Interdisciplinary Practical Course on Parallel
Finite Element Method Using HiFlow3

Markus Hoffmann! ®9 | Simon Gawlok?, Eva Treiber?, Wolfgang Karl',
and Vincent Heuveline?

! Institute of Computer Science & Engineering (ITEC),

Chair for Computer Architecture and Parallel Processing (CAPP),
Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
markus.hoffmann@kit.edu
2 Interdisciplinary Center for Scientific Computing (TWR),

Engineering Mathematics and Computing Lab (EMCL), Heidelberg University,
Speyerer Strasse 6, 69115 Heidelberg, Germany

Abstract. In many scientific fields one faces partial differential equa-
tions that have to be solved numerically. Applying the widely-used finite
element method (FEM) leads to huge systems of equations whose solu-
tions often require parallel computing. The practical course presented
in this paper aims at introducing the FEM as well as the concept of
parallel computing to students with the help of a FEM library, in this
case HiFlow®. To achieve this goal, the students work in interdisciplinary
groups on explicit problems originating from different scientific fields. In
that way they expand and deepen both their theoretical knowledge con-
cerning numerical mathematics and their practical skills in programming
and using HiFlow®.

1 Introduction

In many fields of science as well as in industrial research and development solving
problems both fast and accuratly is often a tough challenge. While on one hand
there is a complex theoretical approach to solve a problem, there are, on the
other hand, scientists and engineers who want to tackle their specific problems
with the considered methodology. They are often experts in their specific areas
of knowledge which differ from the skills needed to approach the problem at
hand. Additionally, applying a theory or solution method to a problem does
not mean that the resulting software application is in any way automatically
optimal with respect to the utilized hardware and therefore also with respect to
the appropriate programming paradigms, scalability requirements or models of
parallelization.
These three challenges,

— facing the theory,

— applying it to a specific problem and

— developing a parallel application based on the features of the available hard-
ware,

© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 160-171, 2015.
DOI: 10.1007/978-3-319-27308-2_14

Interdisciplinary Practical Course on Parallel FEM Using HiFlow® 161

are forming the grander challenge of parallel scientific computing as shown in
Fig. 1:

parallel computing

(mathematical)

intensive parallelization
Hardware][ueer)
- Problem

fast computings

Fig. 1. Challenges of parallel computing

While the compliance with the theoretical requirements of a solution method
must be assured throughout the whole process of its application to the specific
problem by the user, the choice of a methodology may be limited by the hardware
and his’ or her’s knowledge of programming the hardware platform at hand.
Additionally, he or she expects fast results on modern hardware which leads to
the need of intense — maybe even hybrid — parallelization which in turn restricts
the choice of usable algorithms or even compels a redesign of established solution
methods.

This interaction between the given problem, applicable theoretical solu-
tion approach, and available hardware, as shown in Fig.2, challenges the user
immensely. Therefore, it is necessary to educate the today’s students as early
and as extensively as possible to provide them with the knowledge and abilities
to face the challenge of parallel computing.

Obviously, it is impossible to teach a single user all the required knowledge
about mathematical theory, its application to problems in all fields of science,
and all the models, paradigms and requirements of parallel computing on any
imaginable combination of hardware. Therefore, an expansion of the challenge of
parallel computing to the challenge of parallel computing within an interdiscipli-
nary team of specialists is unavoidable. This change in philosophy is particularly
demanding for the teaching staff, because, beside the huge amount of knowledge
they are required to have in order to teach, they need to find a common base on
which a profound education can start.

Fortunately, this common base can be found for many fields of natural sci-
ences in terms of partial differential equations. Partial differential equations
(PDE) arise in many fields such as meteorology, biology, or energy research.
A well-known and widely used method to numerically solve these equations is
the so called finite element method (FEM).

FEM is based on a weak formulation of the PDE: By multiplying the partial
differential equation with an arbitrary test-function, integrating the resulting

162 M. Hoffmann et al.

equation by parts, and considering the boundary conditions, one achieves in the
case of a linear PDE a variational formulation of the problem with the form:

Find a function = in an appropriate function space such that

a(u,v) = 1(v) (1)
for all test-functions v in a possibly different appropriate function space.

