
inhibited by stimuli in its surroundings.

— Color double-opponency: neurons are excited in the center of their receptive
field by one color and inhibited by the opponent color (red-green or blue-
yellow) while the opposite takes place in the surround.

— Impulse response of orientation-selective neurons is approximated by Gabor
filters.

— Lateral inhibition: neighboring cells inhibit each other through lateral
connections.

Figure 5 presents a general view of the proposed method. The input point
cloud is filtered to obtain color, intensity and normal orientation data. This is
then used to build multi-scale representations of these features (Gaussian pyra-
mids) that are combined using a mechanism that simulates center-surround cells
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and a normalization operator motivated by lateral inhibition to generated fea-
ture maps. From these feature maps, new maps, called conspicuity maps, are
generated combining information from multiple scales. The three conspicuity
maps are combined into a single saliency map. Finally, from the saliency map,
and through the use of inhibition mechanisms, the 3D keypoints can be selected.
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Fig. 5. General view of the BIK-BUS 3D keypoint detection method. Figure from [6].

Table 1. Number of times a keypoint detector came out as the best in the experiments
run in [6].

Detector | Category Object Total
AUC |DEC | AUC | DEC
BIK-BUS |7 9 7 9 32
Curvature | 3 2 2 1 8
Harris3D |1 1 0 0 2
ISS3D 2 0 4 2 8
KLT 2 1 1 0 4
Lowe 0 0 1 0 1
Noble 0 1 2 1 4
SIFT3D |0 0 0 1 1
SUSAN 2 1 2 1 6
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We evaluated our proposal against 8 state-of-the-art detectors. We performed
around 1.6 million comparisons for each pair keypoint detector/descriptor for
a total of 135 pairs (9 keypoint detectors x 15 descriptors). The evaluation
considered two metrics: area under the ROC curve (AUC) and the decidability
(DEC). Table 1 shows the number of times each keypoint detector was the best
on the experiments run. BIK-BUS was a clear winner with the second best
methods at a considerable distance.

4 Descriptors

4.1 Evaluating Descriptors

A descriptor is a measure extracted from the input data that represents or
describes an input data region in a concise manner. They are used to represent
input data and allow a system to keep only a condensed representation of the
input data (they are the equivalent of features in standard pattern recognition).
There is a wide choice of descriptors: which should one use? We made an evalu-
ation of 13 available in PCL [1]. Figure 6 shows the time taken and space used
by the evaluated descriptors when they were applied after 3 different keypoint
detectors.
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Fig. 6. Evaluation results of 13 descriptors in terms of time and space used in the
experiments performed in [1].

Figure 7 shows the Precision-Recall curves for the experiments that used the
1 cm voxel grid sub-sample keypoint detector. Color-based descriptors are better
(PFHRGB and SHOTCOLOR). Further details, including the equivalent figures
for the remaining 2 keypoint detector approaches can be found in [1].

4.2 Genetic Algorithm-Evolved 3D Point Cloud Descriptor

From the evaluation of the descriptors discussed in the above section, we con-
cluded that accurate descriptors are very computationally intensive and faster
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Fig. 7. Precision-Recall curves for the experiments that used the 1cm voxelgrid sub-
sample keypoint detector. Figure from [1].

descriptors use large storage space. For embedded approaches, such as robot-
based vision, where computational resources and storage space come at a cost
or might not be available in adequate amounts, a simple descriptor is desirable.
For this type of application, we developed [8] a genetic algorithm(GA)-based
descriptor that is both fast and has a small space footprint, while maintaining
an acceptable accuracy.

It works by creating a keypoint cloud by sub-sampling with a voxel grid with
leaf size of 2cm. Two regions around each keypoint are considered: disk (Ry) +
ring (Ry — Ry) (see Fig. 8).

—
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Fig. 8. Left: circular regions considered. Right: angle between the normal at a point
in the R; region and the normal at the keypoint.

