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Abstract. We present a fast hybrid solver for dense linear systems based
on LU factorization. To achieve good performance, we avoid pivoting by
using random butterfly transformations for which we developed efficient
implementations on heterogeneous architectures. We used both Graphics
Processing Units and Intel Xeon Phi as accelerators. The performance
results show that the pre-processing due to randomization is negligible
and that the solver outperforms the corresponding routines based on
partial pivoting.
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1 Introduction

The LU factorization with partial pivoting is the most commonly used method
to solve general dense linear systems. The pivoting step aims at improving the
numerical stability of the method. Even though it does not require extra float-
ing point operations, selecting the pivots involves O(n2) comparisons. Moreover
swapping the rows of the matrix involves extra data movements. These aspects
can deteriorate the performance of the LU factorization due to the cache invali-
dations they induce.

As a motivation of this work, let us evaluate the overhead of the pivoting step
of the LU factorization with partial pivoting using both GPU and Intel Xeon Phi
accelerators. To use accelerators in dense linear algebra computations, we base
our work on the MAGMA library [4,8,16], which provides LAPACK interface
functions, using GPUs or Intel Xeon Phi. Figure 1a shows the results obtained
running the corresponding MAGMA routine on an NVIDIA Tesla K20 GPU
accelerator. We observe that pivoting takes more than 20% of the total compu-
tational time for matrices of size smaller than 104. However for larger matrices,
the pivoting overhead is reduced and most of the computational time is spent per-
forming the matrix-matrix products (DGEMM) on the GPU. Figure 1b displays
the pivoting overhead using an Intel Xeon Phi 7120 coprocessor. Experiments
have shown that the Intel Xeon Phi version of the factorization needs a greater
amount of data than that of the GPU to be efficient. Indeed, for a matrix size
of order 6000, the performance of the LU based solver is around 200 Gflop/s
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on the Xeon Phi whereas it is around 500 Gflop/s on the GPU. Increasing the
size of the problem, the performance of both versions tends towards 800 Gflop/s
(for double precision). We note that for small matrices, the pivoting overhead
on Xeon Phi is proportionally smaller than on GPU.
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Fig. 1. Time breakdown for pivoting in the LU factorization.

The previous experiments show that pivoting is a bottleneck in terms of com-
munication cost and parallelism for hybrid CPU/accelerator architectures. To
reduce the communication cost of the classical pivoting strategies such as partial
pivoting, some alternative pivoting techniques were proposed in the context of
the communication-avoiding LU algorithms (CALU then CALU PRRP) [6,12].
These techniques are based on tournament pivoting, which was shown to be as
stable as partial pivoting in practice.

Another approach consists in avoiding pivoting, and therefore improving the
performance of the factorization. This approach is based on the use of Random
Butterfly Transformations (RBT). It was first described in [14,15], and recently
revisited for general systems in [3] and for symmetric indefinite systems in [1,2].
The main difference of the RBT based methods with respect to the classical
factorization methods consists in a randomization step, which recursively applies
a sequence of butterfly matrices to the input matrix. The main advantage of
randomizing is that it allows us to avoid the communication overhead due to
pivoting. Tests performed on a collection of matrices [3] show that in practice
two recursions are sufficient to obtain a satisfactory accuracy.

The RBT solvers are particularly suitable for accelerators. On one hand,
avoiding pivoting on accelerators has an important impact on the performance.
On the other hand, the structure of the butterfly matrices can be exploited
to perform the randomization at a very low cost. In this work we present the
implementation details of a randomized LU-based solver using GPU and Intel
Xeon Phi accelerators and discuss its performance on both accelerators.
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The remainder of this paper is organized as follows. Section 2 recalls the
main principles of the RBT algorithm and how it can be used in a hybrid
CPU/accelerator factorization. Sections 3 and 4 describe the implementation
and performance of the RBT solver for GPU and Intel Xeon Phi, respectively.
Section 5 has concluding remarks.

