Towards Community Detection
on Heterogeneous Platforms

Stijn Heldens!®) | Ana Lucia Varbanescu!,

Arnau Prat-Pérez?, and Josep-Lluis Larriba-Pey?

! Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
stijn.heldens@student.uva.nl, a.l.varbanescu@uva.nl
2 DAMA-UPC, Universitat Politéchnica de Catalunya, Barcelona, Spain
{aprat,larri}@ac.upc.edu

Abstract. Over the last decade, community detection has become an
increasingly important topic of research due to its many applications
in different fields of research, such as biology and sociology. One exam-
ple of a modern community detection algorithm is Scalable Community
Detection (SCD), which has been shown to produce high-quality results,
but its performance remains an issue on large graphs. In this work, we
demonstrate how SCD can benefit from the heterogeneity offered by
hybrid CPU-GPU platforms by presenting Het-SCD: a heterogeneous
version of SCD which combines the larger memory capacity of the CPU
with the larger computational power of the GPU. To enable this, we
have designed an entirely new version of SCD which efficiently uses the
fine-grained parallelism of GPUs. We report performance results on six
real-world graphs (up to 1.8 B edges) and six platforms. We observe
excellent performance for only the GPU (e.g., 70x speedup over sequen-
tial CPU version on graph of 117M edges) and for combining the CPU
and GPU (e.g., 40x speedup for same graph on low-end GPU with insuf-
ficient memory to store entire dataset). These results demonstrate that
Het-SCD is an excellent solution for large-scale community detection,
since it provides high performance while preserving the high quality of
the original algorithm.

Keywords: Community detection - Heterogeneous computing - GPU
computing - SCD algorithm - WCC metric

1 Introduction

In graph theory, a community is defined as a cluster of densely interconnected
vertices which are sparsely connected to the rest of the network (or grapht).
Community detection, which is the problem of partitioning a network into com-
munities, gives us valuable insight into the structure of complex networks, such as
those from biology and sociology [10]. For example, communities can correspond

! The terms graph and network are used interchangeably throughout this paper.

© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 209-220, 2015.
DOI: 10.1007/978-3-319-27308-2_18

210 S. Heldens et al.

to proteins having similar functions in protein-protein interaction networks [12],
people with the same interests in social networks [15], or researchers working on
the same topic in academic collaboration networks [9].

Although much research has gone into understanding the community struc-
ture of complex networks and designing community detection algorithms (see
[4] for a comprehensive study), no consensus has been reached on how to detect
communities and no single algorithm has become universally accepted. Addi-
tionally, little effort has been placed on performance, which becomes a problem
when the size of these networks grows. Analyzing massive networks consisting
of millions, or even billions, of edges can take minutes, or even hours, using
state-of-the-art community detection algorithms. Reducing the processing time
of these algorithms remains desirable.

Scalable Community Detection (SCD, Sect.2.2) is an example of a mod-
ern algorithm community which has been shown to produce high-quality results.
SCD partitions a network into communities by greedily maximizing the Weighted
Community Clustering (WCC, Sect. 2.1) metric, a novel community quality met-
ric based on triangle counting. SCD has been designed to be highly parallel to
run efficiently on modern parallel platforms.

In this work, we show the potential of this algorithm for massively paral-
lel architectures by presenting the first version of SCD specifically designed for
GPUs. This version runs the most computationally expensive phase of the algo-
rithm entirely on the GPU. This solution leads to high performance, but requires
the entire network to fit into the memory of the device. To tackle this limitation,
we have extended this version to Het-SCD: a heterogeneous version of SCD
which runs on hybrid CPU-GPU platforms. Het-SCD attempts to process as
many vertices as possible on one or more GPUs and processes the remaining
vertices on the CPU. By doing this, we effectively combine the larger memory
capacity of the CPU with the larger computational power of the GPU.

We have evaluated our work on six real-world datasets from the SNAP repos-
itory [7], the largest having 1.8 billion edges. The results show that only using
the GPU allows Het-SCD to obtain orders of magnitude speedup compared to
a sequential CPU implementation. Additionally, our results show that using the
GPU is still beneficial for performance even if the size of the network exceeds
GPU memory and a fraction of the vertices needs to be processed on the CPU.