The information stored by the descriptor considers both shape and color
information around each keypoint. For the shape, the descriptor records the
histogram of angles between normals at keypoint and at each neighbor in region.
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For the color information, a (Hue, Saturation) histogram for all points in each
region is stored. The used distance between 2 point clouds represented by this
descriptor is calculated using: d = w.dspape + (1 — W).dcotor, Where the weight
w is obtained through the GA optimization procedure. In total, 5 parameters
(#shape bins, #color bins, Ry, Ry, w) are searched using the GA on the training
data set. The obtained results can be seen in Table2. This proposal allows for
a much faster and lightweight (in terms of space) descriptor, with accuracy
comparable to the SHOTCOLOR descriptor, and is thus adequate for use in
situations where the computational cost of algorithms is an issue and/ or the
available storage space is small.

Table 2. Average error, time and size of the three descriptors evaluated in [8].

Descriptor Object [%] | Category [%] | Time [s] | Size
PFHRGB 20.25 5.27 2992 250
SHOTCOLOR | 26.58 9.28 178 1353
Our 27.43 10.34 72 248

5 3D Object Recognition

The typical 3D object recognition pipeline consists on: obtaining the input data
usually in the form of a point cloud; making keypoint detection; finding descrip-
tors at each keypoint that are then grouped into a set that represents the input
point cloud. After this, in a test ou deployment phase, incoming point clouds
are compared against stored ones in an object database using, for instance, a set
distance.

So, each point cloud is represented by a set of descriptors, and each descrip-
tor is m-dimensional. In practice, a given point cloud will can have an arbitrary
number of descriptors representing it, so the cardinal of the set of descriptors
that represents the input data is not constant. To find the closest object in a
database, a match to the input point cloud, we need to use a set distance.

5.1 Set Distances

Set distances are usually built around point distances. Three common point
distances are the following: consider x,y € R™, then

— City-block:
Li(,y) = lz =yl = D (i) — y i)
i=1
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— Euclidean:

n

Lo(w,y) = o —yl2 = | D_(x(i) -
i=1
— Chi-squared:
1o (i) —y(i)?
Jj, = 3 N . /N
2 (2, y) 2; T
Consider that a,b are points and A, B are sets. Let us also consider the
following set distances:

— D1(A4, B) = max{sup{f(a,B) | a € A},sup{f(b,A) | b € B}} with f(a,B) =
inf{Ly(a,b), b€ B}
— Dy = Pyramid Match Kernel distance [7]
— D3(A, B) = Li(minyg, ming) 4+ Lj (max4, maxp) with
mina (i) = minj—y ja{a;(@)},i=1,...,n
max4 (i) = max;—; . ja{a;(@)}, i=1,...,n
and similarly for ming (i) e maxp (7).
— Dy4(A, B) = Li(ca, cp) where ca,cp are cloud centroids
- D5(A,B) = LQ(CA,CB)
- Dﬁ(A B) D4(A B) +L1(StdA,8tdB) with

stda(i \/\AI . ElAI (1) —ca(@))?, i=1,...,n and similarly for stdp.
— D7(A B) = d (CA,CB) +d (StdA,stdB)
- Ds(A,B) = \AHB\ ZlAl Z'Bl Ly (ai, bj)

We evaluated [2] these 8 distances using 2 descriptors (PFHRBG and SHOT-
COLOR). We used a data set with 48 objects from 10 categories and 1421 point
clouds. The keypoint detector used was Harris3D. Figure 9 shows the precision-
recall curves for the experiments with both descriptors. Table 3 contains the time
it took for the evaluation of the test set on a machine running with 12 threads.
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Fig. 9. Results of the distance evaluation using: PFHRBG (left) and SHOTCOLOR
(right). Figure from [2].



12 L.A. Alexandre

Table 3. Time in seconds for test set evaluation (12 threads).

Distance| PFHRGB|SHOTCOLOR
D1 1914 175
Do 2197 1510
D3 1889 132
Dy 1876 137
Ds 1886 134
Ds 1885 132
D~ 1883 113
Dg 1914 174

Table 4. Average error and time used on 10 repetitions for the different approaches.

