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Abstract. The straight skeleton of a polygon is the geometric graph
obtained by tracing the vertices during a mitered offsetting process. It
is known that the straight skeleton of a simple polygon is a tree, and
one can naturally derive directions on the edges of the tree from the
propagation of the shrinking process.

In this paper, we ask the reverse question: Given a tree with directed
edges, can it be the straight skeleton of a polygon? And if so, can we
find a suitable simple polygon? We answer these questions for all directed
trees where the order of edges around each node is fixed.

1 Introduction

Many geometric structures on sets of points, line segments, or polygons, e.g.
Delaunay triangulations, Voronoi diagrams, straight skeletons, and rectangle-of-
influence graphs can be represented as graphs. The graph representation problem
(for each of these geometric structures) asks which graphs can be represented
in this way. That is, given a graph G, can we find a suitable input set S of
points, segments, or polygons such that the geometric structure induced by S is
equivalent to G?

Graph representation has been studied for numerous geometric structures in
the past. To name just a few examples: Every planar graph is the intersection
graph of line segments [6], every wheel is a rectangle-of-influence graph [11], and
all 4-connected planar graphs are Delaunay triangulations [8]. See also [7] for
many results on proximity drawability of graphs.

Of particular interest to our paper are two results. First, Liotta and
Meijer [12] studied when a tree can be represented as the Voronoi diagram of
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a set of points, and showed that this is always possible (and the points are in
convex position). Secondly, Aichholzer et al. [4] studied when a tree can be rep-
resented as the straight skeleton of a polygon, and showed that this is always
possible (and the polygon is convex).

1.1 Background

The straight skeleton S(P ) of a simple polygon P is defined via a wavefront-
propagation process: Each edge of P emits a wavefront edge moving in a self-
parallel manner at unit speed towards the interior of the polygon.

Initially, at time t = 0, this wavefront is a single polygon that is identical
to P . As the propagation process continues, however, the wavefront will change
due to self-interaction: (i) In edge events, an edge of the wavefront shrinks to
zero length and is removed from the wavefront. (ii) In split events, a vertex of
the wavefront meets the interior of a previously non-incident wavefront edge.
This split partitions the edge and the polygon into two parts that now propa-
gate independently. (iii) If the input is not in general position, more complex
interactions are possible. For example, entire portions of the wavefront collapse
at once when parallel wavefronts that were emanated by parallel polygon edges
meet, or new reflex wavefront vertices are created when multiple reflex vertices
interact in a vertex-event. The propagation process ends once all components of
the wavefront have collapsed. Therefore, the set of wavefront edges at any time
t form one or more polygons, which we call the wavefront and denote by W(t).

Fig. 1. The straight skeleton S(P ) of
an input polygon P (bold) is the union
of the traces of wavefront vertices.
Wavefront polygons at different times
are shown in gray.

The straight skeleton S(P ), introduced
by Aichholzer et al. [2], is then defined as
the geometric graph whose edges are the
traces of the vertices of W(t) over time; see
Fig. 1. For simple polygons, S(P ) always is
a tree [2], with the leaves corresponding to
vertices of P and interior vertices having
degree 3 or more. Several algorithms are
known to construct the straight skeleton
[1,9,10].

We can distinguish between convex and
reflex vertices of P or W(t). A vertex v is
reflex (convex ) if the interior angle at v
is greater (less) than π. We call an arc of
S(P ) reflex (convex ) if it was traced out
by a reflex (convex) vertex of the wavefront. When discussing the wavefront
propagation process, we will often interchangeably refer to wavefront vertices
and straight skeleton arcs.

The roof model [2] represents a convenient means to study the wavefront over
the entire propagation period. It embeds the wavefront in three-space, where the
z-axis represents time: T (P ) :=

⋃
t≥0(W(t) × {t}). The inner edges and vertices

of this polytope correspond to arcs and nodes of the straight skeleton S(P ), and
the z-coordinate of each element corresponds to the time it was traced out by
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the wavefront-propagation process. Reflex arcs correspond to valleys and convex
arcs to ridges.