The bilinear form a and the linear functional | depend on the exact problem, as
do the function spaces. Due to the fact that these function spaces ease the restric-
tions on uw compared to those imposed on the function u by the original, strong
formulation of the PDE, the variational formulation is also called weak formu-
lation. In the next step the function spaces are reduced to finite-dimensional
ones to be able to explicitly state a complete basis of the spaces and express
u and v as a linear combination of the basis functions. As a result, the above
variational formulation yields a finite system of equations that only contains
the unknown coefficients of the representation of u. By geometrically dividing
the domain of the PDE into small elements and choosing piecewise polynomial
functions and basis functions that vanish on almost every element of the mesh,
most of the entries of the resulting matrix are zero. This way the task to solve
a partial differential equation is converted to the task of solving a linear system
of equations with a sparse matrix. Generally, the computation of this matrix is
done by calculating the contribution of one element after another and summing
them up.

Obviously, the above described construction allows problems with arbitrary
many degrees of freedom. Indeed, this is not only a theoretical possibility, but
many applications require very fine grids to achieve reasonable results. To solve
the huge resulting discrete problems in an acceptable amount of time, parallel
computing is unavoidable.

For that reason, students should become familiar with the concepts and meth-
ods of parallel computing as early as possible. Furthermore, practical exercises
and courses offer a great opportunity to the students to apply their theoretical
knowledge in practice, so they can reinforce what they learned in lectures and get
deeper insights into the various aspects of being active in the field of numerical
mathematics in general, and parallel computing in particular.

A smart introduction into this topic and its handling is offered by different
libraries, such as HiFlow?, for which in particular only a relatively short familiar-
ization period is required. As, additionally, the underlying mathematics can still
be seen clearly in the problem-specific part of the code, HiFlow® was selected
for practical exercises and courses that shall be presented in this paper. There-
fore, the next Section aims at introducing HiFlow? with its modular approach
and provided tools, whereas the ideas and settings of the practical course are
centred in Sect. 3. Finally, Sect. 4 offers future prospects regarding this software
practical.

Interdisciplinary Practical Course on Parallel FEM Using HiFlow® 163

Temparase

—VvAUT+ (V- V)u+Vp=f

Fig. 2. Connection of user’s perspective, theory and target hardware [6]

2 HiFlow?

HiFlow? [4] is a multi-purpose finite element software developed at EMCL pro-
viding powerful tools for the efficient and accurate solution of a wide range of
problems modelled by partial differential equations (PDEs). Based on object-
oriented concepts and the full capabilities of C4++, the HiFlow? project follows
a modular and generic approach for building efficient parallel numerical solvers.
It provides highly capable modules dealing with the mesh setup, finite element
spaces, degrees of freedom, linear algebra routines, numerical solvers, and out-
put data for visualization, See Fig. 3. Parallelism — as the basis for high perfor-
mance simulations on modern computing systems — is introduced on two levels:
coarse-grained parallelism by means of distributed grids and distributed data
structures, and fine-grained parallelism by means of platform-optimized linear
algebra back-ends. The required communication within the distributed grids and
distributed data structures is implemented with the aid of the Message-Passing
Interface (MPI) standard [10]. Furthermore, the capabilities of different mod-
ules can be improved by compiling HiFlow? with support for certain third-party
libraries, e.g., METIS [8] or Intel Math Kernel Library (MKL) Fig. 2.

The mesh module provides functionality that is needed for dealing with
unstructured computational grids in finite element simulations. A mesh may
consist of lines, triangles, quads, tetrahedrons, and hexahedrons. Independently,
how the initial mesh has been obtained, it can be further refined through dif-
ferent refining strategies to increase the grid’s resolution. If the mesh has been
constructed or read in sequentially by a single process, the mesh can be par-
titioned and distributed for coarse-grained distributed memory parallelization.
To reduce communication costs during the following computations in the simu-
lation process, a layer of ghost cells is attached to each process’ local mesh by a
provided helper function Fig. 3.

