
A Universal Point Set for 2-Outerplanar Graphs

Patrizio Angelini1, Till Bruckdorfer1(B), Michael Kaufmann1,
and Tamara Mchedlidze2

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

{angelini,bruckdor,mk}@informatik.uni-tuebingen.de
2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,

Karlsruhe, Germany
mched@iti.uka.de

Abstract. A point set S ⊆ R
2 is universal for a class G if every graph

of G has a planar straight-line embedding on S. It is well-known that
the integer grid is a quadratic-size universal point set for planar graphs,
while the existence of a sub-quadratic universal point set for them is one
of the most fascinating open problems in Graph Drawing. Motivated by
the fact that outerplanarity is a key property for the existence of small
universal point sets, we study 2-outerplanar graphs and provide for them
a universal point set of size O(n logn).

1 Introduction

Let S be a set of m points on the plane. A planar straight-line embedding of an
n-vertex planar graph G, with n ≤ m, on S is a mapping of each vertex of G to
a distinct point of S so that, if the edges are drawn straight-line, no two edges
cross. Point set S is universal for a class G of graphs if every graph G ∈ G has
a planar straight-line embedding on S. Asymptotically, the smallest universal
point set for general planar graphs is known to have size at least 1.235n [11],
while the upper bound is O(n2) [3,8,12]. All the upper bounds are based on
drawing the graphs on an integer grid, except for the one by Bannister et al. [3],
who use super-patterns to obtain a universal point set of size n2/4 − Θ(n) –
currently the best result for planar graphs. Closing the gap between the lower
and the upper bounds is a challenging open problem [6–8].

A subclass of planar graphs for which the “smallest possible” universal point
set is known is the class of outerplanar graphs – the graphs that admit a straight-
line planar drawing in which all vertices are incident to the outer face. Namely,
Gritzmann et al. [10] and Bose [5] proved that any size-n point set in general
position is universal for n-vertex outerplanar graphs. Motivated by this result,
we consider the class of k-outerplanar graphs, with k ≥ 2, which is a general-
ization of outerplanar graphs. A planar drawing of a graph is k-outerplanar if

This work has been supported by DFG grant Ka812/17-1. The full version of the
paper, including all the missing proofs, can be found in [2].

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 409–422, 2015.
DOI: 10.1007/978-3-319-27261-0 34

410 P. Angelini et al.

removing the vertices of the outer face, called k-th level, produces a (k − 1)-
outerplanar drawing, where 1-outerplanar stands for outerplanar. A graph is
k-outerplanar if it admits a k-outerplanar drawing. Note that every planar graph
is a k-outerplanar graph, for some value of k ∈ O(n). Hence, in order to tackle a
meaningful subproblem of the general one, it makes sense to study the existence
of subquadratic universal point sets when the value of k is bounded by a con-
stant or a sublinear function. However, while the case k = 1 is trivially solved
by selecting any n points in general position, as observed above [5,10], the case
k = 2 already eluded several attempts of solution and turned out to be far from
trivial. In this paper, we finally solve the case k = 2 by providing a universal
point set for 2-outerplanar graphs of size O(n log n).

A subclass of k-outerplanar graphs, in which the value of k is unbounded,
but every level is restricted to be a chordless simple cycle, was known to have
a universal point set of size O(n(log n

log log n)2) [1], which was subsequently reduced
to O(n log n) [3]. It is also known that planar 3-trees – graphs not defined in
terms of k-outerplanarity – have a universal point set of size O(n5/3) [9]. Note
that planar 3-trees have treewidth equal to 3, while 2-outerplanar graphs have
treewidth at most 5.

Structure of the Paper: After some preliminaries and definitions in Sect. 2,
we consider 2-outerplanar graphs in Sect. 3 where the inner level is a forest and
all the internal faces are triangles. We prove that this class of graphs admits
a universal point set of size O(n3/2). We then extend the result in Sect. 4 to
2-outerplanar graphs in which the inner level is still a forest but the faces are
allowed to have larger size. Finally, in Sect. 5, we outline how the result of Sect. 4
can be extended to general 2-outerplanar graphs. We also explain how to apply
the methods in [3] to reduce the size of the point set to O(n log n). We conclude
with open problems in Sect. 6.

2 Preliminaries and Definitions

A straight-line segment with endpoints p and q is denoted by s(pq). A circular arc
with endpoints p and q (clockwise) is denoted by a(pq). We assume familiarity
with the concepts of planar graphs, straight-line planar drawings and their faces.
A straight-line planar drawing Γ of a graph G determines a clockwise ordering
of the edges incident to each vertex u of G, called rotation at u. The rotation
scheme of G in Γ is the set of the rotations at all the vertices of G determined
by Γ . Observe that, if G is connected, in all the straight-line planar drawings of
G determining the same rotation scheme, the faces of the drawing are delimited
by the same edges.

