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Abstract Human interaction often appears to be random and at times even chaotic.
We use game theory, the mathematical study of interactive decision making, to
explain the role of rationality and randomness in strategic behavior. In many of
these situations, humans deliberately create randomness as a best response and
equilibrium strategy. Moreover, once out of equilibrium, individual beliefs about
the real intentions of others introduce significant randomness into otherwise quite
simple and deterministic situations of interaction. In a second step we discuss the
role of randomness on financial markets, which are prototypical institutions for the
aggregation of individual behavior. As in certain simple games, financial markets
can produce outcomes that are close to perfect randomness. In fact, random walks
in financial returns are considered by most scholars to be efficient and desirable.
Finally, we apply game theoretical insights to behavior on financial markets and
show how strategic speculation on ‘greater fools’ can create a ‘madness of crowds’
that often ends in chaotic swings, bubbles and crashes.

1 Introduction

In 1720, Sir Isaac Newton was heavily invested in the South Sea bubble. When the
stock bubble burst he lost a fortune of about £2.4 million (in present day terms) and
was quoted as stating: “I can calculate the movement of the stars, but not the
madness of crowds”.
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The interaction between humans does indeed often appear like madness, gov-
erned by error and randomness. There is, however, a scientific field that attempts to
logically explain human interaction. Game theory is the mathematical study of
interactive decision making and it has revolutionized the way we see and under-
stand economics, politics, financial markets, and many other aspects of human
society. Game theory also applies to other species than humans and has made
important contributions in, for example, biology.

This chapter will introduce simple game theoretical concepts and financial
market applications to explain how we interact in certain situations and what role
randomness plays in our behavior. The central question is how people deal with
strategic uncertainty, which is the uncertainty about other people’s expectations and
actions that we face in human interaction. We then apply this approach to financial
markets and discuss how heterogeneous beliefs and errors in updating can create
feedback cycles and the ‘madness of crowds’ Newton referred to.

2 Super-Humans Against Nature and the Rationality
Assumption

2.1 A Single Random Event

Imagine a very simple game against nature.

Coin toss: First, human bets on one side of the coin, heads or tails. Then, in the coin toss,
nature shows one side of the coin.1

Many people see the throw of a dice or a coin toss as a prime example for natural
randomness. For at least 5000 years, our ancestors used randomization devices.2 But
is a coin toss really random? This goes back to an age old discussion culminating in
the question whether the world is predictable or unpredictable; whether everything is
predetermined, or whether nature is inherently stochastic. During the Age of
Enlightenment and the Industrial Revolution, Isaac Newton’s advances in mechanics
suggested that the universe is predictably governed by simple physical laws. This
lead to the lofty notion that, one day, humans might be able to take full control over
their fate with a world formula. In 1814, the French astronomer and mathematician

1Another example of such a situation is a farmer who decides at the beginning of a year whether to
plant crops or not (human places a bet). There is an equal chance that the weather this year is good
or bad for crops (toss of a coin). It is up to nature to determine the outcome.
2The oldest known dice were part of an 5000-year-old backgammon set, excavated at the Burnt
City in southeastern Iran. In ancient times the outcome of a throw of a dice was seen as the
decision of God. Consequently, dice were frequently used in important decisions.
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Pierre-Simon Laplace famously described the idea of scientific determinism as a
perfect intelligence for which there exists no uncertainty (Laplace 1814).3

Laplace’s Demon, as his notion became known, comes close to the definition of
rationality in game theory. A completely rational agent is a super-human, an arti-
ficial construct that comes in handy when economists and game theorists need to
build models. Like Laplace’s Demon, this super-human knows everything (‘perfect
knowledge’) and can compute even the most complex problems with lightning
speed. Another feature of this super-human is that she always strives to maximize
her own utility.4

In Laplace’s scientific determinism, a coin toss is a quite boring affair. So would
be Roulette or wheels of fortune. A super-human would simply know what side of
the coin nature would show and bet accordingly. Scientific determinism remained
the official dogma throughout the 19th century. This drastically changed with the
‘probabilistic revolution in physics’ initiated by statistical mechanics in the mid
nineteenth century and continued by quantum mechanics in the early twentieth
century (see Lüthy and Palmerino in this book).

But even without assuming unpredictable quantum states in quantum systems we
may not be able to forecast with certainty, even in Laplace’s deterministic world.
Early works, for example, by Henry Poincaré have shown that, in deterministic
systems, infinitesimally small changes in starting conditions can produce unpre-
dictable outcomes.5 This insight is the foundation of deterministic chaos theory and
it took nearly a 100 years for the ‘chaos revolution’ to fully unfold. In the late 1960s,
the MIT meteorologist Edward Lorenz discovered what is commonly referred to as
the ‘butterfly effect’.6 In the 1970s, several mathematicians proved that simple
nonlinear dynamic systems can produce irregular long run behavior and chaotic
behavior without external random disturbance (Ruelle and Takens 1971; Li and
Yorke 1975).7 In nonlinear dynamic systems, predictions about the future become
progressively worse when we do not have absolutely perfect knowledge of the initial

3See the contribution of Lüthy and Palmerino in this book for a more detailed discussion.
4Utility maximization is a tricky concept, which many mix up with ruthless money-making and
egoism. First, utility is more than simply making money. Feeling happy, receiving love or any
other positive sensation can also be a utility that people strive to maximize. This all depends on
personal preferences. Given a choice between money and friendship, one person might prefer the
former and another the latter. Second, a human can gain satisfaction (utility) from helping others.
Did Mother Teresa only help others or also herself? Hence, being ‘altruistic’ can be perfectly in
line with the definition of own utility maximization and rationality.
5In 1887, king Oscar II of Sweden promised a prize for the best answer to the question ‘Is our solar
system stable?’ Poincaré showed that the motion in a simple three-body system—such as sun,
earth and moon—that interact through gravitational attraction, can be sensitively dependent on
initial conditions and become highly irregular and unpredictable.
6Lorenz and his team were running weather simulations on a computer and suddenly realized that
rounding errors in the third decimal of just one measurement in one corner of their map (a ‘flap of a
butterfly’) were able to change predictions in another area from clear skies to thunderstorms.
7A well-known application is logistic population growth in biology (May 1976).
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state. Thus, even after the discovery of quantum physics, chaos theory re-introduced
indeterminism ‘through the back door’ and at a surprisingly fundamental level.8

We will come back to deterministic chaos in complex systems in Sect. 5.3. For
the time being, it is important to note that, according to quantum physics, but also to
chaos theory, even a perfectly rational Laplacian super-human—without any
restriction in knowledge and cognition—would approach a simple coin toss against
nature in the same way as normal humans would: as a game of pure chance. This is
in line with game theory where a perfectly rational agent is still exposed to ran-
domness. When facing a coin flip, a rational decision maker, even when equipped
with perfect knowledge, will not know whether the outcome will be head or tails.

