Highspeed Graph Processing Exploiting
Main-Memory Column Stores

Matthias Hauck! ™) Marcus Paradies?, Holger Froning?,
Wolfgang Lehner?, and Hannes Rauhe3

! Computer Engineering Group, Ruprecht-Karls University of Heidelberg,
Heidelberg, Germany
{matthias.hauck,holger.froening}@ziti.uni-heidelberg.de
2 Database Systems Group, Tu Dresden, Dresden, Germany
m.paradies@sap.com, wolfgang.lehner@tu-dresden.de
3 SAP SE, Weinheim, Germany
hannes.rauhe@sap.com

Abstract. A popular belief in the graph database community is that
relational database management systems are generally ill-suited for effi-
cient graph processing. This might apply for analytic graph queries per-
forming iterative computations on the graph, but does not necessarily
hold true for short-running, OLTP-style graph queries. In this paper
we argue that, instead of extending a graph database management sys-
tem with traditional relational operators—predicate evaluation, sorting,
grouping, and aggregations among others—one should consider adding
a graph abstraction and graph-specific operations, such as graph tra-
versals and pattern matching, to relational database management sys-
tems. We use an exemplary query from the interactive query workload of
the LDBC social network benchmark and run it against our enhanced in-
memory, columnar relational database system to support our claims. Our
performance measurements indicate that a columnar RDBMS—extended
by graph-specific operators and data structures—can serve as a foun-
dation for high-speed graph processing on big memory machines with
non-uniform memory access and a large number of available cores.

1 Introduction

The proliferation of graph-shaped data in the enterprise domain and the ever-
growing need to process billion-scale graphs efficiently are the key drivers for
the evolution of a plethora of graph processing systems targeting large cluster
installations [8,11,13]. Analytic graph queries on static graphs of an immense
scale can be executed by these systems in an acceptable execution time. While
there has been a large body of work focusing on distributed, shared-nothing
graph processing frameworks and graph algorithms, transactional graph work-
loads comprising short-running, concurrent queries from a large number of client
applications have been largely ignored by the research community so far. Such
interactive queries usually access a small fraction of the entire graph and per-
form selective filter operations on vertex and edge attributes based on some

© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 503-514, 2015.
DOI: 10.1007/978-3-319-27308-2_41

504 M. Hauck et al.

predicates, run simple graph traversals to explore the neighborhood of a vertex
or a group of vertices, and aggregate attribute values.

The execution of interactive graph queries is well-supported in graph data-
base management systems (GDBMSs), such as NE04J [2], SPARKSEE [14] or
INFINITEGRAPH [1]. GDBMSS rely on the property graph model, where a graph
consists of a set of vertices and a set of edges with an arbitrary number of
attributes assigned to them [17]. Additionally, they provide a clear graph abstrac-
tion, intuitive declarative or imperative graph query interfaces, and specialized
storage and execution capabilities to process graph queries efficiently. Besides
functional advantages over RDBMSs, GDBMSs claim to offer superior performance
for graph-specific operations—graph traversals are one prominent example—Dby
storing the graph topology in an index-free vertex adjacency structure. While
they offer good performance for topology-centric queries, GDBMSs usually suf-
fer from poor performance for attribute-centric queries that perform predicate
evaluation on or aggregating of attribute values. The interactive query work-
load of the LDBC benchmark suite—the de-facto standard benchmark for graph
processing—indicates that interactive graph queries demand a seamless inte-
gration of query processing on the graph topology and access to vertex/edge
attributes in the same database system [7].