Let [G,H] be a 2-outerplanar graph, where the outer level is an outerplanar
graph G and the inner level is a set H = {G1, . . . , Gk} of outerplanar graphs. We
assume that [G,H] is given together with a rotation scheme, and the goal is to
construct a planar straight-line embedding of [G,H] on a point set determining
this rotation scheme. Since [G,H] can be assumed to be connected (as otherwise

A Universal Point Set for 2-Outerplanar Graphs 411

pN = pn+√
np1

O
pj+1

pj−1
pj

pNj

p+j

p−
j

pCj
p2j

p1j
xl

πj

π

(a) (b)

Fig. 1. (a) Illustration of S, focused on Sj of pj . (b) A cycle-tree graph and its
embedding.

we can add a minimal set of dummy edges to make it connected), this is equiv-
alent to assuming that a straight-line planar drawing Γ of [G,H] is given. We
rename the faces of Γ as F1, . . . , Fk in such a way that each graph Gh, which
can also be assumed connected, lies inside face Fh. Note that, for each face Fh of
G, the graph [Fh, Gh] is again a 2-outerplanar graph; however, its outer level Fh

is a simple chordless cycle and its inner level Gh consists of only one connected
component. In the special case in which Gh is a tree we say that graph [Fh, Gh]
is a cycle-tree graph. We say that a 2-outerplanar graph is inner-triangulated if
all the internal faces are 3-cycles. Note that not every cycle-tree graph can be
augmented to be inner-triangulated without introducing multiple edges.

3 Inner-Triangulated 2-Outerplanar Graphs with Forest

In this section we prove that there exists a universal point set S of size O(n3/2)
for the class of n-vertex inner-triangulated 2-outerplanar graphs [G,H] where H
is a forest.

3.1 Construction of the Universal Point Set

In the following we describe S (Fig. 1(a)). Let π be a half circle with center O
and let N := n +

√
n. Uniformly distribute points in SM = {p1, . . . , pN} on π.

The points in SD = {pi
√

n+i : 1 ≤ i ≤ √
n} are called dense, while the remaining

points in SM \ SD are sparse1. For j = 2, . . . , N − 1, place a circle πj with its
center pC

j on s(pjO), so that it lies completely inside the triangle �pj−1pjpj+1

and inside the triangle �p1pjpN . Note that the angles ∠pjp
C
j pN and ∠pjp

C
j p1

are smaller than 180◦. Let pN
j be the intersection point between s(pjO) and πj

that is closer to O. Also, let p1j (resp. p2j) be the intersection point of s(pC
j pj+1)

(resp. s(pC
j pj−1)) with πj . Finally, let p3j (resp. p4j) be the intersection point of

1 The distribution of the points into dense and sparse portions of the point set is
inspired by [1].

412 P. Angelini et al.

πj with its diameter orthogonal to s(pjO), such that a(p3jp
4
j) does not contain

pN
j . Now, choose a point p+j on the arc a(p1jp

3
j), and a point p−

j on the arc
a(p4jp

2
j). To complete the construction of S, evenly distribute n − 1 points on

each of the three segments sN
j := s(pC

j pN
j), s+j := s(pC

j p+j), and s−
j := s(pC

j p−
j),

where n = n if pj is dense and n =
√

n if it is sparse. We refer to the points
on sN , s+, s−, including the points pN

j , pC
j , p+j , p−

j , as the point set of pj , and we
denote it by Sj . Vertex pC

j is the center vertex of Sj . The described construction
uses O(n3/2) points and ensures the following property.

Property 1. For each j = 1, . . . , N , the following visibility properties hold:

(A) The straight-line segments connecting point pj to: point p−
j , to the points

on s−
j , to pC

j , to the points on s+j , and to p+j appear in this clockwise order
around pj .

(B) For all l < j, consider any point xl ∈ {pl}∪Sl (see Fig. 1); then, the straight-
line segments connecting xl to: pN

j , to the points on sN
j , to pC

j , to the points on
s−

j , to p−
j , and to pj appear in this clockwise order around xl. Also, consider the

line passing through xl and any point in {pj}∪Sj ; then, every point in {pq}∪Sq,
with l < q < j, lies in the half-plane delimited by this line that does not contain
the center O of π.

(C) For all l > j, consider any point xl ∈ {pl} ∪ Sl; then, the straight-line
segments connecting xl to: pN

j , to the points on sN
j , to pC

j , to the points on s+j ,
to p+j , and to pj appear in this counterclockwise order around xl. Also, consider
the line passing through xl and any point in {pj} ∪ Sj ; then, every point in
{pq} ∪ Sq, with j < q < l, lies in the half-plane delimited by this line that does
not contain O.