2.2 Repeated Random Events

Fortunately, once faced with many independent coin tosses, our perfectly rational
super-human can forecast the future very well.

Repeated coin toss: We start with no money and every minute nature offers us a coin toss
where we can either win one dollar (heads) or lose one dollar (tails). Our lifetime wealth
then develops according to what is known as a ‘random walk’: we start at zero and might
win a dollar, then another dollar (two dollars of wealth), then we may lose five dollars in a
row (minus three dollars wealth), but then we win some money again, and so on.

What is our average lifetime wealth? According to the law of large numbers and
the central limit theorem we can be almost certain to have earned an average of
zero. Why? We have an equal chance to win or lose one dollar, on average, zero
dollar. With millions of coin tosses, the gains and losses almost perfectly cancel
each other out. On average, we expect to gain or lose nothing. We therefore also say
that the expected value of such a coin toss is zero.

There is a catch, however. An expected value of zero dollar does not mean that
we actually receive zero dollar. The expected value of a single coin toss is zero, but
we still know for sure that the outcome will not be zero. Equally, just because we
know that the average wealth over our life time is going to be very close to zero, our
final wealth at the end of our life-time will most probably not be zero. In fact, our
final wealth will probably be substantially above or below zero. Our final wealth is
not an average but a single realization and it is impossible to predict this exact
point. Hence, even if we are confident in predicting averages, we are not very good
at exact point predictions.

Figure 1 shows this intuitively with a Galton board, named after the English
scientist Sir Francis Galton. The horizontal position of the red ball dropped into the
Galton board represents the wealth level and the pegs represent the coin tosses.
Every time the red ball hits a peg there is an equal chance to fall to the left hand side
(loss of one dollar) or the right hand side (gain of one dollar). Each red ball follows

8We thank Klaas Landsman for valuable contributions to this and the previous paragraph.
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a random walk and many of these random walks (red balls) produce a binomial
distribution of final wealth levels, as approximated by the distribution of red balls at
the bottom of the Galton board. As binomial distributions are symmetric, the
expected value of random walks, the average, is zero (the middle slot at the bot-
tom). The large majority of the red balls, however, does not land in the middle slot.
Therefore, although we can be quite sure to expect an average of zero wealth,
individual final wealth levels are most probably not zero and the exact final wealth
level (final slot) of one single ball is unpredictable.

2.3 Risk Preferences

How much would we bet on a single coin toss against nature in which we can win
or lose one dollar? This depends on our risk preferences. The expected value is
zero, so if we are risk-neutral we should offer the expected value, which is zero.
This makes us indifferent between playing the game or not. But we might be
risk-seeking. As the final wealth level of a single coin toss is certainly not zero, we
might want to bet on the positive outcome of the coin toss and pay anything from 1
to 99 cents for playing the game. How much we are willing to pay for playing the

Fig. 1 Galton board
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coin toss is an indication of our risk-seekingness. Conversely, we might have a
preference to prevent losses and to—at least partially—safeguard our current wealth
level. In this case we are risk-averse and we require nature to pay us some amount
from 1 to 99 cents to take the risk (play the game). The more risk averse we are, the
more attractive nature must make the game for us to accept it. So, how much we are
willing to pay/accept to play the game depends solely on our personal risk pref-
erences. This also applies to fully rational super-humans. We assume that personal
preferences are given and stable, but heterogeneous across individuals. Rational
players are not necessarily risk-neutral. They can have any risk preference and
maximize their payoff conditional on their preference. Moreover, we can have
different types of preferences, not only for risk, but also for altruism or equality or
with regard to other economic and social dimensions.

3 Super-Humans Against Super-Humans

The crucial characteristic of fully rational super-humans is that they have perfect
knowledge about the rules of the game and know that this also applies to all other
players, including the knowledge that they are also fully rational. The latter is called
the ‘common rationality assumption’. Given this definition of rationality, let’s see
what happens if two super-humans play the following game.

Centipede game: Two super-humans, Superboy and Supergirl, play ball with each other.
Nature randomly gives Supergirl the ball. She can decide to throw the ball to Superboy, or
not. If she passes the ball, Superboy can decide to throw it back, or not. The game is
finished either after 100 passes or if one of the two players decides not to pass the ball
anymore. Nature also puts a number on the ball and increases it by 10 with every pass.
When Supergirl gets the ball from nature, the number on the ball is 10. After the first pass,
Superboy catches a ball displaying 20 on it. With the next pass the number changes to 30,
and so on. If a player decides not to pass the ball, s/he gets the number on the ball paid out
in dollar and the other player gets the same number divided by 10. Hence, the holder of the
ball receives 10 + n × 10 dollar and the other player ð10þ n� 10Þ=10 ¼ 1þ n dollar after
n passes.