If we exclude polygons where parallel polygon edges cause entire wavefront
segments to collapse at one time, resulting in horizontal roof edges, then arcs of
S(P ) will have been traced out by the wavefront during its propagation process,
and we can assign a natural direction to these arcs: make them point into their
trace direction. This assignment gives rise to the directed straight skeleton, Sd(P ).

A directed tree T is a directed graph whose underlying undirected graph is a
tree, i.e., connected and acyclic. A labeled tree T� is a tree with assignments of
labels to its arcs. For most of this paper, trees are ordered, i.e., for every node
there is a fixed circular order in which the arcs appear around this node.

It is customary to refer to the edges and vertices of the straight skeleton
as arcs and nodes, and to reserve edges and vertices for elements of input or
wavefront polygons. We also use arcs and nodes to refer to elements of trees.

1.2 Our Results

Our paper was inspired by the work in [4], which studies undirected trees. How-
ever, the structure of the straight skeleton imposes directions on the arcs, except
in degenerate cases. Hence, the natural question to ask is:

Probelm 1 (Directed straight-skeleton realizability). Given a directed tree T , (i)
is there a polygon P such that Sd(P ) shares the structure of T (we denote this
by Sd(P ) ∼ T ), and (ii) if yes, can we reconstruct such a polygon P from T?

Having directions assigned to the arcs makes the straight-skeleton realizabil-
ity problem significantly harder: For example, one easily sees that in a convex
polygon the straight skeleton is a rooted tree (with exactly one sink), and so
not all directed trees can be represented via convex polygons. Hence, the results
from [4] do not transfer to directed trees.

The directed-straight-skeleton-realizability question can be asked for multiple
meanings of “directed tree”: It could be a geometric tree (nodes are given with
coordinates), an ordered tree (the clockwise order of arcs around each node is
specified) or an unordered tree (we have the nodes and arcs but nothing else). For
a geometric tree, the problem is trivial, since the locations of the leaves specify
the vertices of the only polygon for which this could be the straight skeleton.
(If leaves are not specified as points but only as “being on a ray”, then the
geometric setting is non-trivial, but can be solved in polynomial time [5].)

In this paper, we consider the variant of the problem for ordered trees. In the
case of polygons in general position, we give three obviously necessary conditions
and show that these are also always sufficient. It turns out that the order of
arcs around nodes is not important, so the algorithm also works for unordered
directed trees. We then turn to polygons without restrictions on vertex-positions.
In this case the directed straight skeletons can be significantly more complicated,
and in particular, have arbitrary degrees. Testing whether a directed tree can
be represented as straight skeleton requires deeper insight into the structure of
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straight skeletons, and we can exploit these to develop such a testing algorithm
and, in case of a positive answer, find a suitable polygon.

2 Trees from Polygons in General Position

In a first step we restrict the problem to polygons in general position. By general
position we mean that no four edges have supporting lines which are tangent to
a common circle. In particular this means that during the wavefront propagation
process only standard edge and split events are observed, resulting in straight
skeletons where all interior nodes are of degree exactly three.

Investigating the structure of such directed straight skeletons enables us to
establish a number of necessary conditions for a directed tree to be a directed
straight skeleton of a polygon in general position.

Necessary Conditions. Let P be a polygon in general position and let T be the
directed tree such that Sd(P ) ∼ T .

The leaves of T correspond to the vertices of P . In the roof model, these
vertices have zero z-coordinate, while all other nodes have positive z-coordinates
since they will have been created by an event at some time t > 0. Thus, any arc
incident to a vertex v of P increases in elevation as it moves away from v. As
such, all leaves of T must have in-degree 0 and out-degree 1.

The interior nodes all have degree 3 and are classified by their in- and out-
degrees as follows:

in-degree 3: (peak nodes) A collapse of a wavefront component (of triangular
shape) at the end of its propagation process is witnessed by a local maximum
in the roof. These local maxima correspond to nodes with in-degree three.

in-degree 2: (collapse nodes) Edge events in the propagation process, i.e., col-
lapsed wavefront edges, result in a node with two incoming arcs and one
outgoing arc.

in-degree 1: (split nodes) Split events will cause a node that has only one
incoming arc and two outgoing arcs.

in-degree 0: Since the roof model will have no local minima except at the edges
of P [2], nodes with in-degree zero and out-degree three cannot exist.