The finite element method (FEM) and degree of freedom (DoF) modules
supply the user with functionalities to construct a finite dimensional function
space based on Lagrange finite elements. The user can specify the kind of finite
element method, i.e., h or hp version, that is desired for the simulation as well
as the degrees of the trial functions of the finite element basis for different solu-
tion components, e.g., velocity components and pressure in a computational
fluid dynamics (CFD) computation. In the case of hp FEM, the degrees can be

164 M. Hoffmann et al.

Fig. 3. HiFlow®: Mesh handling, FEM, linear algebra & solvers and applications [6]

specified cell-wise. Furthermore, Gaussian quadrature rules of different orders
are provided for all supported element geometries and the user can choose the
desired order of accuracy for the assembly process.

HiFlow® offers assembly strategies for matrices and vectors where the inte-
grals may be defined on elements as well as the boundary of the computational
domain. This process can be conducted fully in parallel on the distributed mem-
ory parallelization level due to the distributed grids and distributed matrix and
vector structures, respectively.

The linear algebra module consists of different implementations of matrices
and vectors on a both global, distributed-memory level, and local, per-process
level. On the global level, HiFlow? provides a standard implementation, which
takes care of the required communication as well as the correct handling and
management of the local matrices and vectors in each process. A wrapper to the
PETSc library [1-3] is currently under development. On the local level, HiFlow?
establishes a class hierarchy where different computing devices and implemen-
tations on these devices can be configured by the user by simply changing the
configuration parameters for the local linear algebra directly in the application
code or even in an XML configuration file. This design allows fine-grained paral-
lelism on a shared-memory, i.e., intra-process level. Currently, classical Central
Processing Units (CPU) and Graphics Processing Units (GPU) are supported
as computing devices. For GPUs, implementations facilitating NVidia CUDA
[14] and OpenCL [17] are available. On the CPU side, the following implemen-
tations and libraries are supported: a naive, i.e., sequential, and an OpenMP
parallelized implementation, as well as wrappers to the BLAS [12], CLAPACK
[13] and Intel MKL libraries. Furthermore, the local matrices support a variety
of matrix formats, e.g., dense and compressed row (CSR) format. It is important
to note that not all matrix formats are available with all implementations.

To solve the arising linear equation systems efficiently, HiFlow® provides
solver classes for the following iterative Krylov subspace methods [15]: conjugate
gradient (CG), stabilized bi-conjugate gradient (BiICGSTAB), and (flexible) gen-
eralized minimal residual ((F)GMRES). All these solvers are implemented for
the use with and without preconditioning techniques, and all solvers are paral-
lelized by means of the parallelized linear algebra, i.e., in the implementation

Interdisciplinary Practical Course on Parallel FEM Using HiFlow® 165

of the solvers no further parallelization needs to be employed. Preconditioning
in HiFlow? is done block-wise, i.e., the preconditioner only acts locally on the
degrees of freedom which are owned by the respective process. This way no
communication is done during the preconditioning step. A disadvantage of this
methodology is the lacking parallel scalability for very large numbers of paral-
lel processes. Among the local preconditioners are, e.g., Jacobi, Gauf-Seidel,
Approximate Inverse, and Incomplete LU (ILU) factorization methods. The
capabilities of the linear solver module are extended by wrappers to the MUMPS
[11] and ILU++ [9] libraries, respectively.

If the underlying PDE is nonlinear, HiFlow® provides an implementation of
Newton’s method for the solution of the resulting discrete system of equations.
Due to the object-oriented approach, any of the above mentioned linear solvers
can be used to solve the arising linearized system.

To visualize and rate the results, HiFlow® comes with support for visualiza-
tion output in the (P)VTK [16,18] and XDMF [19] file formats.

Besides these core functionalities for the conduction of finite element simula-
tions, the software package HiFlow? offers relevant advantages to the numerical
simulation of phenomena occuring in a wide range of research topics, e.g. uncer-
tainty quantification (UQ), computational fluid dynamics (CFD) & meteorology,
and elasticity simulations.