3.2 Labeling the Graph

Let [G,H] be an inner-triangulated 2-outerplanar graph where G is an outer-
planar graph and H = {T1, . . . , Tk} is a forest such that tree Th lies inside face
Fh of G, for each 1 ≤ h ≤ k. The idea behind the labeling is the following: in
our embedding strategy, G will be embedded on the half-circle π of the point
set S, while the tree Th ∈ H lying inside each face Fh of G will be embedded
on the point sets Sj of some of the points pj on which vertices of Fh are placed.
Note that, since π is a half-circle, the drawing of Fh will always be a convex
polygon in which two vertices have small (acute) internal angles, while all the
other vertices have large (obtuse) internal angles. In particular, the vertices with
the small angle are the first and the last vertices of Fh in the order in which they
appear along the outer face of Γ . Since, by construction, a point pj of Fh has
its point set Sj in the interior of Fh if and only if it has a large angle, we aim at
assigning each vertex of Th to a vertex of Fh that is neither the first nor the last.
We will describe this assignment by means of a labeling � : [G,H] → 1, . . . , |G|;
namely, we will assign a distinct label �(v) to each vertex v ∈ G and then assign

A Universal Point Set for 2-Outerplanar Graphs 413

to each vertex of Th the same label as one of the vertices of Fh that is neither
the first or the last. Then, the number of vertices with the same label as a vertex
of G will determine whether this vertex will be placed on a sparse or a dense
point. We formalize this idea in the following.

We rename the vertices of G as v1, . . . , v|G| in the order in which they appear
along the outer face of Γ , and label them with �(vi) = i for i = 1, . . . , |G|. Next,
we label the vertices of each tree Th ∈ H. Since trees Th and Th′ are disjoint
for h 	= h′, we focus on the cycle-tree graph [F, T] composed of a single face
F = Fh of G and of the tree T = Th ∈ H inside it. Rename the vertices of F
as w1, . . . , wm in such a way that for any two vertices wx = vp and wx+1 = vq,
where p, q ∈ {1, . . . , |G|}, it holds that p < q. As a result, w1 and wm are the
only vertices of F with small internal angles. A vertex of T is a fork vertex
if it is adjacent to more than two vertices of F (square vertices in Fig. 1(b)),
otherwise it is a non-fork vertex (cross vertices in Fig. 1(b)). Since [F, T] is
inner-triangulated, every vertex of T is adjacent to at least two vertices of F ,
and hence non-fork vertices are adjacent to exactly two vertices of F . We label
the vertices of T starting from its fork vertices. To this end, we construct a tree
T ′ composed only of the fork vertices, as follows. Initialize T ′=T . Then, as long
as there exists a non-fork vertex of degree 3 (namely, with 2 neighbors in F and
1 in T ′), remove it and its incident edges from T ′. The vertices removed in this
step are called foliage (small crosses in Fig. 1(b)). All the remaining non-fork
vertices have degree 4 (namely 2 in F and 2 in T ′); for each of them, remove it
and its incident edges from T ′ and add an edge between the two vertices of T ′

that were connected to it before its removal. The vertices removed in this step
are branch vertices (large crosses in Fig. 1(b)). A vertex wx ∈ F is called free
if so far no vertex of T ′ has label �(wx). To perform the labeling, we traverse
T ′ bottom-up with respect to a root r that is the vertex of T ′ adjacent to both
w1 and wm. Since [F, T] is inner-triangulated, this vertex is unique. During the
traversal of T ′, we maintain the invariant that vertices of T ′ are incident to only
free vertices of F . Initially the invariant is satisfied since all the vertices of F are
free. Let a be the fork vertex considered in a step of the traversal of T ′, and let
wa1 , . . . , wak

be the vertices of F adjacent to a, with 1 ≤ a1 < · · · < ak ≤ m and
k ≥ 3. By the invariant, wa1 , . . . , wak

are free. Choose any vertex wai
such that

2 ≤ i ≤ k−1, and set �(a) = �(wai
). For example, the red fork vertex in Fig. 1(b)

adjacent to w3, w4, and w5 in F gets label �(w4). Since vertices wa2 , . . . , wak−1

cannot be adjacent to any vertex of T ′ that is visited after a in the bottom-up
traversal, the invariant is maintained at the end of each step. When finally a=r,
then wa1 = w1 and wak

= wm are both free.
Now we label the non-fork vertices of T based on the labeling of T ′. Let b

be a non-fork vertex. If b is a branch vertex, then consider the first fork vertex
a encountered on a path from b to a leaf of T ; set �(b) = �(a). Otherwise, b is
a foliage vertex. In this case, consider the first fork vertex a′ encountered on a
path from b to the root r of T . Let v, w ∈ F be the two vertices of F adjacent to
b; assume �(v) < �(w). If �(a′) ≤ �(v), then set �(b) = �(v); if �(a′) ≥ �(w), then
set �(b) = �(w); and if �(v) < �(a′) < �(w), then set �(b) = �(a′) (the latter case
only happens when a′ is the root and b is adjacent to w1 and wm). Note that

414 P. Angelini et al.

the described algorithm ensures that adjacent non-fork vertices have the same
label. We perform the labeling procedure for every Th ∈ H and obtain a labeling
for [G,H]. We say that the subgraph of H induced by all the vertices of H with
label i is the restricted subgraph Hi of H for all i = 1, . . . , |G| (see Fig. 1(b)).

Lemma 1. Each restricted subgraph Hi of H, 1 ≤ i ≤ |G|, is a tree all of whose
vertices have degree at most 2, except for one vertex that may have degree 3.