Of these, the case of a split event requires some more attention since it
imposes additional restrictions on the incoming arc. Recall that we can distin-
guish between reflex and convex vertices of P , and note that any vertex is either
reflex or convex by the general position assumption. For a split event to occur,
a reflex vertex of the wavefront must crash into a previously non-incident part
of the wavefront.

In the absence of vertex events, which create skeleton-nodes of degree at least
four and therefore do not happen when the polygon is in general position, no
reflex vertex can ever be created by an event. Thus, any reflex vertex that is part
of an event must have been emanating from a reflex vertex of the input polygon
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itself. Accordingly, the incoming arc in a split event node must have a leaf at its
other end.

We summarize these conditions in the following lemma.

Lemma 1. Let P be a simple polygon in general position and let T be the
directed tree such that Sd(P ) ∼ T . Then in T the following hold:

(G1) the incident arc of each leaf is outgoing,
(G2) every interior node has degree 3 and at most two outgoing arcs,
(G3) if an interior node has out-degree two, then the incoming arc connects

directly from a leaf.

Observations. Let T be a directed tree that satisfies conditions (G1–G3). Classify
the interior nodes as split nodes, collapse nodes and peaks as above. The goal is
to show that any such tree can indeed be realized as a straight skeleton. For this,
we split the tree into multiple subtrees in a particular way (also illustrated in the
example in Fig. 3). We have the following observations. Full proofs of the next
four lemmas can be found in Appendix A in the arXiv-version of this work [3].

Lemma 2. Let T be a directed tree that satisfies conditions (G1–G3). If T has
no split nodes, then T has exactly one peak.

Lemma 3. Let T be a tree that satisfies conditions (G1–G3). Create a forest
F as follows: At any split node s of T , remove s, remove the leaf incident to
the incoming arc of s, and replace the two outgoing arcs of s by two new leaves
that are connected to the other ends of these arcs. Then each component of F
satisfies conditions (G1–G3) and has exactly one peak.

Sufficient Conditions. It remains to be shown that the necessary conditions (G1–
G3) from Lemma 1 are also sufficient. We show this by constructing a simple
polygon P such that Sd(P ) ∼ T , given a directed tree T that satisfies (G1–G3).
We start by showing this for trees that have no split nodes.

Lemma 4. For any directed tree T that satisfies (G1–G3) and has no split
nodes, there is a convex polygon P such that Sd(P ) ∼ T .

Proof. We show this by constructive induction. Any triangle is a polygon such
that its straight skeleton shares the structure of the peak node of T .

To construct a polygon P for a tree T with k interior nodes, we first construct
a polygon P ′ for a tree T ′ with k − 1 interior nodes. We obtain T ′ by replacing
a node of T and its two adjacent leaves with a single leaf �. (There always is
such a node.) To obtain P , we compute an exterior offset of P ′ and replace the
vertex that corresponds to � with a sufficiently small edge such that it collapses
before the wavefront of P reaches P ′.

This polygon P will then satisfy Sd(P ) ∼ T . See Fig. 2 for an illustration. �

Furthermore, it is possible to add a constraint on one interior angle of the poly-
gon:
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Fig. 3. (a) Given a directed tree we split it into a forest F of subtrees without split
nodes. (b) Recursing on the structure of F , we can create convex polygons for each
element (dotted) and then merge them into ever larger polygons.

Lemma 5. Let T be a directed tree without split nodes and let � be a leaf of T .
Further, let α be an arbitrary angle with 0 < α < π. Then there exists a convex
polygon P such that Sd(P ) ∼ T and such that the interior angle at the vertex
that corresponds to � is α.

⇒

Fig. 2. Creating the polygon for a tree
with k+1 interior nodes from a polygon
for a tree with one less.

Now we are ready to consider trees
with split nodes.