2 Background

The Scalable Community Detection (SCD) algorithm partitions an undirected
unweighted network into communities by maximizing the Weighted Community
Clustering (WCC) metric. In this section, we briefly introduce WCC and SCD.
For more detailed descriptions, we refer to [13,14], respectively.

Towards Community Detection on Heterogeneous Platforms 211

—> Preprocessing —>»| Initial partitioning i} Partition refinement J—)

Fig.1. The three steps of the SCD algorithm (Sect.2.2). Het-SCD focuses on the
partition refinement (Sect. 3.1).

2.1 The WCC Metric

WCC is a metric that measures the quality of a partitioning of a network into
communities. It is based on the intuition that vertices close more triangles with
vertices inside the same community than with those outside the community.

Given an undirected unweighted graph G = (V, E), a vertex € V, and a
community C' C V, let t(x,C') be the number of triangles that vertex x closes
with vertices in C' and let vt(z,C') be the number of vertices in C' which close
at least one triangle with = and a third vertex from C'. The cohesion of vertex x
to community C is defined as in Eq. 1.

t(z,C) vt(z,V) .
WOC(r,C) = 4 1oV OtV —wiwe) @ V) #0
0 it t(z, V) = 0

Now, let P = {C1,...,Cx} be a partition of V, i.e., C;U...UCy =V and
C;NC; =0 ifi# j. Define C* as the community to which vertex z belongs.
The WCC of P is defined as in the average WCC(z, C®) over all vertices x.

(1)

2.2 The Scalable Community Detection Algorithm

The SCD algorithm takes a graph G = (V, E), where n = |V| and m = |E| , and
partitions G into communities by greedily maximizing WCC. Figurel shows
the three steps of the algorithm: preprocessing, initial partition and partition
refinement.

Preprocessing. During preprocessing, the number of triangles closed by each
edge is counted. Using this data, the number of triangles closed by each vertex
calculated. Edges which do not close any triangles are deleted from the graph
since they do not affect the WCC. Vertices which become isolated after this step
are also removed: they will be assigned to new singleton communities afterwards.
The time complexity of this stage is O(mlogn) [14], assuming a quasi-linear
relation between n and m, i.e., O(m) ~ O(nlogn).

Initial Parition. A fast heuristic [14] is used to assign the vertices to initial
communities. The vertices are visited in descending order of clustering coeffi-
cient? (calculated using data from preprocessing) and assigned to newly created

2 The clustering coefficient cc of a vertex « is defined as cc = 2t/d(d — 1) where t is
the number of triangles x closes and d is the degree of x.

212 S. Heldens et al.

Community 5 Community 7 Community 7 Community 8

Fig. 2. Results of one refinement iteration: vertices A and B stay in community 7
(action (1)), vertex C is transferred to community 7 (action (2)), and vertex D is
placed in a new community (action (3)).

communities. The most expensive operation of this phase is sorting the vertices,
which requires O(nlogn) time.

Partition Refinement. The initial partition serves as input to the refinement
phase in which the WCC is iteratively improved. Figure2 demonstrates one
iteration of this phase. In each iteration, all vertices performs the action which
leads to the largest increase in WCC. There are three possible types of actions:

(1) No action: the vertex stays in its current community.

(2) Remove: the vertex is removed from its current community and placed alone
in a newly created community.

(3) Transfer: the vertex is transferred from its current community to the com-
munity of one of its neighbors.

Action (1) does not affect the WCC. Actions (2) and (3) do affect the WCC,
but accurately computing the improvement is computationally expensive since
it requires recounting many internal triangles in the network. Prat et al. [14]
proposed a constant-time approximation model to estimate the impact of these
two actions on the WCC. This model allows one to estimate the improvement
in WCC when adding/removing a vertex x to/from community C, given the
community statistics of C' (number of vertices and number of boundary/internal
edges), the number of edges from vertex z towards community C' and the average
clustering coefficient of the entire network.

Note that all vertices select and apply their best action in parallel, thus expos-
ing massive parallelism. At the end of each iteration, the WCC of the resulting
partition is calculated and the algorithm continues with a new iteration unless
the overall increase in WCC is less than a given threshold. Each iteration takes
O(mlogn) time [14]. The number of iterations required to reach convergence
depends on the size and the topology of the graph.