Based on an in-depth study of the LDBC interactive query workload and
the choke points defined by the benchmark committee!, we revisit the question
whether RDBMSs are generally ill-suited for graph processing compared to native
GDBMSs. Instead, we argue that large fractions of the graph queries from the
interactive workload of the LDBC can benefit from an optimized handling of
vertex/edge attributes and the efficient predicate evaluation of point and range
queries on it. Based on these observations we identify graph-specific operations
that have to be added to a RDBMS to complement the already available processing
capabilities for aggregations, sorting, and predicate evaluation. We implemented
one exemplary query from the LDBC interactive workload on top of a columnar
RDBMS prototype, which we enhanced by graph operators and data structures.
We tailor our graph operators and data structures to run on server machines with
large amounts of available memory, a large number of cores, and non-uniform
memory access (NUMA). Our contributions can be summarized as follows:

— Based on a detailed study of the interactive query workload of the LDBC
benchmark suite, we derive functional and non-functional requirements for a
columnar RDBMS with integrated graph processing capabilities and specify a
set of operations that are required to process the exemplary query.

— We propose a novel architecture that extends a columnar RDBMS by adding a
native graph abstraction and a graph-specific secondary index structure.

— We perform an experimental evaluation based on an exemplary query from
the interactive query workload of the LDBC social network benchmark and
demonstrate that our hybrid approach scales with increasing dataset sizes
and also provides a NUMA-friendly graph abstraction that can leverage all
available computing resources efficiently.

! http://ldbcouncil.org/sites/default /files/LDBC_D2.2.1.pdf.

http://ldbcouncil.org/sites/default/files/LDBC_D2.2.1.pdf

Highspeed Graph Processing Exploiting Main-Memory Column Stores 505

2 Related Work

Although distributed, shared-nothing graph processing —inspired by Pregel [13]—
recently received a considerable amount of attention in the industry and research
community, there is also an increased interest to store and process large graphs
on a single machine (either on disk/flash or in memory). In fact, there is evidence
that even notebooks are able to outperform distributed graph processing systems
in certain scenarios [10]. Graph databases, such as, NEO47J [2], TITAN [4], INFINITE-
GRAPH [1], SPARKSEE [14], and ORIENTDB [3], are gaining popularity for enter-
prises and provide native graph storage, querying and transaction support. All of
them are native graph systems with own implementations to guarantee transac-
tionality, logging, and recovery and therefore cannot be used as a dedicated engine
inside a RDBMS.

For graph analytics, where no transactions and no update support is required,
there is a wide variety of single-node graph processing systems targeting multi-
core server machines with a large number of cores and a vast amount of memory
available. SYSTEM G is aread-only graph processing system leveraging a key-value
store as persistence, a set of compressed sparse row (CSR) like data structures, and
is optimized towards CPU cache reuse and parallelization [21]. In comparison to
our approach, they do not use a column store as primary persistence to efficiently
process also vertex/edge attributes.

PGX.ISO is an in-memory graph processing system for querying graph data
using graph patterns [16] and analytic queries using GREEN-MARL [9]. The focus
of PGX.1S0 is on read-only workloads aiming for minimizing query response time.
We aim at providing an integrated solution as part of a RDBMS and design our sys-
tem to also cope with transactions and concurrent write operations. Moreover, our
approach can perform graph querying on the latest version of the data, without the
need to replicate it into a dedicated graph system.

Recent graph processing systems, such as, LLAMA, target not only static
graphs, but also allow modifications to the vertex/edge properties and the graph
topology [12]. LLAMA implements a mutable CSR data structure and stores mul-
tiple snapshots of the graph, one for each update to the graph. Since the entire
system is built on top of a CSR with own containers for the vertex/edge properties,
it is not possible to integrate LLAMA into a RDBMS seamlessly.