Assuming that both players prefer to earn some money over nothing at all, how
many passes do we observe between the two players? In game theory, analyses
typically start at the end and then move backwards to the beginning. This is what
we call ‘backward induction’. After 100 successfully completed passes, Supergirl
will get the ball back and receive 1010 dollar. But Superboy can see this coming
and therefore does not pass the last ball back. Then Superboy gets 1000 dollar and
Supergirl 100. Knowing this, Supergirl would not even pass the second-to-last ball
to Superboy. Knowing this, Superboy would not make the pass before that one, and
so on. Hence, when Supergirl receives the ball from nature, she does not even do
the first pass and takes the 10 dollar. Superboy receives one dollar.
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Supergirl’s behavior is an equilibrium strategy. Under the common rationality
assumption, Supergirl knows the equilibrium strategy of Superboy (keeping the
ball) and she cannot benefit from changing her chosen strategy, while Superboy
keeps his strategy unchanged. This applies to both players as none of the two
players would pass the ball if randomly chosen by nature as first receiver. The
current set of strategies and the corresponding payoffs constitute a Nash equilib-
rium, named after the mathematician and John Nash.9

Backward induction is often not very intuitive, which is one of the reasons why
we have to assume super-humans. In many games only super-humans are actually
able to ‘see’ the end of the game, keep it in mind, rationally backward induct, find
the game-theoretical equilibrium strategy and finally play the corresponding equi-
librium behavior flawlessly right from the beginning. Also, under the common
rationality assumption we assume that everybody in the game is a super-human and
everybody knows this. This takes all randomness out of the centipede game. Does
this mean that randomness never plays a role for super-humans and always leads to
determinism unless a mechanistic randomization device is introduced? Not quite.
The point is that Supergirl may know everything about Superboy’s reasoning,
preferences and incentives, but this does not mean that Superboy’s actions are
always predictable. In fact, there are games where fully rational players want to be
as unpredictable as possible.

Rock-Paper-Scissors: Supergirl and Superboy simultaneously choose either Rock, Paper or
Scissors. Rock beats Scissors, Paper beats Rock, Scissors beats Paper.

Each strategy has a 1=3 chance to win, 1=3 chance to draw and 1=3 chance to
lose. If Supergirl thinks that Superboy always plays Rock she could beat him with
always choosing Paper. But this is not a Nash equilibrium as Superboy could
improve on this strategy set by always choosing Scissors. This, again, would lead
Supergirl to always choose Rock, and so it goes round and round. The only
equilibrium strategy in this situation is to mix the three options as randomly as
possible in order to win a least in 1=3 of all tries, draw in 1=3, and lose in 1=3. So,
the solution to this game is to play sequences that are perfectly random and
unpredictable, just like a three-sided dice would be.

This is harder than we think. Humans are not very good at simulating random
patterns. For example, in ‘randomizing’ we often underestimate clustering. This is
the so-called gambler’s fallacy, which describes the phenomenon that humans tend

9It does not make a difference if the two players communicate with each other. Whatever Superboy
promises, he cannot commit to it. Therefore his answer is cheap talk. In fact, given his monetary
preferences he has a clear commitment to keep the ball, because this maximizes his payoff.
Knowing this, Supergirl will keep the ball even if Superboy promises to pass it back.
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to expect a coin toss to show tails with a higher probability after a sequence of
heads (Tversky and Kahneman 1971, 1974). In other situations we may fall prey to
the hot-hand-effect (Gilovich et al. 1985). Here, we tend to believe that a series of
heads indicates a higher likelihood of heads in future coin tosses.10

Of course, Supergirl and Superboy can randomize perfectly so that both win,
draw and lose with equal probability over the long run. But as a thought experi-
ment, let’s take the Laplacian view to the extreme and see what would happen if
fully rational super-humans would really know everything with absolute certainty.
What would happen if the brains of two players are two completely transparent
randomization devices (we basically see all neurons fire) and both players are able
to perfectly anticipate—as a point prediction—what the other side will choose in
the next round? In this situation, the only equilibrium strategy for both players
would be to always play the same as the other so that every game ends in a draw.11

But what happens if a draw is not an option?

Matching pennies: Supergirl and Superboy each choose either heads or tails simultane-
ously. So, they both toss a virtual coin. Supergirl wins if the two coins match (heads and
heads or tails and tails). Superboy wins in all other cases (coins do not match).

As in Rock-Paper-Scissors the Nash equilibrium is a mixed equilibrium strategy
where both players have to perfectly randomize in order to win/lose half the time.
Draw, however, is not an outcome. Thus, if super-humans could perfectly look into
each other’s brains, both players would constantly point-predict the opponent’s
intention for the next move, update, change their own intentions and point-predict
again, only to realize that the opponent’s intention has changed accordingly, and so
on. In this setting, both players are frozen in an infinite optimization without the
ability to act. This may be where free will or emotions are ultimately needed as
‘circuit-breaker’. It may be that “to make a decision, emotion is the necessary
trigger (and) without emotion, one would be reduced to the state of an idiot savant
who goes on endlessly calculating without the ability to make a choice” (Olsen
1998).

10This phenomenon is found in sports, where people falsely attribute skill to a random series of
wins and therefore believe that the team will win again. The same also applies to the believe that
random successes in the past in investment performance will continue in the future. The
hot-hand-effect applies less to situations where people have to randomize themselves, but more to
situations where people have to correctly ‘read’ or identify random patterns produced by others.
11In terms of payoff it would not even matter whether two super-humans always play draw or
perfectly randomize and win, draw and lose equally often. All that matters is that both know with
certainty which of the two meta-strategies they will play: a perfect point-prediction of each other’s
next draw or a perfect randomization across the three options rock, paper, and scissors.
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4 Humans Against Humans

4.1 Bounded Rationality

Rationality requires extreme assumptions concerning players cognitive abilities:
perfect knowledge about all factors that affect the decision to be taken—so basically
about everything—and virtually infinite computing abilities to derive rational
expectations forecasts and optimal decisions. Needless to say that we are no
super-humans. And needless to say that no economist seriously believes that human
behavior is always fully rational. Rationality is only a benchmark model, but a very
powerful one. It allows us to analyze benchmark behavior, which, under evolu-
tionary pressure and over time, is theoretically more successful in dealing with
nature and its randomness than any other model. Nevertheless, it is far from present
in every human, in all situations, or at all times. In the 1950s, Herbert Simon
advocated the concept of bounded rationality, a more realistic description of human
behavior where agents have limited computing capacities and information (Simon
1955). Instead of perfectly optimal decision rules, boundedly rational players use
short-cuts, rules of thumb, or so-called heuristics to overcome ‘uncomputable’
problems. These heuristics are not necessarily optimal or perfect but in complex
environments they may perform reasonably well (for a discussion see Gigerenzer
and Selten 2002). By using heuristics we inevitably make mistakes, which may be
random but can also be biased.