Lemma 6. Let T be a directed tree that
satisfies conditions (G1–G3). Then there
exists a polygon P such that Sd(P ) ∼ T .

Proof. As in Lemma 3, we split T at split
nodes, also dropping the incoming reflex
arc and its incident leaf. We obtain a for-
est F = {T1, T2, . . . , Tn} where each Ti is a tree without split nodes.

This forest can in turn be considered an undirected tree, where each Ti gives
rise to a node and nodes are connected if and only if the corresponding trees
originally had a split node in common. We pick an arbitrary root for F , say T1,
and construct a convex polygon P1 such that Sd(P1) ∼ T1.

This root T1 is connected to one or more children in F via split nodes. Let
T2 be such a child, and let �1 ∈ T1 and �2 ∈ T2 be the two leaves obtained when
splitting at the split node common to T1 and T2. Let v1 be the vertex in P1

corresponding to �1, and assume it has angle α1 < π.
We construct a convex polygon P2 such that Sd(P2) ∼ T2 and the vertex v2

corresponding to �2 has angle α < π − α1. This enables us to merge P1 and P2

in the following way: We place P2 in the plane such that v1 of P1 and v2 of P2

occupy the same locus. We rotate P2 such that the angle between a pair of edges
of P1 and P2 is exactly π. Which pair of edges is chosen depends on where in
the cyclic order the incident reflex leaf at the split node in T lies. The layout
of P1 and P2 then corresponds to the layout of the wavefront at the split-event
time. If we now compute a small outer offset and designate this to be P , then
the directed straight skeleton of P has the same structure as the subtree of T
that is made up by T1, T2, the split node, and its incident leaf; see Fig. 3.

We then repeat this process for another child of T1 or T2. Note that it may
be necessary to scale the polygon that we add to a sufficiently small size so that
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it does not conflict with other parts of the polygon already constructed. This
is always possible since for each vertex of a polygon there exists a disk that
intersects the polygon only in the wedge defined by the vertex.

Once all elements of the forest have been processed, we obtain a polygon P
whose straight skeleton has the same structure as T , i.e., Sd(P ) ∼ T . �

Notice that conditions (G1–G3) do not depend on the order of arcs around
nodes; we can construct a polygon for any such order. So in particular if T is an
unordered tree that satisfies (G1–G3), then we can pick an arbitrary order and
the lemma holds. Hence, we get the following theorem:

Theorem 1. An (ordered or unordered) directed tree T is the directed straight
skeleton of a simple polygon P in general position if and only if T satisfies
conditions (G1–G3).

3 Realizing Trees with Labeled Arcs

Recall that an arc of the straight skeleton is called reflex (convex ) if it was
traced out by a reflex (convex) vertex of the wavefront. One can easily see that
the construction in Lemma 6 creates a polygon where all arcs of the straight
skeleton are convex, with the exception of arcs from leaves to split nodes.

For later constructions (for trees with higher degrees), it will be important
that we test not only whether an ordered tree can be realized, but additionally
we want to impose onto each arc whether it is reflex or convex in the straight
skeleton. We study this question here first for trees with maximum degree 3.

So assume we have a directed tree T that satisfies (G1–G3). Additionally we
now label each arc of T with either “reflex” or “convex”, and we ask whether
there exists a polygon P that realizes this labeled directed tree in the sense that
Sd(P ) ∼ T and the type of skeleton-arc in Sd(P ) matches the label of the arc
in T . We denote this by Sd(P ) ∼� T .

We observe that a peak node is created when a wavefront of three edges, a
triangle, collapses. Therefore, all incident arcs at a peak node are convex.

For collapse nodes, we know that the outgoing arc is convex. (Recall that
reflex arcs in a straight skeleton are only created in vertex events, which cannot
exist when all interior nodes have degree three.) At least one of the incoming
arcs needs to be convex, as two reflex wavefront vertices meeting in an event will
result in a node of degree at least four.