Recent advances in modern hardware, including the availability of large
amounts of main memory with non-uniform access (NUMA), multi-core, and SIMD
instructions triggered interesting discussions in these emerging hardware tech-
nologies [5,6,22]. EMPTYHEADED is a graph pattern matching engine based on a
configurable CSR data structure and compiles queries into boolean algebra expres-
sions leveraging SIMD parallelization [5]. The focus, however, is on read-only work-
loads with topology-centric queries and cannot be used easily to support dynamic
graphs. Cui et al. propose a set of techniques to improve the performance and
scalability of breadth-first search on large NUMA machines by minimizing cross-
socket communication [6]. Since we are aiming at providing general graph process-
ing capabilities instead of specific algorithms, their results can be incorporated into
our system. Zhang et al. investigate the effect of remote memory accesses for graph

506 M. Hauck et al.

analytics and propose POLYMER, a NUMA-aware graph analytics system [22] with
a focus on read-only workloads and a small number of attributes on vertices and
edges. We believe that some of the proposed techniques concerning access to the
graph topology can be also applied in our system.

Increasingly, even RDBMS provide graph support to some extent on relational
tables [18-20]. Welc et al. show that a RDBMS can serve selected graph use cases
(e.g., shortest path) by heavy indexing of the graph topology using B-trees and
outperform native graph databases. Instead of exposing graph processing directly
to sQL, Sun et al. translate GREMLIN, a traversal-oriented graph query language,
into SQL statements. The deepest level of integration into a RDBMS has been pro-
posed by providing a native graph query language, a native execution engine, and
graph-aware traversal operators inside the database kernel [18].

The LDBC benchmark suite is a community effort to define a standard bench-
mark for graph query processing and consists of three different workloads, an ana-
lytic, a business intelligence, and an interactive workload [7]. While the analytic
workload focuses on long-running, offline queries potentially accessing the entire
graph and computing some global graph measure, the interactive queries perform
transactional, short-running requests accessing only a small fraction of the graph
with the focus on the selection of vertices/edges according to some predicate filter,
simple aggregations, and graph traversals.

To summarize, none of the discussed graph system focuses on transactional
graph workloads with interleaved read and write operations—except for native
graph databases. On the other extreme, RDBMS provide transactional guarantees,
but lack a high-speed graph processing layer in the form of tailored data structures
for storing the graph topology. Our long-term goal is to close this gap by proposing
a combination of the best of both worlds, transactional guarantees of a RDBMS com-
bined with high-speed graph processing capabilities of a native graph processing
system.

3 System Architecture

In this section we discuss the requirements and the design of GRAPHITE, a colum-
nar RDBMS prototype with a native graph abstraction, graph operators, and graph-
specific secondary index structures [15]. We designed our system with the following
design goals in mind:

Native Graph Abstraction. Relational operators are not well-suited to process
native graph operations, such as traversals and graph pattern matching, efficiently.
Hence, GRAPHITE uses a native graph abstraction to implement graph-specific
operations and redirects set-based operations, such as predicate evaluation or
aggregations, to the relational operators of the RDBMS.

Query Performance. The query performance of interactive graph queries in
GRAPHITE should be close or even exceed the performance of native graph data-
bases. This requires exposing a low-level graph interface that sits on top of the
graph data structures and can be used in combination with relational operators.

Highspeed Graph Processing Exploiting Main-Memory Column Stores 507

Ve | v a o | an
U8 a]d a1 3105 1 [[8]1]
2 [[afdf- | 2 | 4 02 - 2 [AN[a}-----
3 D Logical Poii\t_r\i_:::: 411 411 0;1 071 3 D
4 [Afaffsff-— a3 | - 0.1 4 [A[4]3]
Adjacency List Edge Table Adjacency List Offset Map Deletion Map
(a) Adjacency list and mapping to edge table. (b) Access to deletion map.

Fig. 1. Usage of the adjacency list in conjunction with the relational edge table and in
the presence of edge deletions.

Space Efficiency. Saving memory bandwidth is one of the keys of achieving query
performance scalability on large server machines. We support lightweight compres-
sion techniques, like run-length encoding, dictionary encoding, and sparse encod-
ing on the columns, and store only internal, dense numerical identifiers in the sec-
ondary index structures to keep the memory footprint low.

Integratability into a RDBMS. GRAPHITE is designed to be integrated as a
component into a columnar RDBMS, where the primary copy of the data is kept
in relational tables, accelerated by additional secondary graph index structures to
store the graph topology.