3 Design and Implementation

We have designed and implemented Het-SCD: a heterogeneous version of SCD
for CPU-GPU platforms. First, we discuss the massively parallel version of SCD
which we designed specifically for GPUs. Next, we discuss how we extended
this version to support hybrid CPU-GPU platforms. Finally, we discuss how to
automatically distribute the vertices of a network over multiple devices.

Towards Community Detection on Heterogeneous Platforms 213

Vertices |A[A]B|BJC|D

Vertices |A|A Vertices
. Nbr. labels | 5 pewd 5 Newd 7 e
Neighbors | B Nbr. labels
Improv. |-.1|-.2§-.7|-.1f. 1.3
Read Reduce-
Reduce-
labels by-key by-key //
Vertices | A Vertices Vertices |A|B|C|D
Neighbors | B Nbr. labels New labels |5 New 7 NE
Nbr. labels | 7 Frequency Improv. |[-.1|-.1}.1+.3)
Sort Calculate
labels improv.

Fig. 3. Procedure used to determine new labels for vertices of graph in Fig. 2.

3.1 The Massively Parallel Version

For our current massively parallel version of SCD, we focused our attention to
the partition refinement phase (see Fig. 1) since this is the most expensive phase
of the algorithm. After the preprocessing and initial partition phases (performed
on the CPU), each vertex is assigned a label corresponding to the identifier of
its community. This labeling is transferred to the GPU, together with the graph
in compressed sparse row format, and the data collected during preprocessing.

Each refinement iteration is performed entirely on the GPU. The three steps
of each iteration are: update the labels, collect community statistics, and calcu-
late the WCC.

Update Labels. Updating the vertices of the labels is done by, for each vertex,
evaluating all possible actions (Sect.2.2) and applying the action which leads
to the largest increase in WCC. A straight-forward solution to do this using
a vertex-centric approach, i.e., assigning each vertex to a thread. Each vertex
is updated by iterating over its neighbors, keeping track of the frequencies its
neighboring labels using an associate array, evaluating the benefit of each possible
action, and applying the most beneficial action.

However, a vertex-centric approach is not suitable for massively parallel archi-
tectures for a number of reasons. First, it leads to severe load imbalance: The
work per vertex is determined by its degree and the degree distribution of real-
world networks usually follows a power law [9], i.e., many low-degree vertices and
few high-degree vertices. Second, the amount of parallelism is limited: evaluat-
ing all possible actions for a single vertex is done sequentially even though it can
be parallelized. Third, associative arrays, such as binary trees or hash tables, are
often not efficient on massively parallel architectures since they require dynamic
memory allocation and have poor memory coalescing.

To tackle these challenges, we have designed, from the ground up, a new
produce to update the vertices using an action-centric approach, i.e., all actions
for all vertices are evaluated in parallel. Our approach is based on generic global
parallel primitives, such as sort and reduce, to obtain high hardware utilization
since many of these primitives have been extensively researched.

214 S. Heldens et al.

Our procedure starts with a sorted directed edge list of the network. For each
edge, the label of the incoming endpoint is read, resulting in a list of vertex-label
pairs. These pairs are sorted using a global segmented sort3 to place matching
pairs adjacent to each other. The frequency of each vertex-label pair (v, C') cor-
responds to the number of edges between vertex v and community C. A reduce-
by-key* operation is used to count the frequency of each pair.

For all vertex-label-frequency triples (v, C, f), the improvement in WCC that
results from transferring vertex v to community C' (action (2)) is calculated using
the approximation model (Sect. 2.2). If vertex v is already assigned to community
C, the improvement when removing v from C' (action (3)) is calculated instead.
Finally, another reduce-by-key operation is used select the best action for each
vertex. Every vertex adopts the resulting label if the corresponding improvement
is positive, other it keeps its current label (action (1)).

For our prototype, we used the reduce-by-key and segemented sort primitives
from the Modern GPU library [1].