2 Hybrid RBT Solver

To solve a general linear system Ax = b using a solver based on RBT, we perform
the following steps:

– Compute Ar = UTAV with U, V random matrices (recursive butterfly matri-
ces),

– Factorize Ar using Gausian Elimination with No Pivoting (GENP),
– Solve Ary = UT b, then x = V y.

We recall that an n-by-n butterfly matrix B has the following structure,

B =
1√
2

(
R S
R −S

)
,

where R and S are two random non singular n/2-by-n/2 diagonal matrices. The
matrix B can then be stored in an n elements vector. A recursive butterfly matrix
of depth d is defined as

W<n,d> =

⎛
⎜⎜⎝
B

<n/2d−1>
1 0

. . .

0 B
<n/2d−1>

2d−1

⎞
⎟⎟⎠ × · · · ×

(
B

<n/2>
1 0

0 B
<n/2>
2

)
× B<n>,

(1)
where all B<n>

i blocks are size n butterfly matrices. When n is not a multiple
of 2d, we “augment” the matrix A with additional 1’s on the diagonal.

Note that the GENP algorithm can be unstable due to potentially large
growth factor. This is why we systematically perform iterative refinement on the
computed solution of the randomized system. In this work, we use two recur-
sion levels for the randomization (d = 2). The randomization cost is 8n2 flops,
due to the block diagonal structure of the butterfly matrices, as demonstrated
in [3]. Then the RBT algorithm adapted for hybrid architectures (CPU with an
accelerator) performs the following steps:

1. Random generation and packed storage of the butterflies U and V on the
host (CPU), while sending A to the device (accelerator) memory (padding is
added if the size of the matrix A is not a multiple of 4).

2. The packed U and V are sent from the host memory to the device memory.
3. The randomization of A is performed on the device. It is done in-place (no

additional memory needed).
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4. The randomized matrix is factorized with GENP: the panel is factored on the
host and the update of the trailing submatrix on the device.

5. We compute UT b, and then solve Ary = UT b on the device.
6. If necessary, iterative refinement is performed for y, on the device.
7. We compute the solution of x = V y on the device, and then send x to the

host memory.

Let us now describe the randomization phase (step 3) using two n-by-n recur-
sive butterfly matrices U and V of depth two. We consider that the input matrix

A can be split into 4 blocks of same size, A =
(
A11 A12

A21 A22

)
. We consider the matri-

ces U = U2×U1 and V = V2×V1, where U1, V1 are two butterfly matrices, and U2,

V2 are two matrices of the form
(
B1 0
0 B2

)
. B1 and B2 are two n/2-by-n/2 butter-

fly matrices as illustrated in Eq. 1. We have Ar = UTAV = UT
1 ×UT

2 ×A×V2×V1.
Thus we first apply UT

2 and V2 to A. We note A1
r = UT

2 × A × V2, the resulting
matrix from the first recursion level. Then,

A1
r =

(
B1 0
0 B2

)
×

(
A11 A12

A21 A22

)
×

(
BT

1 0
0 BT

2

)
=

(
B1A11B

T
1 B1A12B

T
2

B2A21B
T
1 B2A22B

T
2

)

This step consists of four independent products with depth-1 butterfly matri-
ces of size n/2-by-n/2. We call the kernel used for each product of the form
UT × A × V Elementary multiplication. We then compute Ar by applying
UT
1 and V1 to A1

r. For that we use again the Elementary multiplication ker-
nel. Implementation details of this kernel will be given in the next sections for
both GPU and Intel Xeon Phi accelerator.

3 RBT for Graphics Processing Units

Here we present our randomized LU-based solver using GPU. In particular, we
give implementation details of the randomization step, which are specific to the
targeted accelerator. We note that our RBT solver exists for all precisions used
in LAPACK (simple, double, simple complex and double complex) and is part
of the MAGMA library since the 1.6.0 version1.