Proof Sketch. First, Hi has at most one fork vertex a, which is hence the only
one with degree larger than 2. Further, a is incident to at most one path (to no
path, if a = r) of branch vertices, namely the one connecting it to its parent
fork vertex. Finally, a is incident to at most two (if a 	= r) or at most three (if
a = r) paths of foliage vertices, namely the ones whose vertices are incident to
the vertex w ∈ F such that �(w) = i. �

3.3 Embedding on the Point Set

We describe an embedding algorithm consisting of three steps (see Fig. 1(b)).

Step a: Let ω : G → N be a weight function with ω(vi)=|{v ∈ [G,H] | �(v) = i}|
for every vi ∈ G. Note that

∑
vi∈G ω(vi) = n. We categorize each vertex vi ∈ G

as sparse if 1 ≤ ω(vi) ≤ √
n, and dense if ω(vi) >

√
n. There are at most

√
n

dense vertices.

Step b: We draw the vertices v1, . . . , v|G| of G on the N := n +
√

n points of
π in the same order as they appear along the outer face of Γ , in such a way
that dense (resp. sparse) vertices are placed on dense (resp. sparse) points. The
resulting embedding Γ̃ of G is planar since Γ is planar. The construction of Γ̃
implies the following.

Property 2. Let Q = {pj1 , . . . , pjm} ⊆ π, ji < ji+1, be the polygon representing
a face of G. Polygon Q contains in its interior all the point sets Sj2 , . . . , Sjm−1 .

Step c: Finally, we consider forest H = {T1, . . . , Tk}. We describe the embedding
algorithm for a single cycle-tree graph [F, T], where F = w1, . . . , wm is a face of
G and T ∈ H is the tree lying inside F . We show how to embed the restricted
subgraph Hi, for each vertex wx of F with label �(wx) = i, on the point set
Sj of the point pj where wx is placed. We remark that the labeling procedure
ensures that |Hi|+1 = ω(wx) ≤ |Sj |; also, by Property 2, point set Sj lies inside
the polygon representing F , except for the two points where vertices w1 and wm

have been placed.
By Lemma 1, Hi has at most one (fork-)vertex a of degree 3, while all other

vertices have smaller degree. We place a, if any, on the center point pC
j of pj .

The at most three paths of non-fork vertices are placed on segments s+j , s−
j , sN

j

starting from pC
j ; namely, the unique path of branch vertices is placed on sN

j ,
while the two paths of foliage vertices are placed on s+j or s−

j based on whether

A Universal Point Set for 2-Outerplanar Graphs 415

pq pj

aa
a∗

pq pj

a
a

a∗

(a)

p−
j p+j

pNj

pCj

pj−1 pj+1

p1j

p3jp4j

p2j
l(pNz) r(pNz)

r(p+z)

l(p+z)r(p−
z)

l(p−
z)

(b)

pj

pCj

pj+1

pN

s+

r(p+1)r(p+2)

q2q1

p+j

π+
r

p+1 p+2
l(p+1) l(p+2)

(c)

Fig. 2. (a)(top) P contains a′ �= a, (a)(bottom) a′ is a leaf of T . (b)–(c) Dark-gray
triangles are used for construction of petal points r(p+

z) while light-gray triangles for
l(p+

z).

the vertex of G different from wx they are incident to is wx+1 or wx−1, respec-
tively. If a = r, then the path of foliage vertices incident to w1 and wm is placed
on sN

j .
We show that this results in a planar drawing of T . First, for every two fork

vertices a ∈ Hp and a′ ∈ Hq, with p < q, all the leaves of the subtree of T rooted
at a have smaller label than all the leaves of the subtree of T rooted at a′. Then,
for each wx ∈ F , with �(wx) = i, consider the fork vertex a ∈ Hi, which lies on
pC

j . Let P be any path connecting a to a leaf of T and let a∗ be the neighbor of a
in P . If P contains a fork vertex other than a (Fig. 2(a)), then let a′ be the fork
vertex in P that is closest to a (possibly a′=a∗) and let pC

q be the point where
a′ has been placed. Assume q < j, the case q > j is analogous. By definition, the
non-fork vertices in the path from a to a′ (if any) are branch vertices, and hence
lie on sN

q . Then, Property 1 ensures that the straight-line edge (a, a∗) separates
all the point sets Sp with q < p < j from the center of π. Since the vertices on
Sp are only connected either to each other or to the vertices on s−

j and s+q , edge
(a, a∗) is not involved in any crossing. If P does not contain any fork vertex other
than a (Fig. 2(a)), then all the vertices of P other than a are foliage vertices and
are placed on a segment s+q or s−

q , for some q. In particular, if q < j, then they
are on s−

q ; if q > j, then they are on s+q ; while if q = j, then they are either on
s+q or on s−

q . In all the cases, Property 1 ensures that edge (a, a∗) does not cross
any edge.

Finally, observe that any path of T containing only non-fork vertices is placed
on the same segment of the point set, and hence its edges do not cross. As for
the edges connecting vertices in one of these paths to the two leaves of T they
are connected to, note that by item (A) of Property 1 the edges between each
of these leaves and these vertices appear in the rotation at the leaf in the same
order as they appear in the path.