4.2 Beliefs

As we cannot know everything, we are uncertain about the actions and beliefs (and
beliefs about the beliefs) of others. This is commonly referred to as strategic
uncertainty. Let’s assume that Superboy and Supergirl in the above ball game
(centipede game) can actually make mistakes. In other words, they are not
super-humans anymore but simply humans: Girl and Boy. Let’s also assume, that
Girl, who received the ball from nature first, actually passes the ball to Boy.
Remember that this is a move that super-humans would never do because it is no
Nash equilibrium. However, as we now look at humans, there is a possibility that
Boy receives the ball and suddenly has to form a belief about Girl’s motives for
passing the ball. Here are some beliefs that Boy might hold about Girl:

1. Girl violates rationality and made a mistake. She passed the ball, because she
simply did not understand the game properly. She did not backward induct and
did not realize that passing the ball in the first place is not fully rational.

2. Girl has other preferences (other than purely monetary ones). Maybe she passed
the ball because she is altruistic and actually wants Boy to get the profit from the
game. So, Girl actually gets more utility out of giving Boy the profits than
keeping the ball and the money to herself.
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3. Girl aims for a more efficient outcome. As the pot is increasing for both with
every pass, Girl might expect that Boy colludes with her against nature. After
the last pass, Girl and Boy would have extracted the highest possible profit from
nature. For this, however, Girls would have to believe that Boy passes the last
ball back to her (or have altruistic preferences).

Of course, the dilemma of the situation is that Boy does not know what Girl’s
underlying motivation was when she passed the ball. Boy has to form a belief about
Girl’s intentions, but he cannot know for sure. To make matters worse, in a world of
many players, there are many possible beliefs and weighted mixtures of beliefs
about each other’s underlying motivations.

With certain assumptions, game theory can deal with these situations. For
example, let us assume that all deviations from the rational equilibrium are because
of the first of the above reasons. If people make independent and unbiased mistakes
and we know about this, then Boy can compute how probable it is that Girl makes
another mistake.12 If players believe in a sufficiently high error rate, they end up in
a ‘Quantal Response Equilibrium’ (QRE) of passing the ball at least once
(McKelvey and Palfrey 1995, 1998). In fact, experimental evidence shows that the
vast majority of people pass the ball more than once. Repeated rounds of this game
also show, however, that the experienced error rate in the population in early rounds
feeds into people’s behavior in later rounds, which can then be explained quite
rationally in a QRE sense (McKelvey and Palfrey 1992).

The basic reasoning in the centipede game is not restricted to sequential moves
but can also take place in a one shot decision as the following example shows.

Guessing game: Every person in a larger group is asked to privately pick a number from 0
to 100 and write it on a piece of paper. An experimenter collects the numbers and computes
the average. The person with the number that is closest to 2=3 of the group average wins.
These rules are known to everybody before they pick the number (Moulin 1986).

Let’s assume that everybody in the room (except you) randomly picks a number.
Then the group’s average would be 50 and you would pick 2=3 � 50 ¼ 33. If
everybody thinks that, everybody would pick 33 and you should pick
2=3 � 33 ¼ 22. Then again, if everybody does that you should pick 14:�6, 9:�7; 6:5
etc. until you reach 0. Depending on their number, players exhibit distinct,
boundedly rational levels of cognitive reasoning (Nagel 1995). Players with no
level of reasoning (‘Level 0’) pick a random number, ‘Level 1’ players pick 33,
‘Level 2’ players pick 22, and so forth. In experiments, most players reveal first-
and second-order depth of reasoning (Nagel 1995; Camerer et al. 2004).

Under the common rationality assumption, there is no strategic uncertainty about
the others. Hence, if all players have an infinite level of reasoning, all players

12Of course, it might also be that Girl did not make a mistake at all but instead assumed that Boy
would make a mistake. She might have passed the ball in the expectation that Boy erroneously
passes it back. Hence, if we assume mistakes, observing a ‘mistake’ might not actually be a real
error, but rational speculation on the other side making one. See Osborne (2003) for a discussion
on this.
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choose the number 0, which is the Nash equilibrium of this game. Zero is the only
value where everybody in the group can win.

In a QRE-world, however, where we believe that some of us makes mistakes, 0
would not be a best response or equilibrium. We would have to pick a positive
number, but which one exactly solely depends on our belief about the error rate of
the other people in the group. Thus, to win this game in the real world, rational
players should not choose the theoretical Nash equilibrium but a positive number.
Interestingly, when doing so, we cannot tell anymore from the outside whether the
winner was extremely rational or made a mistake and was simply lucky.

There are several other models that try to explain the real-world deviations from
the Nash equilibrium in both the centipede and the guessing game (a.k.a. beauty
contest). Cognitive hierarchy models, for example, assume that each player has a
finite depth of reasoning and believes that s/he is the most sophisticated player in
the game. Thus, in the guessing game, a Level 2 player will assume that all others
are Level 1 and therefore choose 22. A Level 3 player expects all others to be Level
2 and chooses 14:�6, and so on.13 Another branch of game theory, referred to as
‘global games’, attempts to deal with the second of the above reasons (other
preferences), by assuming various simultaneous payoff structures that each player
may face with a certain probability (Carlsson and Damme 1993).