Collect Community Statistics. Changing the labels of the vertices affects
the community statistics (number of vertices and number of internal/boundary
edges), so these need to be recalculated. The statistics are updated by processing
all vertices and edges in parallel and incrementing counters using atomics.

Calculate WCC. The final step of each iteration is calculating the new WCC
to determine whether another iteration is necessary. The only values from Eq. 1
which are not known for each vertex = are t(z,C*) and vt(z,C”). The prob-
lem of computing these values is similar to the well-studied problem of triangle
counting, with the exception that we are only interested in internal triangles,
i.e., triangles for which all endpoints lie within the same community.

A possible solution to this problem is to intersect the adjacency list of the
endpoints of every edge and check, for each triangle found, whether it is internal.
However, this method is inefficient since, in practice, only a small fraction of all
triangles is internal. Therefore, we prune the graph by first removing all inter-
community edges, thus making all triangles internal, and intersect the pruned
adjacency lists. This approach exposes a lot of parallelism since both pruning
the graph and intersecting adjacency lists can be done in parallel.

Once the WCC of every vertex has been calculated, the average is calculated
using a reduction operation and the result is transferred back to the host, which
decides whether another iteration is necessary.

3.2 The Heterogeneous Version

The massively parallel version of SCD presented above is able to perform the
entire refinement phase on the GPU, but it required the entire network to be

3 Segmented sort takes a list of consecutive non-uniform segments and sorts each one.
4 Reduce-by-key divides a list of key-value pairs into segments with matching consec-
utive keys and reduces the values in each segment to a single value.

Towards Community Detection on Heterogeneous Platforms 215

GPU 1

GPU 2

CPU |

Calculate
WwcCC

Sum
WcCC

Reduce
comm. stats.

Improve
labels

Update
comm. stats.

Fig. 4. The steps of refinement phase for our heterogeneous version when using two
GPUs.

stored in GPU memory thus limiting the size of the networks that can be
processed. To tackle this challenge, we extended this version to Het-SCD: a
heterogeneous version of SCD which processes as many vertices as possible on
one or more GPUs and the remaining vertices on the CPU.

Het-SCD requires each vertex to be assigned to either the CPU or a GPU,
resulting in a partitioning of the network into components. Vertices that belong
to a component are known as the core vertices of the component and adjacent
vertices are known as halo vertices. Each vertex is thus a core vertex in exactly
one component and can duplicated as a halo vertex in several components.

At the start of the refinement phase, subgraphs consisting of core and halo
vertices are transferred to the GPUs. Processing the vertices on CPU and GPU
in parallel is possible since all steps of the refinement phase are vertex-centric
and the vertices of the network are distributed over the available devices. Our
GPU implementation is written in CUDA [11] and our CPU implementation was
provided by Prat et al. [14] and has been parallelized using OpenMP. The vertices
which are processed on GPUs are masked out in the OpenMP implementation.

The CPU and GPUs need to communicate after each step of every refinement
iteration as illustrated in Fig.4. After updating the labels, all devices need to
exchange data to update the labels of their halo vertices. After collecting the
statistics of the communities in its component, each GPU transfers their sta-
tistics to the CPU, the CPU sums the results and transfers the final statistics
back to the GPUs. After calculating the average WCC of its vertices, each GPU
sends its result to the CPU which computes the overall average WCC.

3.3 Automatic Partitioning

Het-SCD requires, as input, a partitioning of the input network over the available
devices without exceeding the memory of any device. This partitioning should
have a low cut to minimize the number of halo vertices and thus the storage and
communication cost of these vertices. Additionally, the edge density and triangle
distribution of all components should be balanced to evenly distribute the work.

We used METIS [6] to automatically partition the network. Each vertex is
assigned its degree and number of triangles it closes as weights to evenly dis-
tribute the edges and triangles. Experiments show that METIS yields balanced
partitionings, but its performance is low. For example, when evenly splitting

216 S. Heldens et al.

Table 1. The platforms used for our experiments.