Lemma 2. There exists a universal point set of size O(n3/2) for the class of
n-vertex inner-triangulated 2-outerplanar graphs [G,H] where H is a forest.

416 P. Angelini et al.

b1bl

v

. . .

(a)

b1bl . . .

v1 vl. . .

(b)

b1bl . . .

v1 vl. . .

f

v2

(c)

v2v1

f
g e

b1

bl

(d)

. . .

ch

w1 wq=v1 v2

b1

e
fg

c1=bl

(e)

Fig. 3. (a)–(c): Insertion of triangulation edges in (a) a petal face, (b) a non-protected
big face, and (c) a big face protected by vertex b1. (d)–(e) Illustration of the two cases
for removing bad faces. Face g is petal in (d) and big in (e). Dummy edges are dashed,
the removed edge e is red (Color figure online).

4 2-Outerplanar Graphs with Forest

In this section we consider 2-outerplanar graphs [G,H] where H is a forest. Con-
trary to the previous section, we do not assume [G,H] to be inner-triangulated.
As observed before, augmenting it might be not possible without introducing
multiple edges. The main idea to overcome this problem is to first identify the
parts of [G,H] not allowing for the augmentation, remove them, and augment
the resulting graph with dummy edges to inner-triangulated (Sect. 4.2); then,
apply Lemma 2 to embed the inner-triangulated graph on the point set S; and
finally remove the dummy edges and embed the parts of the graph that had been
previously removed on the remaining points (Sect. 4.3). To do so, we first need
to extend the point set S with some additional points.

4.1 Extending the Universal Point Set

We construct a point set S∗ with O(n3/2) points from S by adding petal points to
segments s+j , sN

j , s−
j of the point sets Sj , for every j=2, . . . , N −1. For simplicity

of notation, we skip the subscript j whenever possible. We denote by pσ
z the z-th

point on segment sσ, with σ ∈ {+,−, N} and z=1, . . . , n (where n=
√

n or n=n,
depending on whether pj is sparse or dense), so that pσ

1 is the point following
pC along sσ and pσ

n = pσ
j . For each point pσ

z we add two petal points l(pσ
z) and

r(pσ
z) to S∗.
We first describe the procedure for s+, see Fig. 2(c). For each z=1, . . . , n,

consider the intersection point qz between segments s(p+z−1pj+1) and s(p+z pN),
where p+z−1 = pC

j when z = 1. By construction, all triangles �p+z−1p
+
z qz have two

corners on s+, have the other corner in the same half-plane delimited by the line
through s+, and do not intersect each other except at common corners. Hence,
there exists a convex arc π+

r passing through pC
j and p+n = p+j , and intersecting

the interior of every triangle. For each z = 1, . . . , n, we place the petal point
r(p+z) on the arc of π+

r lying inside triangle �p+z−1p
+
z qz. For the other petal point

l(p+z) we use the same procedure by considering triangles �p+z−1p
+
z pj instead of

�p+z−1p
+
z qz. Symmetrically we place the petal points for s−, using points pj−1

A Universal Point Set for 2-Outerplanar Graphs 417

and p1 to place l(p−
z) and point pj to place r(p−

z), and for sN , using points pj−1

and p1 to place l(pN
z) and points pj+1 and pN to place r(pN

z).

4.2 Modifying and Labeling the Graph

We now aim at modifying [G,H] to obtain an inner-triangulated graph that can
be embedded on the original point set S (Part A and Part B); in Sect. 4.3
we describe how to exploit this embedding on S to obtain an embedding of the
original graph [G,H] on the extended point set S∗ (Part C). We describe the
procedure just for a cycle-tree graph [F, T] composed of a face F of G and of
the tree T inside it.

Part A: We categorize each face f of [F, T] based on the number of vertices of
F and of T that are incident to it. Since T is a tree, f has at least a vertex of
F and a vertex of T incident to it. If f contains exactly one vertex of F , then
it is a petal face. If f contains exactly one vertex of T , then it is a small face.
Otherwise, it is a big face. Let b1, . . . , bl be the occurrences of the vertices of T in
a clockwise order walk along the boundary of a big face f . If either b1 or bl, say
b1, has more than one adjacent vertex in F (namely one in f and at least one
not in f), then f is protected by b1. If f is a big face with exactly two vertices
incident to F and is not protected, then f is a bad face.

The next lemma gives sufficient conditions to triangulate G without introduc-
ing multiple edges; we will later use this lemma to identify the “tree components”
of T whose removal allows for a triangulation.

Lemma 3. Let [F, T] be a biconnected simple cycle-tree graph, such that (1)
each vertex of F has degree at most four, and (2) there exists no bad face in
[F, T]. It is possible to augment [F, T] to an inner-triangulated simple cycle-tree
graph.

Proof Sketch. Each petal (small, respectively) face f can be triangulated by
adding vertices between the only vertex of F (of T) incident to f and all the
other vertices of f . Multiple edges are not created since [F, T] is biconnected
and there exists no two petal faces incident to the same vertex v of F , as v has
degree at most 4; see Fig. 3(a).