In essence, all models advance possible ways how certain beliefs about other
players’ actions and beliefs are formed. Depending on these beliefs, practically all
out-of-equilibrium outcomes can be reached. However, as all models plausibly
describe experimentally observed outcomes, we still lack a fundamental under-
standing of belief formation processes. How are initial beliefs (priors) about others
are formed under strategic uncertainty? How quickly do people learn and in which
way?14 A common assumption is that people form expectations and update their
beliefs about the real state of the world according to some learning scheme (Sargent
1993). Many studies in neuroscience, particularly in the area of sensorimotor
control, suggest that our brain is a Bayesian prediction machine.15 We would not be
able to catch a ball without continuous forecasting and updating of priors about its
most likely trajectory (Doya 2007). When it comes to cognitive processes, however,
other studies have shown that we are not very good at Bayesian updating. For

13In the centipede game, if Girl is Level 0 (non-strategic), she will compare the payoffs at each
possible endpoint of the game. As the pot is increasing for both with every pass, she will note that
her highest reward results from Boy passing the ball on the final round. Girl will thus choose to
always pass the ball. If Girl is Level 1, she will note that this outcome is not feasible for Boy on the
last round and choose not to pass the ball on her last round. If Girl is Level 2, she expects that Boy
is Level 1 and that he will, therefore, anticipate her ending the game on her last round. She
therefore chooses to end the game on the second to last round, and so on.
14For example, in the centipede game, assume that Boy believes Girl is rational, but then he
suddenly gets the ball. How did Boy come to his initial belief in the first place, and how does he
adapt his belief given that Girl did not behave accordingly?
15Also see the chapter of Bekkering, van Elk and Friston in this book.
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example, in the assessment of probabilities, people have been shown to neglect base
rates (Kahneman and Tversky 1973). In stock markets, investors seem to over- and
under-react to different types of news (De Bondt and Thaler 1985). Alternative
models, for example, reinforcement learning and adaptive learning of simple
forecasting heuristics or anchor and adjustment processes, are cognitively less
demanding and allow for more errors (Kahneman 2003; Tversky and Kahneman
1974; Hommes 2013). At the extreme end of the spectrum, some psychologists
argue that beliefs come first and that the brain is nothing more than a chatterbox that
rationalizes beliefs ex post. The brain looks for patterns in sensory data and infuses
them with meaning, forming beliefs. Then, it primarily focuses on the selection of
confirmatory evidence that reinforces those beliefs in a positive feedback loop.16

4.3 Speculation

With heterogeneous beliefs and different levels of reasoning, speculation comes
into play. We focus on financial speculation, which aims at making a profit from
price movements in a market, even if these price movements are completely
unrelated to the fundamental value of the underlying asset or its proceeds (e.g.,
dividends or interest).17 This can be seen in the following adaptation of the cen-
tipede game from (Moinas and Pouget 2013).

Bubble game: An asset, commonly known to have no fundamental value, is traded in a
sequential market with three traders. At each point in the sequence, an incoming trader has
two choices. S/he can either accept a buy offer at a given price and offer it to the next trader
in line at a higher price, or s/he can reject the buy offer, which leaves the current owner
stuck with a worthless asset. The last trader in the sequence cannot sell the asset anymore.
Thus, when traders buy the asset, they effectively speculate on not being last and on being
able to sell it to the next trader at a higher price. Traders do not know their position in the
market sequence. They do, however, receive a signal about their position. This signal is the
price of the asset that has been offered to them. The higher the offered price the higher the
probability of being last in the sequence.

Figure 2 shows a graphical representation of the game. All traders receive one
dollar initial capital. Trader 1 is offered to buy the asset at a randomly drawn price
P1 by nature.18 Trader 1 does not know whether the offer comes from nature or a

16A recent bestseller of psychologist and science historian Michael Shermer has popularized this
view (Shermer 2012).
17Despite many disadvantages and public criticism, speculation also has positive functions, for
example, to provide liquidity in financial markets, which makes it easier or even possible for others
to offset risk.
18As the random price can be above 1 dollar, we assume that a financial partner (who is not part of
the game) provides each player with sufficient capital to be able to buy the asset. When selling the
asset the financial partner gets all the profits except for 10 dollar which the trader receives.
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previous trader (as s/he does not know her position in the sequence for sure).19

When Trader 1 rejects the offer the game ends and all traders earn one dollar of
initial capital. When Trader 1 accepts the offer, the asset is offered to Trader 2 at a
price P2 [P1. When Trader 2 rejects, the game ends: Trader 1 earns nothing and
Trader 2 and 3 each earn their initial capital (one dollar). When Trader 2 accepts,
Trader 1 successfully sells the asset and earns 10 dollar. Trader 2 then offers the
asset to Trader 3 at P3 [P2. When Trader 3 rejects, the game ends and Trader 2 is
stuck with the worthless asset (Trader 1 gets 10 dollar, see above). As Trader 3 does
not know for sure whether s/he is last in row she might buy the asset, but will be
unable to resell. In this case Trader 3 gets nothing and Trader 1 and 2 each enjoy 10
dollar profit from successful reselling.

The Nash equilibrium of the bubble game is very similar to the centipede game:
due to backward induction no trader should buy the asset. Thus, the first, randomly
drawn price P1 of the asset will not be accepted by Trader 1. Accordingly, the
market value for the asset is equal to its fundamental value, namely 0. In their
experiments, however, Moinas and Pouget (2013) find substantial trading of this
worthless asset and the formation of significant price bubbles. Theoretically, the
QRE povides the best explanation for this buying behavior (Moinas and Pouget
2013). Traders seem to believe that their fellow traders down the line will make
mistakes. It is therefore rational for them to speculate on such mistakes and buy the
asset as long as the probability to sell it to someone next in line is high enough. This
result is very much in line with the famous ‘greater fool theory’ (Long et al. 1990),
which suggests that rational traders buy overvalued assets in the expectation that a

Fig. 2 Bubble game (extensive form)

19There are only two cases where traders can know their position for sure: when the offered price is
the minimum or the maximum of the range of randomly drawn prices, which signal with certainty
that they are at the first or last position in the sequence, respectively. For all other prices, however,
traders can only infer a probability not to be last.
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‘greater fool’ down the line will mistakenly buy the asset at an even higher price.20

In fact, experimental tests show that individuals who speculate a lot in this game
also produce stronger bubbles and crashes in more realistic and dynamic double
auction trading environments (Janssen et al. 2015).