Platform | GPU name CUDA | SM count | Clock (Mhz) | Mem (MB) | Bandwidth | Host CPU
(GB/s) (Intel
Xeon)
A C2050 (Fermi) 2.0 14 575 2688 144.0 E5620
B GTX480 (Fermi) 2.0 15 700 1536 177.4 E5620
C GTX580 (Fermi) 2.0 16 772 3072 193.0 X5650
D GTX680 (Kepler) 3.0 8 1006 2048 192.3 E5620
E Tesla K20m (Kepler) | 3.5 13 706 5120 208.0 E5-2620
F GTX-Titan (Kepler) | 3.5 14 837 6144 288.0 E5620

Table 2. The networks used for our experiments. Size is the size of the graph while
Footprint includes both the graph and auxiliary data structures in GPU memory.

Name Type Vertices (mil.) | Edges (mil.) | Size (MB) | Footprint (MB)
Amazon Co-purchasing network | 0.335 0.926 23.0 54.9

DBLP Coauthorships network | 0.317 1.050 27.2 69.8
YouTube Social network 1.135 2.988 30.9 92.9
LiveJournal | Social network 3.998 34.681 562.8 1778.6

Orkut Social network 3.072 117.185 1720.0 5026.6
Friendster Social network 65.608 1806.067 27812.4 -

LiveJournal (Table2) into two components, the differences in the number of
vertices, edges and triangles are all less than 1%, but the run-time is 35s.

4 FEvaluation

We have evaluated our solution using six platforms (Table 1) and six networks
(Table2). The networks have been chosen from SNAP [7] since they contain
known ground-truth communities, which makes these datasets suitable candi-
dates for a community detection algorithm. The source code and a full report of
our results are available online®. In this section, we summarize the most impor-
tant performance results. All our results are averaged over 5 runs. Error bars
have been omitted since results were found to be stable. The threshold for WCC
improvement was set to 1% [14].

4.1 The GPU Version

Figure 5 shows the average speedup per iteration of the refinement process for the
different GPUs over a serial version of SCD which is based on previous work [14].
This version has also been parallelized for multi-core processors using OpenMP
(OMP), and the results for sixteen threads on an Intel E5620 dual-quad-core
CPU have been included for comparison.

5 http://github.com/Het-SCD.

http://github.com/Het-SCD

Towards Community Detection on Heterogeneous Platforms

217

B OMP (16 threads) S GTX480 EXX GTX680 GTX-Titan
X3 C2050 3 GTX580 <Y K20m
80 1 1
70 L
> %
60] 1 L
S 50 g g L
B 40 §¢ ’ L
8 30 i \’)+
o 5 5§¢ T
10 < -
o BN Zl

Amazon YouTube LiveJournal Orkut

Fig. 5. Average speedup per iteration of the refinement process over serial version on
Intel E5620. Missing bars indicate failures due to insufficient memory on the GPU.

The results clearly show that the GPU version is always significantly faster
than both the serial and multi-threaded version, regardless of the network or the
GPU used. Even the least powerful GPU, the C2050, obtains speedups between
10x and 20x on every graph. The most powerful GPU, the GTX-Titan, obtains
speedups from 40x on Amazon up to a massive 70x on Orkut. This is the result
of the massive parallelism and increased bandwidth offered by these GPUs.

However, the results also show that the amount of GPU memory is a realistic
limitation which cannot be ignored. Friendster has not been included since it
does not fit into the memory of any GPU. Orkut is also too large for most of
our GPUs and can only be processed by the GTX-Titan. LiveJournal can be
processed by most of the GPUs, except the GTX480.

4.2 The Heterogenous Version

The heterogeneous version removes the memory restriction by processing as
many vertices as possible on GPUs and the remaining vertices on the CPU.

Figure 6 shows the average time per iteration of the refinement phase for
LiveJournal and Orkut when combing CPU and GPU. The results show that
Het-SCD can be used to process networks which cannot be processed only by
the GPU since they exceed GPU memory. For example, LiveJournal can be
processed on the GTX480 by assigning only 20 % of the vertices to the CPU,
resulting in a speedup of 3.1x compared to the multi-threaded version and 30.7x
compared to the serial version. Orkut can be processed on the K20m by also
assigning only 20 % of the vertices to the host, giving a speedup of 4.5x and
41.5x compared to the multi-threaded and serial version, respectively.