3.1 Implementation

On hybrid CPU/GPU architectures, the RBT solver is performed as described
in Sect. 2. Algorithm 1 describes the randomization steps performed on a given
matrix A. It applies the depth-two RBT to the matrix A by processing first each
n/2-by-n/2 quarter block of A (lines 5 . . . 8 in Algorithm 1), and then applying
the level one recursion to the whole n-by-n matrix (line 10 in Algorithm 1) as
described in Sect. 2. The application of the level two randomization consists in
calling a specific GPU kernel, the Elementary Multiplication GPU, on each
quarter of the matrix. This is due to the block diagonal structure of the butter-
fly matrix. Each call to Elementary Multiplication GPU kernel is performed
using one GPU thread per element.
1 http://icl.cs.utk.edu/magma/news/news.html?id=351.

http://icl.cs.utk.edu/magma/news/news.html?id=351
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Algorithm 1. Two-level randomization on GPU
Require: A a pointer to the matrix A on the GPU.
Require: U a pointer to the matrix U stored as a vector on the GPU.
Require: V a pointer to the matrix V stored as a vector on the GPU.
Require: n the size of the matrix A
Ensure: A ← UTAV
1: block height ← 32
2: block width ← 4
3: Define a grid of threads per block, size : (block height, block width)
4: Define a grid of blocks, size : ( n

4×block height
, n

4×block width
)

{Assuming n is divisible by 4 × block height and 4 × block width}
{ All GPU kernels are called with the threads and grid dimensions defined before
the call}

5: Call : Elementary Multiplication GPU(A, &U(n), &V (n), n/2)
6: Call : Elementary Multiplication GPU(&A(0, n/2), &U(n), &V (n + n/2), n/2)
7: Call : Elementary Multiplication GPU(&A(n/2, 0), &U(n + n/2), &V (n), n/2)
8: Call : Elementary Multiplication GPU(&A(n/2, n/2), &U(n + n/2), &V (n +

n/2), n/2)
9: Redefine a grid of blocks, size : ( n

2×block height
, n

2×block width
)

{Assuming n is divisible by 2 × block height and 2 × block width}
10: Call : Elementary Multiplication GPU(A, U , V , n) {Applying level 1 recursion}

The Elementary Multiplication GPU kernel performs A ← UTAV , where
U and V are vectors of size n containing the entries of the depth-one random but-
terfly matrices. Algorithm 2 shows the implementation details of the Elementary
Multiplication GPU kernel. We use shared memory arrays for each block of
threads to store the elements of U and V relative to this block and thereby
improve the efficiency of the access to these elements.

3.2 Performance Results

In this section, we present performance results of our randomized LU-based
solver on GPU. The experiments were carried out on a system composed of a
GPU, NVIDIA Kepler K20, with 2496 CUDA cores running at 706 MHz and 4800
MB of memory and a multicore host composed of two Intel Xeon X5680 proces-
sors, each with 6 physical cores running at 3.33 GHz, and a Level 3 memory cache
of 12 MB. The CPU parts of our code are performed using the multithreaded
Intel MKL library [9].

Figure 2a shows that the CUDA [13] implementation of our RBT solver
(either with or without iterative refinement) outperforms the classical LU fac-
torization with partial pivoting from MAGMA. For large enough matrices (from
size 6000) the obtained performance is about 20 − 30% faster than the solver
based on Gaussian elimination with partial pivoting. In our experiments, when
we enable iterative refinement, one iteration is generally enough to improve the
computed solution giving an accuracy similar to the one obtained using LU fac-
torization with partial pivoting. The iterative refinement is performed on the
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Algorithm 2. GPU Kernel: Elementary Multiplication GPU(A, U , V , n)
1: for each thread block of size bsize.x × bsize.y of coordinates b.x and b.y do
2: for each Thread of coordinates t.x and t.y in the block do
3: idx ← b.x × bsize.x + t.x
4: idy ← b.y × bsize.y + t.y
5: if idx < n/2 and idy < n/2 then
6: Declare 4 shared memory arrays : U1[bsize.x], U2[bsize.x], V1[bsize.y],