5 The Madness of Crowds

As explained in the previous section, speculators may try to ride a bubble in the
belief that there are enough fools out there to buy them out. This can be a rational
strategy and there are many scientific models that explain the existence of such
rational bubbles in financial markets (see Stracca (2004) for an overview). It seems
that there are potentially enough greater fools out there for more professional
traders to speculate on. Heterogeneous agent models in finance assume that market
participants are very different, not only with respect to preferences but also in terms
of market experience, financial literacy and speculative sophistication (Hommes
2006). Empirical studies show that private traders, who are considered to be less
sophisticated than professional traders, do not gain from their trading on average
and actually underperform after deduction of transaction costs. Instead of (noise)
trading, private investors could have made more money buy simply investing into a
broadly diversified stock market index and do nothing (Barber and Odean 2000).

Speculating on greater fools, however, entails the risk to exit the market too late
when not enough fools are left to buy the overpriced stocks. To complicate matters
it is possible that speculators feed on each other, mistaking purchases of other
speculators as noise. As in the guessing game it is often hard to tell whether a
winning bid was really smart or simply lucky, particularly when there is a lot of
noise. Warren Buffet, one of the richest and most successful investors of all time,
once warned: “Nothing sedates rationality like large doses of effortless money.
After a heady experience of that kind, normally sensible people drift into behavior
akin to that of Cinderella at the ball. They know that overstaying the festivities—
that is, continuing to speculate in companies that have gigantic valuations relative to
the cash they are likely to generate in the future—will eventually bring on
pumpkins and mice. But they nevertheless hate to miss a single minute of what is
one helluva party. Therefore, the giddy participants all plan to leave just seconds
before midnight. There’s a problem, though: They are dancing in a room in which
the clocks have no hands.”21

20‘Greater fools’ are also often called ‘noise traders’, because they are seen to buy and sell assets in
financial markets at random, like ‘white noise’. Classical examples of noise traders are inexpe-
rienced individuals who inherit some money and decide to invest it in some random portfolio in
the stock market.
21Warren Buffet, Letter to the Shareholders of Berkshire Hathaway Inc., 2000, p. 14.
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5.1 Luck Versus Skill

This raises the question how speculators can be viewed as professional rational
agents who exploit noise traders and, at the same time, as ‘giddy Cinderellas’ who
miss the point of exit. The answer is that, although professional traders and
sophisticated speculators may not be greater fools, even they cannot beat the market
in the long run, which makes them fools, too; maybe lesser fools, but fools after all.
This notion is a direct implication of the efficient market hypothesis (EMH), which
states that nobody can systematically beat the market. The value of a financial asset
is defined by its expected future cash flow, discounted to its present value. Through
the market mechanism, all relevant forecasts of market participants are compounded
in market prices. If financial markets are efficient, which means that all information
about possible future states of nature and cash flows are impounded in market prices
instantaneously, then the residual price movements must be triggered by genuine
surprises, which nobody has seen coming and which are therefore, by definition, a
random walk (Fama 1965).

For a graphic representation, let’s extend the Galton board in Figure 0 to 1000
rows of pegs, run a couple of balls through it and track their paths. Figure 3 shows
some of the random walks of these balls, turned by 90° so that they now ‘fall’
horizontally along the x-axis of 1000 pegs. Remember that this is equivalent to a
1000 coin tosses in which we can either lose or gain a dollar. Most random walks
will deviate substantially and for longer periods from wealth levels of zero. Two
thirds can deviate as far as �31:70 dollars, indicated by the two dotted lines, which
are defined by r� ffiffiffi

n
p

: the standard deviation of the coin toss (r ¼ 1) and the
number of tosses (n ¼ 1000). One third of all random walks will deviate at some
point to wealth levels above and below r� ffiffiffi

n
p

, as the two outliers show with
wealth levels of �100 dollars.22

As the EMH predicts, the random walks in Fig. 3 have a high resemblance with
stock price charts. In fact, some surveys indicate that stock market traders and other
financial professionals cannot reliably tell the difference between random walks and
real stock price developments (Siegel 2013). Many studies in financial economics
show that the performance of the vast majority of financial professionals is due to
(random) luck and not skill (Fama and French 2010; Malkiel 1995). Luck to be
active in a certain period and in a certain class of investments. As a famous
multi-annual experiment by the Wall Street Journal showed there is a very high
likelihood that a dart-throwing monkey is an equally ‘skilled’ stock market fore-
caster as professional investment advisers (Porter 2005). If an investment manager

22Theoretically, if enough red balls fall through the Galton board, 1000 pegs or coin flips can
produce a sequence of 1000 heads, leading to a final wealth of 1000 dollar. This is equivalent to
Émile Borel’s infinitely typewriting ape, published in 1913. At one point in time, by chance, this
ape will have produced the Bible or Hamlet or any other finite text.
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has an exceptional track record of past investments, there is a good chance that we
have met the upper outlier random walk in Fig. 3 and not somebody who can
consistently predict super-investments that others simply did not see. The catch
with random walks is that the expected value of all future coin flips does not change
and always remains zero, no matter at which point we currently are. This is what
mathematicians and finance scholars call a ‘martingale’: at each point in a realized
random sequence, the conditional expectation of the next value in the sequence is
equal to the current value, irrespective of the preceding sequence. The martingale
property of asset returns in efficient financial markets is the reason why govern-
ments warn clients that past investment performance provides no indication for the
future. Unfortunately, too many investors believe that significant positive deviations
from the x-axis are a signal of skill and not luck (Hoffmann and Post 2014).23 In
doing so, they fall prey to the self-attribution bias, which is the tendency to attribute
success to one’s own disposition and failure to external forces (Miller and Ross
1975; Feather and Simon 1971).