Consider a big face f , with vertex occurrences v1, ..., vl′ , b1, ..., bl (with l,
l′ > 1), where v1, ..., vl′ ∈ F and b1, ..., bl ∈ T . If f is protected by a vertex,
say b1, then it is triangulated by adding an edge between bl and every vertex of
F , and an edge between vl′ and every vertex of T ; see Fig. 3(b). The absence of
multiple edges is due to the edge connecting b1 to a vertex of F not incident to
f , which implies that vl′ is not connected to any vertex of T incident to f other
than b1. Finally, if f is not protected by any vertex, we make it protected by
adding an edge (bl, v2) and apply the previous case; see Fig. 3(c). Since f is not
a bad face, we have l′ > 2, and hence v2 is not connected to any vertex of T ,
which implies that (bl, v2) is not a multiple edge. �

We now describe a procedure to transform cycle-tree graph [F, T] into another
one [F, T ′′] that is biconnected and satisfies the conditions of Lemma 3. We do

418 P. Angelini et al.

this in two steps: first, we remove some edges connecting a vertex of F and a
vertex of T to transform [F, T] into a cycle-tree graph [F, T ′=T] that is not
biconnected but that satisfies the two conditions; then, we remove the “tree
components” of T ′ that are not connected to vertices of F in order to obtain a
cycle-tree graph [F, T ′′ ⊆ T ′] that is also biconnected.

To satisfy condition (1) of Lemma 3, we merge all the petal faces incident to
the same vertex of F into a single one by repeatedly removing an edge shared by
two adjacent petal faces. We refer to these removed edges as petal edges, denoted
by EP .

To satisfy condition (2) of Lemma 3, we consider each bad face f = v1, v2,
b1, . . . , bl, where v1, v2 ∈ F and b1, . . . , bl ∈ T . Let g be the face incident to v1
sharing edge e = (v1, bl) with f . We remove e, hence merging f and g into a
single face f ′, that we split again by adding dummy edges, based on the type
of face g, in such a way that no new bad face is created. Since f is a bad face,
it is not protected by bl, and hence g is not a small face. If g is a petal face,
then f ′ is still a big face with two vertices of F incident to it, namely v1 and
v2; see Fig. 3(d). We add edge (v1, b1), splitting f ′ into a petal face v1, b1, . . . , bl

and a triangular face v1, v2, b1. If g is a big face, then f ′ is a big face; see
Fig. 3(e). Let g = w1, . . . , wq, c1, . . . , ch, where w1, . . . , wq ∈ F , with wq = v1,
and c1, . . . , ch ∈ T , with c1 = bl. We add two dummy edges (v1, ch) and (v1, b1),
splitting f ′ into a small face w1, . . . , wq, ch, a petal face v1, b1, . . . , bl = c1, . . . , ch,
and a triangular face v1, v2, b1. The edges removed in this step are big face edges,
denoted by EB , and the added edges are triangulation edges.

In order to make [F, T ′] biconnected, note that [F, T ′] consists of a bicon-
nected component which contains F , called block-component, and a set TB of
subtrees of T ′, called tree components, each sharing a cut-vertex with the block
component. We remove the tree components TB from [F, T ′] and obtain an
instance [F, T ′′ ⊆ T ′], that is actually the block component of [F, T ′]. Since
the removal of TB does not change the degree of the vertices of F and does not
create any bad face, [F, T ′′] is indeed a biconnected instance satisfying the two
conditions of Lemma 3. Thus, by adding further triangulation edges we augment
it to an inner-triangulated instance [F, TΔ = T ′′].

Lemma 4. Let e=(b, v) be an edge of EP ∪ EB, where b ∈ T and v ∈ F . Then,
either e is a triangulation edge in [F, TΔ] or b belongs to a tree component Tc of
TB sharing a cut-vertex c with [F, T ′′]. In the latter case, (v, c) is a triangulation
edge in [F, TΔ].

Lemma 5. Let Tc ∈ TB be a tree component such that there exists at least an
edge (b, v) ∈ EP ∪ EB, with b ∈ Tc and v ∈ F . Then, for each edge in EP ∪ EB

with an endvertex belonging to Tc, the other endvertex is v.

Performing the above operations for every cycle-tree graph [F, T] yields an
inner-triangulated 2-outerplanar graph [G,HΔ] as outcome of Part A. We then
label [G,HΔ] with the algorithm from Sect. 3.2 and describe next how to extend
this labeling to TB.

A Universal Point Set for 2-Outerplanar Graphs 419

w

a

b

v

(a)

v

a
b

w

(b)

v

a
b

w

(c)

w

a

b

v

(d)

v

a
b

w

(e)

Fig. 4. (a)–(c) Inserting dummy vertices for a tree-component in a face (a, b, v) with
v ∈ F and a, b ∈ T Δ, when (a) �(a) = �(b), (b) �(a) �= �(b) and �(w) < �(v), and
(c) �(a) �= �(b) and �(w) > �(v). (d)–(e) Moving dummy vertices to petal points if
�(a) = �(b) and if �(a) �= �(b) (Color figure online).