The capabilities of HiFlow® with respect to performance and scalability
on HPC systems have been demonstrated by considering a CFD benchmark
problem [5].

The functionalities of HiFlow? are documented and demonstrated in several
tutorials that are available on the HiFlow® homepage [6]. The complexity in
terms of mathematics and implementational effort by the user of the tutorials
ranges from relatively simple problems like Poisson’s equation, which is a proto-
type of an elliptic linear PDE, to complex problems like solving the incompress-
ible Navier-Stokes equations of fluid motion, or the equations of linear elasticity
for soft tissue simulation, for example. All together, there are eleven tutorials
available at the moment. Furthermore, HiFlow? comes with additional examples
of applications which are not documented by a tutorial.

3 Practical Course on Parallel Numerics

Based on HiFlow®, the Karlsruhe Institute of Technology started a practical
course on parallel numerics that aims both at the interdisciplinary cooperation
of the students and at teaching methods of parallel computing. At Heidelberg
University, this course is embedded in the exercise classes of the lecture “Numer-
ical Methods of Continuum Mechanics” given by the Engineering Mathematics
and Computing Lab (EMCL). The course is subdivided into separate projects
which are designed to be worked on by small groups of students.

To promote the desired interdisciplinary cooperation, the course is open to
students of various departments like mathematics, computer science, physics and
many kinds of engineering, which leads to a highly heterogeneous mixture of

166 M. Hoffmann et al.

participants. The schedule itself supports the formation of heterogeneous groups
due to the fact that specialized knowledge is required to solve every task of
each project suitably. As mentioned in the introduction, this composition of
heterogeneous teams is important due to the fact that the amount of needed
knowledge is too large to be known by students out of the same field of study.
Therefore, each group member has to take on a different role:

— The mathematicians have to face the mathematical theory of the PDE as
well as the chosen solution methods in detail and have to make sure that all
assumptions are met.

— The computer scientists have to deal with the challenge of parallelization
based on both the available hardware and their knowledge about programming
paradigms and methods of parallelization.

— The natural scientists have to check the validity of both the used models and
the results. Furthermore, they have to instruct the others about the details of
the particular problem.

Additionally, all the group members together have to face the tasks, that are
beyond their fields of study at large.

Due to the different research interests, skills, and objectives of the individual
participants of the course, it is tough to find a basic problem all students can work
on with equal effort. The basic problem of choice has to provide a strong focus
on practical use and applications for as many kinds of engineering as possible
as well as a complex background in theory to challenge the mathematicians.
Moreover, the theory has to lead to computationally intensive algorithms, to
guide the computer scientists into the field of soft- and hardware-architectures,
especially with the focus on parallel computing.

As shown in Sect. 1, the finite element method meets these conditions in
an almost optimal way. As a standard approach for solving partial differential
equations it is highly relevant for the practical use in most engineering fields.
The theoretical background is challenging, particularly in the construction of
appropriate solution spaces and integration of boundary conditions, the iter-
ative solvers for the systems of equations and dealing with stability problems,
just to name a few examples. Furthermore, solving the huge systems of equations
does not only need experts in numerical analysis but also specialists in paral-
lelization techniques like domain decomposition and task scheduling as well as
skills in programming with these different parallelization paradigms, e.g., with
the Message Passing Interface (MPI) and OpenMP standards. Finally, the FEM
is addressing a wide range of problems. Therefore, simple problems that help
the students to understand the basic theories can be found as well as very com-
plex problems that challenge the students and to show them the limits in every
aspect. For these reasons, the FEM is the basic syllabus in this practical course.