Approach Error [%)] | Time[s] | Approach Error [%)] | Time(s]
RGBD 29.87 714.60 | Channel G + TL 37.47 166.60
Channel R 32.15 136.50 | Channel B + TL 43.58 95.10
Channel G 44.02 131.60 | Channel D + TL 66.32 157.70
Channel B 55.62 110.10 |R,G+TL,B4+TL,D+TL maj | 33.45 555.90
Channel D 65.85 126.30 | R,G+TL,B+TL,D+TL mean | 28.80 555.90
R,G,B,D maj | 36.72 504.50 R,G+TL,B+TL,D maj 32.63 524.50
R,G,B,D mean | 29.58 504.50 | R,G+TL,B+TL,D mean 29.01 524.50

Simple distances like Dg and D7 are a good choice (accurate and fast) better
than more common distances such as D and Ds. Additionally, simple distances
don’t need any parameter search, as is the case with Ds.

5.2 Deep Transfer Learning for 3D Object Recognition

Deep learning is showing great potential in pattern recognition. The idea of
transfer learning (TL) is also a very appealing one: learn in one problem and
reuse (at least part of) the knowledge in other problems. We used both these
ideas in a work where a convolutional neural network learns to recognize objects
from 3D data [3]. TL is used from one color channel to the others and also to the
depth channel. Decision fusion is used to merge each nets predictions. The results
appear in Table4. As can be seen, the TL approach is successful in obtaining
both higher accuracy and shorter time that the baselines considered.

6 3D Object Tracking

The world is dynamic: another step towards understanding it is to follow objects
as they move, since movement is a very important visual cue. There are many
different approaches to tracking: the most used are particle filter variants [4].
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We used a biologically-inspired keypoint extractor to initialize and maintain
particles for particle filter-based tracking from 3D [5]. A general overview of the
proposed method appears in Fig. 10.
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Fig. 10. A general view of PFBIK. Figure from [5].

We compared our tracker against the OpenNI tracker available in PCL. The
videos used 10 different moving objects and a total of 3300 point clouds. The
results are presented in Table 5. The PFBIK tracker used a much smaller number
of particles that enabled it to be much faster during tracking, with the exception
of the initialization where it was slower than the OpenNITracker given the nec-
essary keypoint detection (that is only done at the start of the tracking process).
The PFBIK was also slightly more accurate as can be seen through the distance
error to the tracked object centroid.

Table 5. Results of PFBIK tracking compared to OpenNITracker: number of particles
used, initialization and iteration time in seconds and distance error to the tracked
centroid in meters.

Method Particles Init. time | Track time | Distance error
PFBIK 102 + 92 0.20 4+ 0.16 | 0.08 4+ 0.06 | 0.045 £ 0.036
OpenNITracker | 2132 4+ 1988 | 0.17 £ 0.19 | 0.19 £ 0.17 | 0.052 + 0.022

7 Challenges

Although recent progress in 3DCV has been substantial, there are still many
challenges in the field. Some of the current challenges faced by the 3D computer
vision community are:
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object representation: in this paper we showed object representations based
on sets of descriptors of partial object views (2.5D) but other possibilities
might be better (represent an object using a fused view representation, for
instance). The best object representation approach may depend on the par-
ticular application and is still a important research topic;

non-rigid object recognition: current keypoint plus descriptor approach is not
a good solution when the objects are not rigid. More complex models are
needed (3D deformable models);

activity recognition: what are the best approaches to understand human activ-
ities from 3D video? This is currently a hot research topic;

real-time processing: GPU-based implementations of most algorithms can
bring us here but it is still a problem with embedded devices (cloud-based
processing requires high bandwidth and permanent connection).

Conclusion

This paper summarizes the invited talk present at ICPRAM 2015 where the
author reviewed some of the key concepts of 3D computer vision and presented
some of the recent work in this field produced by him and his co-authors.
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