Part B: We consider the tree components Tc ∈ TB for each face F of G; let
[F, TΔ] be the corresponding inner-triangulated cycle-tree graph. We label the
vertices of Tc and simultaneously augment [F, TΔ] with dummy vertices and
edges, so that [F, TΔ] remains inner-triangulated (and hence can be embedded,
by Lemma 2) and the vertices of Tc can be later placed on the petal points
of the points where dummy vertices are placed. The face of [F, T ′′] to which Tc

belongs might have been split into several faces of [F, TΔ] by triangulation edges.
We assign Tc to any of such faces f that is incident to the root c of Tc. Then,
we label Tc based on the type of f ; we distinguish two cases.

Suppose f is a triangular face (c, v, w) with v, w ∈ F and c ∈ TΔ; assume
�(v) < �(w). We create a path Pc containing |Tc|−1 dummy vertices and append
Pc at c. Then, we connect every dummy vertex of Pc with both v and w. If
�(c) ≤ �(v), then we label the vertices of Pc with �(Pc) = �(v). If �(c) ≥ �(w),
then we label �(Pc) = �(w).

Suppose f is a triangular face (a, b, v) with v ∈ F and a, b ∈ TΔ, refer to
Fig. 4; assume �(a) ≤ �(b). Replace edge (a, b) with a path Pc between a and b
with |Tc| − 1 internal dummy vertices, and connect each of them to v and to
w, where w is the other vertex of F adjacent to both a and b. For each dummy
vertex x of Pc, we assign �(x) = �(a) if �(v) ≤ �(a); we assign �(x) = �(b) if
�(v) ≥ �(b); and we assign �(x) = �(v) if �(a) < �(v) < �(b). The existence of
edge (a, b) ∈ TΔ implies that either a is the parent of b in TΔ or vice versa.
Suppose the former, the other case is analogous. Then, v and w are the extremal
neighbors of b in F , and thus either �(v) ≤ �(b) ≤ �(w) or �(w) ≤ �(b) ≤ �(v).
Also, if �(a) 	= �(b), then �(a) does not lie strictly between �(v) and �(w). In fact,
this can only happen if �(b) strictly lies between �(v) and �(w), and �(a) = �(b)
(which happens only if a is a non-fork vertex). Since �(a) ≤ �(b), by assumption,
this implies that �(a) ≤ �(v), �(w). The two observations before can be combined
to conclude that, if �(a) = �(b), then all the tree components lying inside faces
(a, b, v) and (a, b, w) have the same label as a and b (Fig. 4(a)). Otherwise, either
the tree components inside (a, b, v) have label �(b) and those inside (a, b, w)
have label �(w) (Fig. 4(b)), or the tree components inside (a, b, v) have label �(v)
and those inside (a, b, w) have label �(b) (Fig. 4(c)). All added edges are again
triangulation edges.

420 P. Angelini et al.

We apply Part B to every cycle-tree graph of [G,HΔ], hence creating an
inner-triangulated 2-outerplanar graph [G,HA] where HA is a forest. Since all
the dummy vertices of Pc are connected to two vertices v, w ∈ F , they become
non-fork vertices. Note that the labeling of the dummy vertices coincides with
the one obtained by the algorithm in Sect. 3.2, except for the case when f is a
triangular face (a, b, v) with v ∈ F and a, b ∈ TΔ, and �(a) < �(v) < �(b). In
this case the algorithm would have labeled either �(Pc) = �(a) or �(Pc) = �(b),
depending on whether b is the parent of a or vice versa. However, since �(a) <
�(v) < �(b) holds in [F, TΔ], and since (a, b, v) is a triangular face of [F, TΔ], no
vertex of [F, TΔ] different from v has the same label as v. Hence, graph Hi, for
each i, is a tree with at most one vertex of degree 3. We thus apply Lemma 2 to
obtain a planar embedding ΓA of [G,HA] on S.

4.3 Transformation of the Embedding

We remove the all the triangulation edges added in the construction, and then
restore each tree component Tc, which is represented by path Pc. Since the
vertices of Pc are non-fork vertices and have the same label i, by construction,
they are placed on the same segment s ∈ {s+, sN , s−} of Sj , where pj is the
point vertex vi is placed on.

We remove all the internal edges of Pc and move each vertex x of Pc from
the point p of s it lies on to one of the corresponding petal points, either l(p)
or r(p), as follows. Let v be a vertex of G connected to a vertex of Tc by an
edge in EP ∪ EB , if any; recall that, by Lemma 5, all the edges of EP ∪ EB

connecting Tc to G are incident to v. If �(x) < �(v), then move x to r(p); tree
components connected to w in Fig. 4(d) and (e). If �(x) > �(v), then move x to
l(p); tree component connected to v in Fig. 4(e). Otherwise, �(x) = �(v); in this
case s 	= sN , by construction, and hence we have to distinguish the following two
cases: If s = s+, then move x to l(p), otherwise move x to r(p) (tree components
attached to a and b, respectively, and connected to v in Fig. 4(e)). If no vertex
v ∈ G is connected to Tc, then move x to r(p) if �(c) < �(x) (tree component
attached to a in Fig. 4(e)), and to l(p) otherwise.