Furthermore, the usage of HiFlow? offers an efficient and fast access to the
practical use of the FEM. Through the execution of given tasks, students are
given the opportunity to see various theoretical results, for instance the different
convergence behaviours of h- and hp-method, within practical results achieved
by self-performed experiments. With the help of this library it is even easier

Interdisciplinary Practical Course on Parallel FEM Using HiFlow® 167

to access complex problems. The incompressible Navier-Stokes equations for
example, which need Taylor-Hood finite elements to be solved certainly, can
be equipped with these elements through simple changes to an XML configu-
ration file. Therefore, with the help of Hiflow?, the focus of the curriculum is
on discovering the parallel computing and not on the depth of mathematical
theory. To be more specific: The students are taught the basics of FEM, i.e.,
required definitions and basic theorems, such as Lax-Milgram for example. They
are also taught parallelization in theory, data reordering strategies or simple
domain decomposition methods for example, but because HiFlow? is hiding a
lot of its parallelism, the practical work on parallelization is limited to some
simple exercises in the context of OpenMP. Therefore, the focus is on modeling
and theoretical debates on parallelism as well as using the provided library and
understanding its limitations when it comes to massively parallel computing.

Based on the usage of the FEM and HiFlow?, one can define the learning
objectives of this practical course. These objectives can vary for each student
due to the interdisciplinarity. Ignoring this specialization-based weighting, the
learning objectives can be defined as follows:

— Working in interdisciplinary teams as described in this section to get an
impression of the advantages and disadvantages of this conception.

— Understanding the basics of PDEs and the FEM to avoid mistakes based on
the lack of a theoretical background and the limits of the used method.

— Understanding the needs of parallel computing such as handling data depen-
dencies or understanding the challenge of scalability.

— Learning the usage of an erample finite element method library, which is
Hiflow?® in our case. Furthermore, it is important to know the advantages
and the limits of the library.

— Application of the FEM to an explicit problem to learn the usage of the the-
ory on a real problem and to increase the understanding of the method’s
properties.

— Application of basic methods of parallel computing with the focus on rearrange-
ment of the data and simple domain decomposition methods.

— FEwaluation of results with the help of suitable visualizations.

These objectives in total are giving an overall view of the theory and the chal-
lenges of parallel computing as well as working in an interdisciplinary team.

Teaching the students these learning objectives is a challenge we are facing
with a strategy of different teaching methods. These methods are chosen in the
context of the different backgrounds of the students as well as the fact, that —
except for of basic programming skills — no special prerequisites are necessary
to visit this practical course, which is a concession to the interdisciplinarity.

First of all, a specific number of classes are marked as theory lectures to
provide the opportunity to teach the students the required knowledge within a
short time. These lectures are given by way of a presentation with the option
to ask questions. Naturally, a compulsory attendance for the students has to be
set.

168 M. Hoffmann et al.

Beside these theory lectures and some other exceptions, all the sessions of this
period are practical classes, in which the different groups of students are working
on projects independently. During these practical classes they are guided by
exercise sheets with tasks leading through the whole project and helping to
place the focus on the important items. To teach the students self-studying,
some given tasks are including questions, that need very specialized knowledge
to be answered. This leads to a mixture of theoretical analysis and practical work
within the exercise sheets. This mixture again leads to a smooth transition from
learning the theoretical background to applying the theory to a specific problem,
all of which helps the students to find their way from theory to practical work.

To describe the single exercise sheets in more detail: A first project can be
Poisson’s equation on the unit square with Dirichlet boundary conditions. Some
tasks on the related exercise sheet can, for example, focus on the derivation
of the weak formulation, conditions on the solution u, error computations and
different boundary conditions to challenge the mathematicians. One can add
tasks like explaining the difference of concepts of MPI and OpenMP, having a
look at Amdahl’s law, defining terms like speedup and efficiency, starting to work
with the library by adding the weak formulation and boundary conditions to an
existing code or implement a grid refinement for p-FEM, and explaining why
a super-linear speedup can be observed in some cases to involve the computer
scientists. Engineers can be included by asking questions with practical relevance
like the background of Poisson’s equation in physics or the interpretation of the
boundary conditions. To bring them all together, one can ask for measurements
and result presentation, as well as some literature research, for example.

To give the students the possibility of an open time management, the com-
pulsory attendance is cancelled for the related practical sessions. This supports
the interdisciplinary teamwork and it leads to the desired effect, that the stu-
dents teach each other their specialized knowledge. This method of open time
management also gives the students the possibility to determine in which way
or speed they learn best.