Transactionality. We target interactive graph queries interleaved with concur-
rent updates on the graph data. Therefore a separate graph engine that operates
on a snapshot of the data is not feasible. Our system inherits the transaction con-
cept of the RDBMS and enables transactional query processing directly on the graph
data. Due to space constraints, we do not discuss this aspect in detail in the course
of this paper.

3.1 Columnar Graph Storage

GRAPHITE stores a graph in a columnar storage representation consisting of two
column groups, one for vertices and one for edges. We describe a vertex by a unique
identifier and an edge by a tuple of source and target vertex and an implicit edge
direction. Both vertices and edges can have an optional type and an arbitrary set
of attributes. Each column group is divided into a static, highly-compressed read
partition and a dynamic, append-only write partition. To lower the overall memory
consumption we can apply light-weight compression techniques on the columns,
like dictionary encoding, run-length encoding, and sparse encoding.

3.2 Secondary Graph Index Structure

The in-memory representation of the graph topology is not well-suited for fast and
fine-granular topological graph operations, such as the retrieval of outgoing edges
for a given vertex, as it has a time complexity of O(|E|).

To efficiently support fine-granular topological operations, we provide a sec-
ondary index structure to store the graph topology—while the attributes remain

508 M. Hauck et al.

in relational tables. We chose an adjacency list representation, since it supports
fast graph operations and can handle updates of the graph topology gracefully.
Our adjacency list consists of the core data structure to store the graph topology
and several auxiliary data structures to support updates, deletions, and combined
processing with vertex/edge attributes stored in the relational tables. Figure 1a
illustrates the adjacency list and the interplay with the edge table through logical
indexes that point to the corresponding entry in the table. We use a similar mech-
anism to address records in the vertex table. To support bi-directional topological
operations, the adjacency list can be stored for both traversal directions.

We support deletion operations in GRAPHITE through an offset map and a dele-
tion map as depicted in Fig. 1b. To avoid the cost of copying and reorganizing parts
of the adjacency list when an edge deletion occurs, we use a bitmap to invalidate the
corresponding entry and periodically reorganize the adjacency list data structure
in a batch processing step. We address each edge in the deletion map using the rel-
ative position of the edge in the source vertex list and an offset for the source from
the offset map. For example, the position of edge e = (2, 4) can be computed from
the summation of the offset found at position 2 in the offset map and the relative
position (p = 1) of vertex 4 in the neighborhood list of vertex 2.

Additionally, the deletion map can be used for a reoccurring pattern in graph
queries: a part of the graph is selected using predicates and subsequent operations
are only executed on this subgraph. A subgraph is a lightweight materialized view
requiring one bit per edge and is always connected to the complete adjacency list. It
has its own deletion map, in which only vertices and edges are valid that fulfill the
predicate criteria. Operations on the subgraph are performed similar to operations
on the adjacency lists, except for the use of a dedicated validity map.

4 Implementation Details

We implemented our prototype in C++4 and used for parallelization the INTEL
TBB library?. Our implementation is tailored towards utilizing the available hard-
ware resources as much as possible by using cache-friendly, concurrent data struc-
tures and parallelizable algorithms as basic building blocks, such as, duplicate
detection and the retrieval of adjacent vertices. Although our focus is on improving
the response time for graph operations, a careful implementation is also required
for utility functions, such as predicate parsing and evaluation. For short-running
queries, the parsing of a predicate can even outweigh the actual predicate evalua-
tion and therefore should be implemented with care. In the following we provide
implementation details on two important aspects of our system—the Graph API
and the implementation of interactive graph queries.

4.1 Basic Graph Operations & Building Blocks

The Graph API provides a unified access to the graph topology stored in an adja-
cency list and vertex/edge attributes stored in the corresponding relational tables.