The heterogeneous version can also use multiple GPUs simultaneously.
Figure7 shows the speedup for LiveJournal and Orkut when using multiple
GTX580 GPUs. For LiveJournal, the speedup is significant up to 4 GPUs. Using
more GPUs decreases the speedup due to communication overhead. For Orkut,
we have predicted the single GPU performance using information from Fig.6
since it exceeds the memory of a single GTX580. Using 6 GPUs provides enough
memory to process the graph and more GPUs give better performance.

218 S. Heldens et al.

O o Platfolrm I|3 LilveJcl)urnaI Platfolrm (IJ LilveJclJurnaI PIatfqrm IIE LilveJ?urnaI
: 2
= 15 - - S =
g 10 4 f‘ i N _Wf-
(0]
£ 05 L _M-] i
g) 0.0 T T T T T T T T T T T T
<.
C) o Pllatforlm Bi Orll(ut Pl?tforlm Cf Orll<ut Plgtforlm Ei Orll<ut
o)
T 6 - Pl — B
g 4 I I L
° x"‘/“—’
£ 2 4 - - =
g’ 0 T T T T T T T T T T T T
e

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Partition on host (%) Partition on host (%) Partition on host (%)

Fig. 6. Average time per iteration of the heterogeneous version for two networks (Live-
Journal and Orkut) and three platforms. The number of threads used on the CPU was
set to the number of available virtual cores. Missing points indicate failures due to
insufficient memory on the GPU.

GTX580, Livedournal GTX580, Orkut Platform C, Friendster
T Ty D | L1 0111 TR S I T Il B |

8 g 25%
7 4| — Ideal = =] — Ideal - = 20% MX—X Ideal
) c e -
=3 6 =YX Measured = —=|-- Estimated -] 15% — Measured
3 5 = = |>X Measured W— £ :
o 4 I = - D 10% = -
Q 3 o
a T . : B O 5% = =
2 - L] L 5
- Q0%
1 | B B | | B B | a : LI I I B I B
12 3 45 6 7 8 12 3 45 6 7 8 0 123 45 67
Number of GPUs Number of GPUs Number of GPUs

Fig. 7. The speedup when dividing the Fig. 8. Speedup when combining CPU
vertices over multiple GPUs. and GPUs for Friendster.

We also experimented if Friendster, having 1.8 billion edges, can be processed
using our solution. Using a back-of-the-envelope calculation, we estimated that
2% of Friendster can be placed on a single GTX580. We processed this graph
by assigning 2% of the vertices to each GPU and the remaining vertices to the
CPU. Figure8 shows that every added GPU indeed decreases the run-time by
roughly additionally 2%. When using 8 GPUs, the overall run-time is reduced
by 20 % (6.1s per iteration).

4.3 End-to-End Performance

Up to this point, we have only reported the performance of the refinement phase,
which is the part we have accelerated. However, the complete Het-SCD applica-
tion also reads the network from disk, performs preprocessing, creates the initial

Towards Community Detection on Heterogeneous Platforms 219

[Disk /0 EZ2 Preprocessing [|Initial partition ~ EZZ) Transfer to/from GPU 2 Refinement
1 1

E5620 (16 threads) =
Platform A =
Platform C
Platform D =

Platform E =
Platform F = |Z

Time (s)

Fig. 9. The end-to-end execution time for LiveJournal.

communities and transfers data between main memory and GPU memory. These
steps have not been accelerated by Het-SCD. An example of a complete execu-
tion profile for LiveJournal is shown in Fig. 9, the other datasets show a similar
result. The figure shows that the refinement phase accounts for more than 55 %
of the total execution time when using 16 threads. When using the GPU, this
time is reduced by a factor of between 2x and 7x (depending on the chosen
GPU), reducing the total execution time by between 25 % and 50 %, which is
significant. We propose that parallelizing the preprocessing step and reducing
disk I/O should complement Het-SCD, but consider this effort to be out of the
scope of this paper.

5 Related Work

Many community detection algorithms have been proposed [4], but only few have
been implemented on GPUs. Soman et al. [16] proposed a GPU implementation
of an algorithm based on label propagation. Cheong et al. [3] and Staudt et
al [17] designed a GPU implementation around the Louvain method [2], an
algorithm based on modularity maximization. However, label propagation suffers
from “label epidemic” where some labels manage to “plague” the network [8]
and modularity maximization suffers from the resolution limit [5]. SCD is a novel
algorithm which has been proven to be robust and find meaningful and cohesive
communities [14].