To support the students during these practical lessons, external access to the
needed hard- and software resources is provided. Furthermore, the appointed
time of the course can be used by students to ask questions.

Because of the missing compulsory attendance the progress of each group
in the context of the learning objectives cannot be checked by observing the
groups and their work. For this reason, there is a need for a special lecture with
compulsory attendance at the end of each project, in which the students have
to present their results and talk about their work. This also includes a short
question and answer session, in which the students can be asked questions about
their work and results.

The last project in the lecture period is complemented with a special task
to give the possibility of an objective grading. The students have to write a
report about the theory, their practical work, and the results obtained in their
last project. Together with the presentations held at the end of each project, this
report is the basis to check in which way the learning objectives are achieved and

Interdisciplinary Practical Course on Parallel FEM Using HiFlow® 169

therefore how to grade the students. Additionally, important skills like proper
presentation of scientific results as well as speaking and writing skills are auto-
matically practised in this way.

The time management for the practical course is done by subdividing the
lecture period into several sections. The first section is a theory part, in which a
general overview of the basics of the FEM is given. This overview includes fun-
damental knowledge about partial differential equations, the Galerkin Method
with focus on variational formulations and weak solutions, discretization based
on finite dimensional subspaces, definition of finite elements, grid structures and
grid construction, shape functions and degrees of freedom, iterative solvers like
CG-method, error estimation, and basics of parallel implementation.

After building interdisciplinary and therefore heterogeneous teams, the sec-
ond section begins with practical work on a simple problem, the Poisson’s equa-
tion with different boundary conditions as described for example, guided by
exercise sheets. The section ends with the aforementioned presentations of the
groups about their work including question and answer sessions.

Because the next practical section requires some more theoretical knowledge,
the third section is again a theory part. Here, an overview of some advanced
finite element methods is given, including method of lines and Rothe’s method
for transient problems, solving stability problems, preconditioning methods and
basic benchmarks. There is also a focus on parallelism, especially for the pre-
conditioning methods.

The fourth section is filled with a second project which is also guided by
exercise sheets. The specific task formulation for this practical section differs
for each group depending on their special interests, group composition, or fields
of study. The thematic framework includes problems like Convection-Diffusion
equations or incompressible Navier-Stokes equations. As in the first project, the
students have to face the mathematical theory, investigate stability problems for
instance, some practical work like implementing fractional step time-stepping
methods, and the challenge of parallelization in terms of load balancing for
example. Of course, some of the in project one newly acquired knowledge is also
relevant for the second project, such as the usage of the library, or the application
of the mathematical theory.

As mentioned before, the course ends with student presentations reviewing
the theory and their own work as well as results within their specific problem.
Especially for the second project, the students have to write a report to give
account of their work and results.

Table 1 shows an exemplary time schedule for the outlined sections of the
course based on 14 weeks per lecture period and two 90-minute-classes per week.
Based on this schedule and the chosen projects, each student gains 4 ECTS for
the practical course on parallel numerics, which means that each student has to
achieve about 120 working hours over the lecture period.

The needed human resources are depending on the number of participants
of the course. With about 20 participants per semester in our case up to two
teaching assistants are needed.

170 M. Hoffmann et al.

Table 1. Time schedule of the practical course

Number of lecture Content

01 -03 Part 1: parallelization and FEM basics, short introduction to
Hiflow®, team building

04 - 11 Part 2: practical work on project 1

12 - 13 Part 3: advanced methods

14 - 23 Part 4: practical work on project 2

24 — 28 Part 5: report writing

4 Summary and Future Work

The practical course introduced here provides an introduction into the impor-
tant field of parallel computing. Based on HiFlow?, a library for solving PDEs
with FEM, which incorporates a high level of parallelism, the students gain
an impression of techniques and tools of parallel computing while working on
projects within an interdisciplinary team.

The teaching contents and the syllabus of this practical course offer a wide
spectrum of development. In this paper, we will give an idea of two possible
improvements, that are planned for the near future.