2 https://www.threadingbuildingblocks.org.

https://www.threadingbuildingblocks.org

Highspeed Graph Processing Exploiting Main-Memory Column Stores 509

Lookup of
attributes neces-
sary for sorting

Expansion
using subgraph

Generation of
“knows” subgraph
[Predicate parsingj Attribute sorting

Get start vertex ID

Filtering of
duplicate values

Test with
secondary predicate
to generate
result vertex list

Lookup of other
simple attributes

Level < 3 &
[result| < 20

Generation of list
attributes through
one-hop traversals

Fig. 2. Flow diagram of our implementation of Q1 from the interactive query workload
of the LDBC.

We implement the Graph API such that topological operations, such as, the edge
expansion for a given set of vertices, can be seamlessly combined with relational
operations, specifically the retrieval of vertex/edge attributes and the evaluation
of predicates on sets of vertices/edges. We represent a vertex/an edge by a unique
identifier—32 bit or 64 bit—and sets of vertices/edges as dense or sparse data
structures—bitsets or dynamic arrays—depending on the cardinality of the set.

We identified several building blocks that can be found in most interactive
graph queries from the LDBC benchmark, such as, a conditional edge traversal with
a given vertex/edge predicate and duplicate filtering on multiple vertex/edge mul-
tisets. For topological operations, we parallelize the calls to the adjacency list in the
backend and use multiset semantics. For often used vertex/edge predicate combi-
nations, we provide a lightweight subgraph concept that stores a materialized view
qualified by a set of vertex/edge predicates.

Efficient duplicate filtering is crucial for achieving superior query performance,
especially for traversals over multiple steps. We implemented two differences
approaches for duplicate filtering: (i) a hash-based and (ii) a sort /merge-based app-
roach. The hash-set approach is fully parallelized and uses a concurrent hash-set
to probe for vertex/edge identifiers and to insert them concurrently into a new set
of discovered vertices/edges. The sort/merge approach first sorts the input in par-
allel, followed by a merge operation with the previous discovered vertices.

4.2 Query Implementation

Our system is tailored towards the efficient execution of interactive graph queries
that access only a small portion of the complete graph. We use the interactive query
workload of the LDBC to verify and evaluate our system in terms of response time,
scalability to larger dataset sizes, and functional completeness [7]. In the following
we provide a description of the implementation of one exemplary query from the
interactive workload. We chose query Q1 as representative query since it covers a
large subset of the required functionality to process the entire interactive workload.

510 M. Hauck et al.

Query Q1 performs a conditional, multi-level traversal and requires efficient and
interleaved access to the graph topology and the attributes. More specifically, Q1
returns up to 20 friends with a specific first name of a given person (via the 3-hop
neighborhood). In addition to the set of persons, we also return summaries about
their workplaces and places of study, and sort the result ascending by the friendship
distance followed by the last name and the identifier.

Figure 2 depicts a flow diagram of our implementation of query Q1 and the used
building blocks of the Graph ApP1. We realized the edge expansion in the multi-
hop traversal using a subgraph, so that only edges of the friendship relation are
expanded. For the subsequent filtering of duplicate vertex IDs we implemented
hash-based and sort/merge-based duplicate elimination routines. The retrieval of
all vertices with the given name is integrated into the multi-hop traversal, allowing
for an early abort of the traversal, when the anticipated number of vertices satis-
fying the predicate is reached. We perform the sorting of the result at the earliest
possible point during the execution to minimize the number of copy operations of
materialized attributes. Finally, we fetch the attribute values from the relational
tables through single-hop traversals and materialize the result.

4.3 Memory Consumption

The memory consumption M of the adjacency list depends linearly on the number
of edges |E| and the number of vertices |V|, where the coefficients depend on the
implementation. We implement the core adjacency list as two STL vectors of vec-
tors using 64 bit IDs, one for the neighborhood and the other for the corresponding
logical pointer to the edge attribute table.