We have already established that the incoming arc at a split node needs to
be reflex. Furthermore, it is easy to see that the two outgoing arcs of a split
node need to be convex. We summarize the necessary conditions for a labeled
directed tree to correspond to a straight skeleton in the following lemma:
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Lemma 7. Let P be a simple polygon in general position and let T� be the labeled
directed tree such that Sd(P ) ∼� T�. Then

(L1) for peak nodes, all incoming arcs are convex;
(L2) for collapse nodes, at least one incoming arc and the outgoing arc are

convex;
(L3) for split nodes, the incoming arc is reflex and both outgoing arcs are convex.

We will now show that (L1–L3) are also sufficient:

Lemma 8. Any labeled directed tree T� that meets conditions (G1–G3) from
Lemma 1 and (L1–L3) from Lemma 7 is realizable by a simple polygon P .

Proof. Since reflex arcs in T� only originate at leaves and terminate at collapse
or split nodes (interior nodes never have outgoing reflex arcs, and peak nodes
have no incoming reflex arcs), we can create a tree T ′

� by replacing each collapse
node that has an incoming reflex arc with a leaf and dropping the two incident
incoming arcs and their leaves. This resulting tree T ′

� will have no reflex arcs
except for those leading from a leaf to split nodes by (L1), (L3), and (G3). Thus,
we can create a polygon P ′ such that Sd(P ′) ∼� T ′

� by the process described in
the proof of Lemma 6, respecting all labels.

We now obtain P by offsetting P ′ slightly to the outside. Then, we modify P
at each vertex v that corresponds to a leaf in T ′

� that was the result of replacing
a collapse node of T�. Note that each such vertex v is convex since the outgoing
arc of a collapse node is convex by (L2). We insert a small edge in place of v,
replacing it with v1, the edge, and v2. We choose the angles at v1 and v2 such
that one of them is reflex and the other is convex, in order to match the labeling
of T�. Figure 4 illustrates this operation.

By making the new edge sufficiently small, we can ensure that these events
happen before the wavefront becomes identical to P ′, and thus before all remain-
ing events of the wavefront propagation. �

4 Arbitrary Node Degrees

⇒

Fig. 4. Extending a convex vertex
of P such that a leaf in its tree is
replaced by a collapse node where
one incoming arc is reflex and one
is convex.

Once we allow for straight skeletons where
interior nodes can have degrees larger than
three, a number of previous constraints no
longer hold. Most importantly, during the
wavefront propagation vertex events can hap-
pen, resulting in new reflex vertices in the
wavefront after the event. Consequently, for
instance, split nodes no longer need to be
adjacent to leaves. Larger node degrees also
result in more complex variants of split, col-
lapse, and peak nodes. Note that we continue
to restrict polygons from having parallel edges as those might cause skeleton arcs
which have no direction (when they get created as a result of two wavefront edges
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crashing into each other) or straight skeleton arcs that are neither reflex nor con-
vex (when two parallel wavefronts moving in the same direction become incident
at an event).

In order to understand what combinations of reflex and convex incoming and
outgoing arcs may exist at a node in a directed straight skeleton, we study the
different shapes that a wavefront may have at an event at locus p and time t.
At a time t − δ immediately prior to the event, the wavefront will consist of a
combination of reflex and convex vertices, tracing out reflex and convex arcs, all
of which will meet at p at time t. We choose δ sufficiently small such that no
event will happen in the interval [t − δ, t).

Consider the wavefront around a locus p at an event, and consider the wedges
that have been already swept by the wavefront. With wedge we mean the area
near p swept over by a continuous portion of the wavefront polygon until time t.

If a single wedge covers the entire area around p, we call it a full wedge. The
interior angles of other wedges might be less than π, greater than π, or exactly
π as illustrated in Fig. 5. We call the first type of wedge reflex and the second
type of wedge convex, after their corresponding wavefront vertices in the simple
case. The third type of wedge we simply call π-wedge.

= π

< π < π

> π

< π

> π

full

Fig. 5. Wavefront wedges at event times are either full wedges or can be classified by
their interior angle. The wedges (already-swept areas) are gray, the remaining white
sectors are covered by the wavefront polygon(s).