First of all, the focus on methods of parallel computing can be intensified by
teaching a selection of programming models like MPI, OpenMP, NVidia CUDA,
OpenCL, and more. Since we are actually only teaching the theory of some of
these paradigms in most cases, this has to be done along with a lot of practical
work. Although these extensions on the syllabus can be easily combined with the
FEM and HiFlow? in terms of additional projects, it is far too much to teach it
additionally to the current curriculum within a single semester. Therefore, these
improvements will inevitably lead to a syllabus for a two-semester course.

Because most of the lectures don’t need a compulsory attendance and most
of the work is done outside the lectures, a development towards e-learning meth-
ods or blended learning methods, is considered as the second improvement. This
includes the installation of simple communication platforms, a forum for exam-
ple, for questions and answers, and the use of virtual desks such as the ILTAS-
platform [7]. It is also conceivable to create small private online courses for
special topics, introduction to programming models or background knowledge
for the current project for example, or to develop online applications to simplify
the access to the content, the PDEs for instance, and to visualize the results
comprehensively.

These two approaches for developing the curriculum and the teaching meth-
ods will help to move the challenges, techniques and tools of parallel computing
into focus more clearly and will support the communication within a single team
and across multiple teams to intensify the interdisciplinary cooperation.

Interdisciplinary Practical Course on Parallel FEM Using HiFlow® 171

References

10.
11.
12.
13.
14.

15.

16.
17.

18.
19.

Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K.,
Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Mclnnes, L.C., Rupp,
K., Smith, B.F., Zhang, H.: PETSc Web page (2014). http://www.mcs.anl.gov/
petsc

Balay, S., Abhyankars, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K.,
Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Mclnnes, L.C., Rupp,
K., Smith, B.F., Zhang, H.: PETSc Users Manual. Argonne National Laboratory,
ANL-95/11 - Revision 3.5 (2014). http://www.mcs.anl.gov/petsc

Balay, S., Gropp, W.D., Mclnnes, L.C., Smith, B.F.: Efficient management of par-
allelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M.,
Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163—
202. Birkh&user Press, Boston (1997)

Heuveline, V., et. al.: HiFlow®: A hardware-aware parallel finite element package.
In: Brunst, H., Muller, M.S., Nagel, W.E., Resch, M.M., (eds.) Tools for High
Performance Computing 2011, pp. 139-151. Springer, Heidelberg (2012)
Heuveline, V., Ketelaer, E., Ronnas, S., Schmidtobreick, M., Wlotzka, M.: Scalabil-
ity Study of HiFlow® based on a Fluid Flow Channel Benchmark. Preprint Series
of the Engineering Mathematics and Computing Lab (EMCL) (2012)
http://www.hiflow3.org/

http://www.ilias.de/

Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partition-
ing irregular graphs. SIAM J. Sci. Comput. 20(1), 359-392 (1999)

Mayer, J.: ILU++: A new software package for solving sparse linear systems with
iterative methods. PAMM Proc. Appl. Math. Mech. 7, 2020123-2020124 (2007)
http://www.mpi-forum.org/

http://mumps-solver.org/

http://www.netlib.org/blas/

http://www.netlib.org/clapack/

Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. ACM Queue 6(2), 40-53 (2008)

Saad, Y.: Iterative methods for sparse linear systems. 2nd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (2003)

Schroeder, W., et al.: The Visualization Toolkit, 3rd edn. Kitware, Inc. (2003)
Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. IEEE Des. Test 12(3), 66-73 (2010)
http://www.vtk.org/

http://www.xdmf.org/

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.hiflow3.org/
http://www.ilias.de/
http://www.mpi-forum.org/
http://mumps-solver.org/
http://www.netlib.org/blas/
http://www.netlib.org/clapack/
http://www.vtk.org/
http://www.xdmf.org/

	Interdisciplinary Practical Course on Parallel Finite Element Method Using HiFlow3
	1 Introduction
	2 HiFlow3
	3 Practical Course on Parallel Numerics
	4 Summary and Future Work
	References