The total memory consumption of a graph in GRAPHITE does not only depend
on the adjacency list, but also on the edge and vertex attribute tables. For the LDBC
data set of SF1, the adjacency list consumes M (V, E') = 557 MB(single direction),
while the vertex and edge tables consume 1355 MB using a dictionary encoding and
32 bit IDs. These numbers are without overheads.

In general, we find that for larger scale factors of the LDBC data set, the memory
footprint of the vertex and edge attributes stored in the relational tables dominates
the overall memory consumption, while the space overhead of the secondary adja-
cency list remains small. Since GRAPHITE stores attributes in a columnar storage
layout, lightweight compression techniques can be applied to reduce the memory
footprint of the attributes.

5 Evaluation

In this section we evaluate our implementation with focus on how it performs on
large NUMA systems. We use a four-socket Linux based system with Intel Xeon
X7560 (Nehalem) CPUs. Our system is equipped with 4 x 8 cores @2.27 GH, with
Hyperthreading enabled, 24 MB last level cache at each socket, and 512 GB DDR3
RAM. We compile GRAPHITE with INTEL TBB 4.3 update 3 and Gcc 4.8 with

Highspeed Graph Processing Exploiting Main-Memory Column Stores 511

M Multi-Hop Duplicate Elimination 0 Mean 0 First Quartile [Median
B Destructor B Other I Third Quartile B 99th Percentile

200 400

150 300

100

Elapsed time (in ms)

50

T
Hy

H,y Ho Hy S1 Sa Sa

Hnn|‘ MJ Hnu|

(a) Run time shares of the mean run time. (b) Run time distribution.

wl‘ |

1

Fig. 3. Elapsed time for Q1 (10k queries) using 8 cores on different number of sockets
at SF100. We evaluate two different versions for duplicate elimination—hash-based H
and sort-based S;—where x € {1, 2,4} refers to the number of utilized sockets.

the optimization flags -03 and march=native, enabling the compiler to use the
complete instruction set of the cpu.

We used the data generator of the LDBC benchmark to generate scale factors
1 to 100 and reassembled the output into a single vertex and a single edge table,
respectively. We randomly generated representatives of query Q1 by using the gen-
erated parameters from the data generation process. In our experiments, we report
the total elapsed time of the executed queries, including setup and destruction time
of auxiliary data structures.

The only exception is the generation of subgraphs, which we exclude from the
total elapsed time. Since we currently do not enforce any constraints on the graph—
for example that two vertices of type knows can be only connected via an edge
of type knows—we cannot easily partition the graph into isolated subgraphs. To
simulate a materialized view enforcing such a constraint on vertex and edge types,
we use the concept of a materialized subgraph in our experiments.

5.1 NUMA Effects

In our first experiment we analyze the NUMA behavior of GRAPHITE. We use a
constant number of eight cores evenly distributed across different number of sock-
ets and use numactl to pin threads to sockets. In Fig. 3a we report the mean run
time shares using the two different duplicate filter methods. While the sort-based
duplication elimination routine is not affected by the distribution across different
sockets, the hash-based routine is sensitive to the thread placement policy.

The reason for this sensitivity is our global concurrent hash-set implementation
that relies on atomic insertion operations. Every time a vertex ID is inserted into
the concurrent hash-set, a random memory access occurs. If this memory access

512 M. Hauck et al.

M Multi-Hop Duplicate Elimination 0 sF1 0 SrF3 [0 SF10
B Destructor B Other B sF30 0 SF100
60 - r
- 10% £
g F
£ s} C
o
£ i
= L
g L
= 20
=
g 10" [
? ’ :
i alll ‘ ‘ ‘ |
SF1 SF3 SF10 SF30 SF100 Mean First Median ~ Third 99th
Quartile Quartile Percentile
(a) Run time shares of the mean run time. (b) Run time distribution.