A single wedge may have been traced out by just one wavefront edge if a
wedge at an event has an interior angle of exactly π, but in all other cases it is
the area covered by two or more wavefront edges and their incident wavefront
vertices, which have traced out one or more incoming arcs at p. Note that all
but the two outermost edges of this part of the wavefront collapse at time t.

We will establish arc-patterns to describe combinations of arcs at a node.
Such a pattern is a string consisting of the types of arcs: r for an incoming reflex
arc, c for an incoming convex arc, and r̂ and ĉ for their outgoing counterparts.
We will use operators known from language theory, such as parentheses to group
blocks, the asterisk (∗) to indicate the preceding character or group may occur
zero or more times, the plus sign (+) to indicate the preceding block may occur
one or more times, and the question mark (?) to indicate it may exist zero times
or once. When defining patterns we give them variable names in capitals.

We now investigate which combination of arcs may trace out which types of
wedges. For this purpose we first characterize single wedges and provide their
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describing arc-patterns. Then we examine all possible single wedge combinations
and provide allowed arc-patterns for interior nodes.

Due to lack of space we give here only an overview on the arc-patterns of
single wedges and the arc-patterns for possible combinations of these wedges at
interior nodes. For a detailed analysis please see Appendix B (see footnote 1).

As mentioned, single wedges can be reflex wedges, convex wedges, π-wedges,
and so called full wedges, the latter being traced out by a wavefront that collapses
completely around a locus p. The arc-pattern for a reflex wedge is R := r (cr)∗,
i.e., one reflex vertex, followed by zero or more (convex, reflex) pairs of vertices
and thus arcs. If a reflex wedge is created by a single reflex wavefront vertex
(and its incident edges) then we call it trivial. Otherwise, we call it non-trivial,
with R+ = r (cr)+ specifying the arc-pattern of a non-trivial reflex wedge.

The arc-pattern for a convex wedge is C := r? c (r?c)∗ r?. Like for reflex
wedges we distinguish trivial (traced out by a single convex vertex) and non-
trivial convex wedges, the latter (any pattern matching C and having length at
least two) being denoted by C+.

The case of π-wedges is related to the case of reflex wedges. A π-wedge is
either traced out by exactly one wavefront edge (no incoming arcs), or it has the
same pattern as for a non-trivial reflex wedge. Hence, we have as arc-pattern
P := ∅ | R+. Note that since we have explicitly excluded parallel polygon edges
for this problem setting, only trivial π-wedges can exist. Therefore, we will set
P := ∅ here.

Last, the arc-pattern of a full wedge is F := c (r?c)∗ c (r?c)∗ c (r?c)∗.

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 6. All wedge combinations possible at a node.

Analyzing possible combinations of single wedges at interior nodes we get seven
different allowed arc-patterns (see Fig. 6(a–h)): Na := C+ ĉ, Nb := C ĉ (R ĉ)+,
Nd := P ĉ (R ĉ)+, Ne := R+ r̂, Nf := (R ĉ)+R r̂, Ng := (R ĉ)+R ĉ, and
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Nh := F . (Note that the pattern from Fig. 6(c) will not result in an event without
parallel polygon edges, which we have excluded.) A simple split node is matched
via Nd, a simple collapse node is handled by Na (with C+ being either cc, rc, or cr),
and a simple peak node is matched by Nh.

Since these are all possible wavefront/wedge combinations, any interior node
of the straight skeleton will have to match N := Na|Nb|Nd|Ne|Nf |Ng|Nh. We
can state the following lemma:

Lemma 9. Let P be a simple polygon and let T� be the labeled directed tree such
that Sd(P ) ∼� T�. Then the cyclic order of arcs of any interior node of T� needs
to match the pattern specification N defined above.

After the necessity of the discussed conditions we now prove their sufficiency.

Lemma 10. Let T� be any labeled directed tree for which (i) the cyclic order of
arcs of each interior node matches the pattern specification N defined above and
(ii) each leaf has out-degree one. Then T� is realizable by some simple polygon P ,
that is, Sd(P ) ∼� T�.