V2[bsize.y]
7: U1(t.x) ← U(idx)
8: U2(t.x) ← U(idx + n/2)
9: V1(t.y) ← V (idy)

10: V2(t.y) ← V (idy + n/2)
11: Synchronize the threads in the block
12: a00 ← A(idx, idy)
13: a01 ← A(idx, idy + n/2)
14: a10 ← A(idx + n/2, idy)
15: a11 ← A(idx + n/2, idy + n/2)
16: b1 ← a00 + a01

17: b2 ← a10 + a11

18: b3 ← a00 − a01

19: b4 ← a10 − a11

20: A(idx, idy) ← U1(t.x) × V1(t.y) × (b1 + b2)
21: A(idx, idy + n/2) ← U1(t.x) × V2(t.y) × (b3 + b4)
22: A(idx + n/2, idy) ← U2(t.x) × V1(t.y) × (b1 − b2)
23: A(idx + n/2, idy + n/2) ← U2(t.x) × V2(t.y) × (b3 − b4)
24: end if
25: end for
26: end for

GPU and requires O(n2) extra floating point operations, which is a low order
term in our case and has no significant impact on the performance of our RBT
solver.

In Fig. 2b, we can see that the time required to perform the randomization
is less than 4% of the computational time for small matrices and becomes less
than 2% for larger matrices. This is due to the low computational cost of the
randomization (8n2 flops) and to our optimized implementation that use the
capabilities of the GPU accelerator.

4 RBT for Intel Xeon Phi

Similarly to the previous section, we present our implementation of the RBT
on an Intel Xeon Phi coprocessor and discuss its performance. This solver and
all the required routines (randomization, no pivoting LU factorization, iterative
refinement) are part of the MAGMA MIC library (version 1.3).



A Randomized LU-based Solver Using GPU and Intel Xeon Phi Accelerators 181

0

100

200

300

400

500

600

700

800

2112 4160 6208 8256 10304 12352 14400 16448

G
fl
o
p
/
s

Size

Partial Pivoting
RBT without IR

RBT with IR

(a) Performance.

0

1000

2000

3000

4000

5000

6000

7000

8000

5184 10304 15424 20544

T
im

e
(m

s)

Matrix size

LU without pivoting + solve
RBT randomization

3.37%

2.26%

1.82%

1.51%

(b) Time breakdown.

Fig. 2. Randomized LU-based solver on GPU

4.1 Implementation

Algorithm 3 presents the randomization routine, using depth-two butterfly matri-
ces. It is similar to its GPU counterpart, except that there are no blocks or
threads to deal with inside this routine.

Algorithm 3. Two-level randomization on Intel Xeon Phi
Require: A a pointer to the matrix A on the Phi.
Require: U a pointer to the matrix U stored as a vector on the Phi.
Require: V a pointer to the matrix V stored as a vector on the Phi.
Require: n the size of the matrix A
Ensure: A ← UTAV
1: Call : Elementary Multiplication Phi(A, &U(n), &V (n), n/2)
2: Call : Elementary Multiplication Phi(&A(0, n/2), &U(n), &V (n + n/2), n/2)
3: Call : Elementary Multiplication Phi(&A(n/2, 0), &U(n + n/2), &V (n), n/2)
4: Call : Elementary Multiplication Phi(&A(n/2, n/2), &U(n + n/2), &V (n + n/2),

n/2)
5: Call : Elementary Multiplication Phi(A, U , V , n) {Applying level one recursion}