Staudt et al [17] also extended their Louvain-based algorithm to support
hybrid CPU-GPUs platforms. However, they achieved this by partitioning the
graph, running the algorithm on each subgraph, and combining the results. This
modification lowers the quality of the original algorithm. We designed Het-SCD
to preserve the original algorithm to ensure its high quality, while providing
higher performance.

6 Conclusion and Future Work

High-quality community detection in large networks is becoming an important
requirement for modern data mining applications. In this work, we target both

220 S. Heldens et al.

the performance and scale of the problem: we design the first massively parallel
version of SCD, a high-quality community detection algorithm, and an extension
of this version to a flexible, large-scale heterogeneous version. Our experimental
results demonstrate (1) the superior performance of the GPU version compared
to both the sequential and the parallel CPU execution, and (2) the ability of
the heterogeneous version to achieve significant performance gains by processing
large graphs on the CPU and multiple GPUs in parallel.

There are further steps to be taken to improve Het-SCD. So far, we have
only accelerated the refinement phase on the GPU. In the near future, we plan
to implement a parallel version of the preprocessing phase and initial partition
as well. Finally, the impact of the partitioning on the performance of Het-SCD
must be explored. While METIS yields balanced partitions with a low cut size,
its performance is low. Designing a custom partition algorithm specifically for
Het-SCD might give higher performance.

References

1. Baxter, S.: Modern GPU. http://moderngpu.com/ (2013)

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
2008

3. éheor)lg, C.Y., Huynh, H.P., Lo, D., Goh, R.S.M.: Hierarchical parallel algorithm
for modularity-based community detection using GPUs. In: Wolf, F., Mohr, B., an
Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 775-787. Springer, Heidelberg
2013

4. %ortulato, S.: Community detection in graphs. Phys. Rep. 486(3), 75-174 (2010)

5. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc.
Nat. Acad. Sci. 104(1), 36-41 (2007)

6. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. STAM J. Sci. Comput. 20(1), 359-392 (1998)

7. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection
(2014). http://snap.stanford.edu/data

8. Leung, I.X., Hui, P., Lio, P., Crowcroft, J.: Towards real-time community detection
in large networks. Phys. Rev. E 79(6), 066107 (2009)

9. Newman, M.E.: The structure and function of complex networks. STAM Rev. 45(2),
167-256 (2003)

10. Newman, M.E.: Detecting community structure in networks. Eur. Phys. J. B Con-
dens. Matter Complex Syst. 38(2), 321-330 (2004)

11. NVIDIA Corporation: NVIDIA CUDA C Programming Guide (2011)

12. Palla, G., Derényi, 1., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435, 814-818 (2005)

13. Prat-Pérez, A., Dominguez-Sal, D., Brunat, J.M., Larriba-Pey, J.L.: Shaping com-
munities out of triangles. In: CIKM 2012. ACM (2012)

14. Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.L.: High quality, scalable and
parallel community detection for large real graphs. In: WWW 2014 (2014)

15. Scott, J.: Social Network Analysis. Sage, London (2012)

16. Soman, J., Narang, A.: Fast community detection algorithm with GPUs and mul-
ticore architectures. In: IPDPS 2011. IEEE (2011)

17. Staudt, C., Meyerhenke, H.: Engineering parallel algorithms for community detec-
tion in massive networks. IEEE TPDS PP(99), 1 (2015)

http://moderngpu.com/
http://snap.stanford.edu/data

	Towards Community Detection on Heterogeneous Platforms
	1 Introduction
	2 Background
	2.1 The WCC Metric
	2.2 The Scalable Community Detection Algorithm

	3 Design and Implementation
	3.1 The Massively Parallel Version
	3.2 The Heterogeneous Version
	3.3 Automatic Partitioning

	4 Evaluation
	4.1 The GPU Version
	4.2 The Heterogenous Version
	4.3 End-to-End Performance

	5 Related Work
	6 Conclusion and Future Work
	References