Proof. We will construct P in a manner similar to the one described in Lemma 6.
We start by identifying maximally connected components C1, C2, . . . , Cn of T�

containing nodes with out-degree either zero or one. These components take the
place of the subtrees of our forest from Lemma 6, and they are connected in T�

via split-nodes, i.e., nodes with out-degree ≥ 2.
We pick an arbitrary component C1 and create a polygon P1 such that

Sd(P1) ∼� C1 as follows. If there are no outgoing arcs from C1, we start at
its unique peak node. Otherwise, there is exactly one outgoing arc, and we begin
at the node it is incident to. Constructing a polygon for this node is straightfor-
ward by applying the concepts learned from considering convex, reflex, and full
wavefront wedges. We proceed by extending this initial polygon step by step like
in Lemma 4, treating each reflex or convex vertex of the polygon as a wavefront
wedge to be constructed, until we have a polygon for the entire component.

Next, we pick one of the split nodes connected to C1. That split node, we call
it n, will have one of the forms from Fig. 6 that have at least two white sectors.
The polygon we just created will cover one of these white sectors. (Depending on
the type of arc connecting C1 to n, the polygon will either have a reflex or convex
vertex for this arc.) We continue by constructing polygons for all remaining white
sectors in the same fashion we used for constructing P1. Note that this process
allows us to force at least one angle, and therefore we can construct polygons
that fit into the white sectors for n.

Now we have the wavefront polygon as it should be when the event at n
happens. We compute a small exterior offset, joining all polygons into one larger
polygon. The new reflex or convex vertices at this point are then further subdi-
vided as required by the incoming arcs for n.

We repeat this process until we have covered all split nodes and thus all
components and have thereby created a polygon whose structure matches T�. �

Please see Appendix C in the arXiv-version of this work [3].
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Combining Lemmas 9 and 10, we obtain the following theorem:

Theorem 2. An ordered labeled directed tree T� is the directed straight skeleton
of a simple polygon P without parallel edges if and only if (i) the cyclic order
of arcs of each interior node of T� matches the pattern specification N defined
above and (ii) each leaf has out-degree one.

5 Conclusion

In this work we developed a complete characterization of necessary and also
sufficient conditions such that a given directed and labeled ordered tree can be
represented as the straight skeleton of a simple polygon. This extends previous
work on representing trees via related geometric structures [4,12].

We leave the algorithmic question – how efficient suitability of a given input
tree can be tested and, in case of an affirmative answer, a corresponding simple
polygon can be computed – for future research. We conjecture that both is
possible in time linear in the size of the given tree.
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6. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of seg-
ments in the plane (Extended Abstract). In: Proceedings of 41st Annual ACM
Symposium Theory Computing (STOC 2009), pp. 631–638. ACM, Bethesda, MD,
USA (2009)

7. Di Battista, G., Lenhart, W., Liotta, G.: Proximity drawability: a survey. In:
Tamassia, R., Tollis, I.G. (eds.) GD ’94. LNCS, vol. 894, pp. 328–339. Springer,
Princeton, NJ, USA (1995)

8. Dillencourt, M.B., Smith, W.D.: Graph-theoretical conditions for inscribability and
delaunay realizability. Discrete Math. 161(1–3), 63–77 (1996)

http://arxiv.org/abs/1508.01076


Representing Directed Trees as Straight Skeletons 347

9. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: applica-
tions of a data structure for finding pairwise interactions. Discrete Comput. Geom.
22(4), 569–592 (1999)

10. Huber, S., Held, M.: A fast straight-skeleton algorithm based on generalized motor-
cycle graphs. Int. J. Comput. Geom. Appl. 22(5), 471–498 (2012)

11. Liotta, G., Lubiw, A., Meijer, H., Whitesides, S.: The rectangle of influence drawa-
bility problem. Comput. Geom. 10(1), 1–22 (1998)

12. Liotta, G., Meijer, H.: Voronoi drawings of trees. Comput. Geom. 24(3), 147–178
(2003)


	Representing Directed Trees as Straight Skeletons
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 Trees from Polygons in General Position
	3 Realizing Trees with Labeled Arcs
	4 Arbitrary Node Degrees
	5 Conclusion
	References