The Elementary multiplication Phi kernel, described in Algorithm 4,
uses SIMD instructions [5] to improve the performance of each core, and OpenMP
to handle thread parallelism between cores. This algorithm is well adapted to
the SIMD programming model as the dependencies between the data are sep-
arated by a large number of values. In Algorithm 4, we use double precision
floating point numbers, each of them using 64 bits. This explains why 8 values
are stored in each 512-bits SIMD vector. When using 32 bits reals, 16 values
are stored in each vector. For complex numbers, 8 numbers are stored in single
precision and 4 in double. We take advantage of the SIMD capabilities of the
Intel Xeon Phi coprocessor by using the low level Knight’s Corner intrinsics set
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Algorithm 4. Phi Kernel: Elementary multiplication Phi(A, U , V , n)
1: OpenMP parallel for
2: for i = 0 to n/2 do
3: Declare V1 and V2 two 512-bit vector registers.
4: Set all values of V1 with V (i)
5: Set all values of V2 with V (i + n/2)
6: for j = 0 to n/2 step 8 do
7: Declare a00, a01, a10 and a11 four 512-bit vector registers.
8: LOAD 8 values from A(i, j) in a00

9: LOAD 8 values from A(i, j + n/2) in a01

10: LOAD 8 values from A(i + n/2, j) in a10

11: LOAD 8 values from A(i + n/2, j + n/2) in a11

12: Declare b1, b2, b3 and b4 four 512-bit vector registers.
13: b1 ← ADD(a00, a01)
14: b2 ← ADD(a10, a11)
15: b3 ← SUB(a00, a01)
16: b4 ← SUB(a10, a11)
17: Declare U1 and U2 two 512-bit vector registers.
18: LOAD 8 values from U(j) in U1

19: LOAD 8 values from U(j + n/2) in U2

20: a00 ← MUL(U1, MUL(V1, ADD(b1, b2)))
21: a01 ← MUL(U1, MUL(V2, ADD(b3, b4)))
22: a10 ← MUL(U2, MUL(V1, SUB(b1, b2)))
23: a11 ← MUL(U2, MUL(V2, SUB(b3, b4)))
24: STORE 8 values from a00 at A(i, j)
25: STORE 8 values from a01 at A(i, j + n/2)
26: STORE 8 values from a10 at A(i + n/2, j)
27: STORE 8 values from a11 at A(i + n/2, j + n/2)
28: end for
29: end for

of instructions [10,11]. The use of the intrinsics allows the use of the assembly
SIMD instructions with C style functions.

4.2 Performance Results

Here we present the performance results of our solver. The experiments were
carried out using the same multicore host as described in Sect. 3.2 (two Intel
Xeon X5680) with an Intel Xeon Phi coprocessor 7120 with 61 cores running
at 1.238 GHz, with 16 GB of memory. The cores have 30.5 MB of combined
L2 cache memory. We mention that each core can manage 4 threads by using
hyper-threading. For the experiments, we use 240 threads in total. Note that
we were able to perform tests on larger matrices compared to the GPU version.
This is due to the larger size of the Intel Xeon Phi memory.

In Fig. 3a, we notice that the Intel Xeon Phi version is up to 50 % faster than
the solver using partial pivoting without iterative refinement, and only 25 %
faster with iterative refinement, which is not yet optimized for Intel Xeon Phi.
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Fig. 3. Randomized LU-based solver on Intel Xeon Phi

In Fig. 3b, we observe that the randomization requires less than 3 % of the
total time and even less than 1 % for larger matrices. We recall that the ran-
domization performed on the Intel Xeon Phi has been optimized using SIMD
instructions and OpenMP.

5 Conclusion

In this paper, we have presented two implementations of the RBT solver using
accelerators based respectively on GPU and Intel Xeon Phi, resulting in rou-
tines that are significantly faster than the reference solver based on the LU
factorization with partial pivoting. Thanks to an efficient implementation of the
randomization, the overhead for randomizing the original system is negligible
compared to the computational cost of the whole solver. Ongoing work include
optimizing the iterative refinement on Intel Xeon Phi and solving multiple small
systems at the same time using batched solvers [7].
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