The prevalence of the EMH is the reason why traders say that there is ‘no free
lunch at Wall Street’. You cannot simply predict future stock prices from some
charts (its preceding sequence) and make some easy money. Even news, when
publicly available, cannot be used as forecasting and trading advantage as it is
almost instantaneously compounded in the market price. In many financial markets
computer algorithms are involved in more than half of all financial transactions.
Algorithms trade in milliseconds, impounding new information in prices much

Fig. 3 Random walks

23For a vivid description of the pitfalls of randomness that financial traders falls prey to, also see
Nassim Nicholas Taleb’s bestseller ‘Fooled by randomness’ (Taleb 2005).
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quicker than any human trader could, which has a positive effect on the informa-
tiveness of prices (Chaboud et al. 2014).24

The bottom line is, that efficient financial markets are very good in ‘producing’
random walks. There is a broad consensus in the academic finance community—
including many critics of the EMH—that, because of the efficiency of most
financial markets, it is very hard, if not impossible, for traders to systematically beat
the market (Stracca 2004).25 In the end we are all greater or lesser fools in light of
the self-produced randomness on financial markets.

5.2 No Free Lunch 6¼ the Price Is Right

The EMH is probably the most powerful and, at the same time, most hotly debated
principle in Finance. This was demonstrated in 2013, when the Nobel Prize in
Economics was awarded to three eminent scholars: Eugene Fama, father of the
EMH; Robert Shiller, an outspoken critic of the EMH, and Lars Peter Hansen, who
offered an econometric compromise between the two. The EMH has two implica-
tions: one is that we cannot beat the market (no free lunch); the other is that, because
of this informational efficiency, the market price we observe is a correct estimate of a
financial asset’s future cash flows a.k.a. its fundamental or intrinsic value (the price
is right). The former looks at price changes (returns), the latter at price levels. In the
former we are in a world of arbitrage which exploits temporary differences between
prices.26 In the latter we are in a world of market timing, over-/undervaluation and
mean reversion, which exploit differences to fundamental values. It is the latter of the
two worlds in which we believe to observe ‘madness’ in markets: bubbles and
crashes that—with hindsight—seem to be everything but ‘the right price’.27 As
much as financial scholars agree on the former, that we cannot beat the market, they
are critical about the latter, the claim that the price is always right (Stracca 2004).

24The implications of algorithmic trading for social welfare are less clear. The informational
efficiency by speeding up price discovery with machines may not be socially efficient if traders
overinvest in technology due to adverse selection (Biais et al. 2011).
25This insight has led to the phenomenal growth of index funds, which specialize in automatic and
therefore very cost-effective investments in large, diversified index portfolios (the market return),
without the pretense of being able to beat the market.
26A classic example is triangular arbitrage in currency markets. If we pay 2 euro for 1 dollar, 1
dollar for 1 pound, and 1.5 euro for 1 pound, then it makes sense to buy pounds with euros (1.5:1),
sell pounds for dollars (1:1), and sell dollars for euros (1:2) until all three exchange rates are
perfectly balanced.
27A prominent example is the ‘tulipmania’ in March 1637 in the United Provinces (now the
Netherlands), where a single tulip bulb reached prices of more than 3000 guilders (florins), which
was about 10 times the annual income of a skilled craftsman. Note that many of the peak prices
were quoted in futures contracts which were later changed by decree into options contracts. Thus,
despite extreme price quotes, it is questionable whether much money had changed hands between
buyers and sellers (Thompson 2006).
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To unravel this apparent contradiction we have to understand that the EMH rests
on three, progressively weaker conditions, any one of which will lead to market
efficiency: (i) full rationality, (ii) independent deviations from rationality, and
(iii) unlimited arbitrage (Shleifer 2000). Proponents of the EMH argue that, even if
conditions (i) and (ii) do not hold, which is widely accepted, any systematic pricing
errors (biases) will be arbitraged away by more sophisticated traders. Critics of the
EMH argue that the potential of arbitrageurs to reduce mispricing is limited:
arbitrage is not riskless, in many situations there exist severe liquidity constraints to
arbitrage against the market, and arbitrage requires substantial investments in ICT,
real-time data, and human capital to succeed in a very competitive business
(Shleifer and Vishny 1997). Hence, even if there is no free lunch, because the
market does not offer any feasible arbitrage opportunities, this does not necessarily
lead to a convergence of prices to fundamental values (Stracca 2004). This has been
demonstrated by Robert Shiller, who is well-known for his early warnings of a
housing price bubble in a comparatively inefficient market with very limited arbi-
trage possibilities.28 A related criticism is that arbitrage is limited, because arbi-
trageurs themselves are boundedly rational. Then less rational traders (greater fools)
are driven out of the market by more rational traders (lesser fools) so that nobody
can beat the market anymore, but this does not exclude that assets are mispriced.
Overall, “the existence of a pricing bias due to behavioral factors is indeed fully
compatible with rational expectations and a random walk behavior of asset prices”
(Stracca 2004 p. 395).

5.3 From Mispricing to Madness

An important difference between economics and natural sciences is that today’s
economic decisions and actions depend on today’s beliefs and expectations about
the future (which again can differ from tomorrow’s belief about the future). The
predictions, expectations or beliefs of agents about the future are part of a highly
endogenous, dynamic and nonlinear feedback system which requires a theory of
expectations (Hommes 2013). An early and mathematically very elegant theory of
expectations was the rational expectations hypothesis (Muth 1961; Lucas Jr 1972):

28Accordingly, Shiller calls for more financial innovation that allow trading of risks that really
matter: “Had there been a well-developed real estate market before the financial crisis of 2008, it
would plausibly have reduced the severity of the crisis, because it would have allowed, even
encouraged, people to hedge their real estate risks. The severity of that crisis was substantially due
to the leveraged undiversified positions people were taking in the housing market, causing over 15
million US households to become underwater on their mortgages, and thus reducing their
spending. There is no contradiction at all in saying that there are bubbles in the housing market and
yet saying that we ought to create better and more liquid markets for housing” (Shiller 2014,
p. 1511).
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under assumptions of rationality this hypothesis provides a rational expectations
equilibrium (REE), where expectations and realizations, on average, coincide.
Theoretically, in an efficient market with risk neutral agents, prices correctly reflect
all possible future states of an asset’s cash flows (discounted at the risk free rate)
and their true, physical (objective) probabilities. Hence, from efficient risk neutral
market prices we can infer state price probabilities that coincide with objective
probabilities.29