We prove that this operations maintain planarity. The internal edges of Tc

do not cross since the petal points, together with the point where c lies, form
a convex point set, on which it is possible to construct a planar embedding of
every tree [4]. As for the edges connecting vertices of Tc to v, by Lemma 4, v has
visibility to the root c of Tc, since (v, c) is a triangulation edge; by Property 1,
this visibility from v extends to all the segment s where Pc had been placed on;
and by the construction of S∗, to all the corresponding petal points. The proof
for the edges (a, b) that had been subdivided when merging tree component Tc

(green edges in Fig. 4(d) and (e)) is in [2].

Claim 1. Reinserting every edge (a, b) such that there existed a path Pc between
a and b does not introduce any crossing.

To complete the transformation it remains to insert the edges of EP ∪ EB

which were not inserted in the previous step. Since by Lemma 4 all of these edges
were also triangulation edges, their insertion does not produce any crossing.

A Universal Point Set for 2-Outerplanar Graphs 421

Lemma 6. There exists a universal point set of size O(n3/2) for the class of
n-vertex 2-outerplanar graphs [G,H] where H is a forest.

5 General 2-Outerplanar Graphs

In this section we give a high-level idea of how to extend the result of Lemma 6
to any arbitrary 2-outerplanar graph [G,H]. The complete description can be
found in [2].

The idea is to convert every graph Gh ∈ H into a tree Th; embed the resulting
graph on S∗; and finally revert the conversion from each Th to Gh. Each tree Th

is created by substituting each biconnected block B of Gh by a star, centered
at a dummy vertex and with a leaf for each vertex of B, where leaves shared by
more stars are identified. This results in a 2-outerplanar graph whose inner level
is a forest.

The embedding of this graph on S∗ is performed similarly as in Lemma 6,
with some slight modifications to the labeling algorithm, especially for the ver-
tices of Th corresponding to cut-vertices of Gh, and to the procedure for merging
the tree components. These modifications allow us to ensure that the vertices of
each block of Gh lie on a convex portion of S∗, where they can thus be drawn
without crossings [5,10].

We finally reduce the size of S∗ to O(n log n) by using the super-pattern
sequence ξ from [3], which is a sequence of integers ξj , with

∑
j=1,...,n ξj =

O(n log n). Sequence ξ majorizes every sequence of integers that sum up to n.
We hence assign the size of each point set Sj based on this sequence, instead of
using dense or sparse point sets.

Theorem 1. There exists a universal point set of size O(n log n) for the class
of n-vertex 2-outerplanar graphs.

6 Conclusions

We provided a universal point set of size O(n log n) for 2-outerplanar graphs. A
natural question is whether our techniques can be extended to other meaningful
classes of planar graphs, such as 3-outerplanar graphs. We also find interesting
the question about the required area of universal point sets. In fact, while the
integer grid is a universal point set for planar graphs with O(n2) points and
O(n2) area, all known point sets of smaller size, even for subclasses of planar
graphs, require a larger area. We thus ask whether universal point sets of sub-
quadratic size require polynomial or exponential area.

References

1. Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V.,
Squarcella, C.: Small point sets for simply-nested planar graphs. In: Speckmann,
B. (ed.) GD 2011. LNCS, vol. 7034, pp. 75–85. Springer, Heidelberg (2011)

422 P. Angelini et al.

2. Angelini, P., Bruckdorfer, T., Kaufmann, M., Mchedlidze, T.: A universal point
set for 2-outerplanar graphs (2015). CoRR abs/1508.05784

3. Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and uni-
versal point sets. J. Graph Algorithms Appl. 18(2), 177–209 (2014)

4. Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F.,
Kobourov, S., Liotta, G.: Upward straight-line embeddings of directed graphs into
point sets. CGTA 43, 219–232 (2010)

5. Bose, P.: On embedding an outer-planar graph in a point set. CGTA 23(3), 303–
312 (2002)

6. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Algorithms Appl. 10(2), 353–366 (2006)

7. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fáry embeddings of
planar graphs. In: Simon, J. (ed.) STOC ’88, pp. 426–433. ACM (1988)

8. Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Com-
binatorica 10, 41–51 (1990)

9. Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. J. Discrete Algo-
rithms 30, 101–112 (2015)

10. Gritzmann, P., Pach, B.M.J., Pollack, R.: Embedding a planar triangulation with
vertices at specified positions. Am. Math. Monthly 98, 165–166 (1991)

11. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all
n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)

12. Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA
’90, pp. 138–148. SIAM (1990)

http://arxiv.org/abs/1508.05784

	A Universal Point Set for 2-Outerplanar Graphs
	1 Introduction
	2 Preliminaries and Definitions
	3 Inner-Triangulated 2-Outerplanar Graphs with Forest
	3.1 Construction of the Universal Point Set
	3.2 Labeling the Graph
	3.3 Embedding on the Point Set

	4 2-Outerplanar Graphs with Forest
	4.1 Extending the Universal Point Set
	4.2 Modifying and Labeling the Graph
	4.3 Transformation of the Embedding

	5 General 2-Outerplanar Graphs
	6 Conclusions
	References