Fig. 4. Run time of Q1 (10k queries) using a sorted list duplicate filter at different scale
factors (SF) using 32 cores.

is redirected to different socket, the cache coherency protocol needs to be invoked.
The expansion operations on the adjacency list (multi-hop) behave similarly to the
sort-based duplicate elimination and are unaffected by NUMA. In Fig. 3b we depict
the run time distribution of the elapsed time of Q1 for different input parameters.
For both routines of duplicate elimination, the run time distribution scales to var-
ious input parameters and intermediate result sizes.

5.2 Performance

We evaluate the scalability of our approach using the sort-based duplicate filter for
varying scale factors®—we use SF1 to SF100—and present our results in Fig. 4a.

The total elapsed time increases slower than the growth of the total data set
size—for SF100 the mean run time is only 64.9 ms. For all evaluated scale factors,
the largest portion of the total elapsed time is spent in the multi-hop expansion and
the subsequent vertex duplicate elimination step. With increasing scale factors, we
experienced an increased elapsed time for both steps.

This effect is caused by growing intermediate vertex sets after the expansion
and consequently more work to be done during the duplicate elimination. Since
the scale factor of the data set does not directly reflect the scaling of the graph
topology—SF1 contains about 11,000 vertices of type person and about 400,000
connections between them—and the number of traversal levels is limited to three,
the overall run time increase is not proportional to the total data set size.

3 The numbers presented in Fig. 3a for eight core at SF100 are representative for other
scale factors and core numbers: the actual run time of the hash-based approach takes
longer and is more expensive to destroy.

Highspeed Graph Processing Exploiting Main-Memory Column Stores 513

We experienced a similar behavior when taking a closer look at the run time
distribution for different input configurations of Q1 and report on the experimen-
tal results in Fig. 4b. Similar to the NUMA experimental results, we verify that the
overall run time of Q1 is not directly related to the total data set size, but cor-
related with the size of the queried subgraph of the graph topology. Further, we
experienced that the total query execution depends on the chosen input configu-
ration and the start vertex for the traversal, resulting in significant variations for
the size of the 3-hop neighborhood.

The remaining parts of the query evaluation contribute only a minor fraction to
the total query execution time. For example, we apply the secondary predicate on
the set of vertex IDs after the processing of the duplicate filter that already reduced
the number of vertices.

The subgraph generation is not part of the querying process, but is triggered
at the beginning of the query session. The elapsed time of the subgraph generation
for vertex type person and edge type knows accounts with about 40.8 ms for SF'1
and grows linearly to 4876.9 ms for SF'100.

6 Conclusion

We presented GRAPHITE, a columnar RDBMS architecture and implementation—
extended by a native graph abstraction and a graph-optimized secondary data
structure—that allows seamlessly combining graph with relational operations in
the same database engine. Based on a detailed study of the interactive query work-
load of the LDBC benchmark, we derived requirements that have to be fulfilled to
support interactive queries directly on graph data stored in a RDBMS. To improve
the response time of topological queries, we introduced an adjacency list as a sec-
ondary index structure that is tightly coupled with the corresponding vertex/edge
attribute tables. Our prototypical implementation of Q1 from the interactive query
workload of the LDBC shows a NUMA-friendly behavior, the run time scales with the
dataset size of the query and shows competitive query performance compared with
native GDBMS in other publications [7]. This work is currently in progress, so as next
steps we plan to extend our experimental evaluation to other queries from the LDBC
benchmark and to evaluate GRAPHITE in the presence of concurrent, transactional
write operations.

References

InfiniteGraph project website. www.objectivity.com/infinitegraph

Neo4j project website. http://neodj.com

OrientDB project website. http://www.orientdb.org/

Titan project website. http://thinkaurelius.github.io/titan

Aberger, C.R., Notzli, A., Olukotun, K., Ré, C.: EmptyHeaded: boolean algebra
based graph processing, CoRR abs/1503.02368 (2015)

Cui, Z., Chen, L., Chen, M., Bao, Y., Huang, Y., Lv, H.: Evaluation and optimization
of breadth-first search on NUMA cluster. In: Proceedings of CLUSTER 2012, pp.
438-448 (2012). http://dx.doi.org/10.1109/CLUSTER.2012.29

CUs e

o

www.objectivity.com/infinitegraph
http://neo4j.com
http://www.orientdb.org/
http://thinkaurelius.github.io/titan
http://dx.doi.org/10.1109/CLUSTER.2012.29

514

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Hauck et al.

. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat, A., Pham,

M.D., Bonez, P.A.: The LDBC social network benchmark: interactive workload. In:
Proceedings of SIGMOD 2015, pp. 619-630 (2015)

. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:

GraphX: graph processing in a distributed dataflow framework. In: Proceedings of
OSDI 2014, pp. 599-613 (2014)

. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and efficient

graph analysis. In: Proceedings of ASPLOS 2012, pp. 349-362 (2012)

Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: large-scale graph computation on
just a PC. In: Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI 2012, pp. 31-46. USENIX Association, Berkeley
(2012)

Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Dis-
tributed GraphLab: a framework for machine learning and data mining in the cloud.
Proc. VLDB Endow. 5(8), 716-727 (2012)

Macko, P., Marathe, V.J., Margo, D.W., Seltzer, M.I.: LLAMA: efficient graph ana-
lytics using large multiversioned arrays. In: Proceedings of ICDE 2015 (2015)
Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of
SIGMOD 2010, pp. 135-146 (2010)

Martinez-Bazan, N., Aguila Lorente, M.A., Muntés-Mulero, V., Dominguez-Sal, D.,
Gémez-Villamor, S., Larriba-Pey, J.L.: Efficient graph management based on bitmap
indices. In: Proceedings of IDEAS 2012, pp. 110-119 (2012)

Paradies, M., Lehner, W., Bornhévd, C.: GRAPHITE: an extensible graph traversal
framework for relational database management systems. In: Proceedings of the Inter-
national Conference on Scientific and Statistical Database Management, SSDBM
2015, pp. 29:1-29:12 (2015)

Raman, R., van Rest, O., Hong, S., Wu, Z., Chafi, H., Banerjee, J.: PGX.ISO: par-
allel and efficient in-memory engine for subgraph isomorphism. In: Proceedings of
GRADES 2014, pp. 5:1-5:6 (2014)

Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc.
Inf. Sci. Technol. 36(6), 35-41 (2010)

Rudolf, M., Paradies, M., Bornhévd, C., Lehner, W.: The graph story of the SAP
HANA database. In: Proceedings of BTW 2013, pp. 403420 (2013)

Sun, W., Fokoue, A., Srinivas, K., Kementsietsidis, A., Hu, G., Xie, G.: SQLGraph:
an efficient relational-based property graph store. In: Proceedings of SIGMOD 2015
(2015)

Welc, A.; Raman, R., Wu, Z., Hong, S., Chafi, H., Banerjee, J.: Graph analysis: do
we have to reinvent the wheel? In: Proceedings of GRADES 2013, pp. 7:1-7:6 (2013)
Xia, Y., Tanase, 1.G., Nai, L., Tan, W., Liu, Y., Crawford, J., Lin, C.: Explore effi-
cient data organization for large scale graph analytics and storage. In: Proceedings
of BigData 2014, pp. 942-951 (2014)

Zhang, K., Chen, R., Chen, H.: NUMA-aware graph-structured analytics. In: Pro-
ceedings of SIGPLAN 2015, pp. 183-193 (2015)

	Highspeed Graph Processing Exploiting Main-Memory Column Stores
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Columnar Graph Storage
	3.2 Secondary Graph Index Structure

	4 Implementation Details
	4.1 Basic Graph Operations & Building Blocks
	4.2 Query Implementation
	4.3 Memory Consumption

	5 Evaluation
	5.1 NUMA Effects
	5.2 Performance

	6 Conclusion
	References