The REE refers to situations where we play Roulette with well-defined states,
probability distributions and expected values. We refer to this kind of uncertainty as
risk. Risk can be seen as a very special case of uncertainty, but it is not the norm.
Most decisions in life are taken without knowing objective probabilities or all
possible states, often referred to as ambiguity (Wakker 2010). Ambiguous situa-
tions provide a fertile breeding ground for very heterogenous beliefs and expec-
tations (Stahl 2013) which agents have to learn about. As learning is not perfect,
boundedly rational systems can be complex, nonlinear and dynamic (Hommes
2013). In such an environment, strategic uncertainty about the beliefs and behavior
of others can easily create nonlinear feedback cycles. This would not be a problem
if the system eventually converges to the REE.30 There are many examples,
however, where bounded rationality leads to deterministic chaos that makes pre-
dictions virtually impossible and forecasts become practically random. Econometric
time series studies did not succeed in ruling out randomness in stock price data (or
deterministic chaos) and there is strong evidence for nonlinear dependence
(Hommes 2013). Hence, while fully informed rational expectations are
self-fulfilling in the REE, less informed prophecies can also be self-fulfilling in
boundedly rational systems under ambiguity.

A typical example of such a feedback cycle are situations where fundamental
values themselves are affected by market evaluations. To illustrate this, take a look
at the market price of Tesla Motors as shown in Fig. 4. In mid 2014, the electric car
company is trading at a market value of more than half that of General Motors,
Ford, and Honda. Each of those established companies had more than 50 times the
annual revenues as Tesla. “Pure electric cars remain a niche market, making up
<1 % of total U.S. car sales. And within that, Tesla is a niche product. Its Model S

29When markets reflect risk aversion, state price probabilities for undesirable (desirable) states are
higher (lower) than objective probabilities (Bossaerts and Oedegaard 2000). The equivalent
martingale measure (EMM) is a probability measure in mathematical finance that adjusts the
observed state price probabilities of future outcomes such that they incorporate investors’ risk
preferences. The EMM is a central tool in arbitrage pricing. It reflects the probability distribution
under which all possible bets are fair given complete markets and no-arbitrage conditions.
30Attempts by finance theorists to reconcile evidence of individual non-rational behavior with
aggregate rationality at the market level through learning and evolutionary selection has proved
difficult as they required a number of demanding conditions (see Sect. 5.2 and Stracca (2004) for a
discussion).
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costs about $75,000, while prices for the Leaf start around $30,000 and the Volt
around $35,000.”31 Moreover, in 2014 Tesla sold less e-cars than Nissan.32

Is Tesla a bubble? Interestingly, Tesla’s CEO himself, Elon Musk, repeatedly
remarked that he considered the stock to be overvalued (see quotes in Fig. 4).
Indeed, there are indications that the price is partially driven by speculation.33 It
may therefore be rational, albeit risky, for investors to ride the bubble as long as
others are still buying. In support of the latter, apparently many people believe that
Tesla will lead a revolution in the car industry. In fact, the high share price, possibly
also driven by pure financial speculation, provided enough funding for Tesla to
make some very expensive investments in potentially game-changing projects.34

Thus, if shareholders’ beliefs have been over-optimistic originally, precisely this
deviation from otherwise rational expectations, possibly reinforced by rational
speculation, may have provided Tesla with the necessary capital to make their
beliefs more realistic.

Even with hindsight it will be difficult to disentangle the underlying effects in
Tesla’s stock price development. “There is often a tendency (probably because

Fig. 4 Stock price of Tesla motors, 2010–2014

31According to marketwatch.com, Oct 3, 2014 2:59 p.m. ET.
32In September 2014, the most sold e-car was Nissan Leaf (2881 units), followed by Tesla’s
Model S (1650 units) and Chevrolet’s Volt (1394) and BMW’s 3i (1022).
33In a cryptic tweet in October 2014, Musk mentioned “D and something else”. As a popular
investor news site, MarketWatch.com, reported, “Musk’s cryptic tweets last Thursday—and the
rampant speculation they have fueled since—have pushed Tesla (…) shares about 9 % higher from
their Wednesday close.”
34Tesla announced that they invest 5 billion US$ in a lithium-ion battery Gigafactory with a
planned production that exceeds the world capacity of 2013. Tesla also embarked on building an
ambitious network of Supercharger stations along roads to facilitate longer distance journeys.

86 U. Weitzel and S. Rosenkranz



economists are themselves affected by hindsight bias) to regard a certain devel-
opment caused by market developments as unavoidable (supporting the idea of
exogenous rationality). But it can sometimes be the result of a self-fulfilling spiral
in which the prime mover is indeed an ‘endogenous’ market whimsical move. (…)
The issue of the feedback mechanism seems most relevant in this respect. Thus far,
there has been no systematic attempt to address the issue of the feedback from
market prices to fundamentals, and only some informal speculations have been
provided (Shiller 2000a, b; Daniel et al. 2002)” (Stracca 2004, p. 397).

6 Conclusion

Interactions between people are rich in randomness, consciously produced or
unintended. The fertilization of economics and finance with psychological ideas and
evidence allows for new insights in dealing with randomness in human interactions,
but it also adds to the risk of being less parsimonious (Tirole 2002). A useful feature
of many game theoretical models and the classical REE is that they impose a strong
discipline on the degrees of freedom in economic models. Boundedly rational
models run the risk of incorporating too much randomness and freedom as if
anything goes. “To avoid ‘ad hoccery’, a successful bounded rationality research
program needs to discipline the class of expectations and decision rules” (Hommes
2013, p. 9). In doing so, and in order to understand ‘madness’ in markets, more
investigation in social psychology rather than individual psychology is needed. We
need to understand how randomness can be channeled at the aggregate level in
social and economic systems, for example through the synchronization of expec-
tations with improved market structures and communication (see, e.g., Shiller
2000a, b).
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permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited. The images or other third party material in this chapter
are included in the work’s Creative Commons license, unless indicated otherwise in the credit line;
if such material is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the license
holder to duplicate, adapt or reproduce the material.
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