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Abstract. An usual way to acquire information about monitored
objects or areas in earth surface is by using remote sensing images. These
images can be obtained by different types of sensors (e.g., active and
passive) and according to the sensor, distinct properties can be observed
from the specified data. Typically, these sensors are specialized to encode
one or few properties from the object (e.g. spectral and spatial proper-
ties), which makes necessary the use of diverse and different sensors to
obtain complementary information. Given the amount of information col-
lected, it is essential to use a suitable technique to combine the different
features. In this work, we propose a new late fusion technique, a majority
voting scheme, which is able to exploit the diversity of different types of
features, extracted from different sensors. The new approach is evaluated
in an urban classification scenario, achieving statistically better results
in comparison with the proposed baselines.
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1 Introduction

Over the years, there has been a growing demand for remotely-sensed data. Spe-
cific objects of interest are being monitored with earth observation data, for the
most varied applications. Some examples include ecological science [1], hydrologi-
cal science [2], agriculture [3], military [4], and many other applications. Remote
sensing images (RSIs) have been used as a major source of data, particularly
with respect to the creation of thematic maps. This process is usually modeled
as a supervised classification problem where the system needs to learn the pat-
terns of interest provided by the user and assign a class to the rest of the image
regions. In the last few decades, the technological evolution of sensors has pro-
vided remote sensing analysis with countless distinct information, e.g., spatial,
spectral, temporal, thermal.

Typically, these sensors are designed to be specialists in obtaining one or
few properties from the earth surface. Therefore, it is necessary the utilization
of diverse and different sensors to gather the most complementary information
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as possible. In this scenario, it is essential to use a more suitable technique to
combine the different features in a effective way. Mura et al. [5] confirmed the
benefit of the use of data fusion in the challenges associated with RSI analysis
in competitions. They pointed out that it is difficult to conclude which method
has the best performance, since it depends on the foundation of the problem and
the nature of the data used.

In this work, we propose a new late fusion technique, able to exploit the
diversity of these different types of features, extracted from various sensors. Our
approach, called Dynamic Majority Vote, uses different learning techniques on
the extracted features to create base classifiers. Then, it assigns weights to each
classifier according to their ability in identifying individual classes. The weights
are calculated regarding the confusion matrix of a classifier in a validation set.
Our method exploits the specialty of each classifier to solve multiclass problems.

2 Related Work

Despite the recent advances in feature extraction and representation for RSIs,
the combination/fusion of these features, especially when they are extracted by
different sensors, requires the development of new techniques.

In this context, Li et al. [6] developed a classification technique based on
active learning to combine spatial and spectral information. Petitjean et al. [7]
proposed an extraction approach to explore the spatiotemporal characteristics
for classification in RSIs. Yang et al. [8] presented a system for evaluating the
growth of crops using high resolution images from satellites and airplanes.

Ouma et al. [9] and Wang et al. [10] showed approaches that use multi-scale
data to identify land use changes. In Ouma et al. [9], the authors presented
a multi-scale segmentation technique with a neural network (unsupervised) for
analysis of vegetation. Wang et al.[10] in the other hand, proposed an approach
to change detection in urban areas. That method is based on the fusion of charac-
teristics from multiple scales through the average pixel of each scale. The result
is a new image corresponding to the combination of scales.

More recently, Gharbia et al. [11] made an analysis of fusion techniques
images (Intensity-Hue-Saturation (IHS), Brovey Transform (BT), Principle
Component Analysis (PCA)) for remote sensing tasks, at pixel level, showing
that all techniques have limitations when used individually. They encourage the
use of hybrid systems as a solution. Mura et al. [5] analyzed the approaches
used in the past nine years of data fusion competition (Data Fusion Contest).
The approaches are separated into three main categories: the level of informa-
tion/pixels, where the data are combined in the way they were extracted; feature
level, where the data are extracted and used as entries for a classification model;
and the decision level, which uses a combination of different outputs from various
sources, to increase the robustness of final decision (using, e.g., a majority vote).
After investigated the last challenges, Mura et al. confirmed the benefits of the
use of data fusion in the challenges associated with RSI analysis in competitions.
In the majority of cases, the frameworks proposed in the literature are projected
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to deal with a specific scenario or a particular region, using techniques apart of
each domain and object, e.g., roofs are checked with shape features, tree and
vegetation are discriminated using a vegetation index. However, it is very diffi-
cult to conclude what is the best approach, since it depends on the foundation of
the problem, the nature of the data used and the source of information utilized.

The proposed method aim at exploiting multi-sensor data in a more general
way. We propose a framework based on a supervised learning scheme, dealing
with different scenarios, regions and objects, on the creation of thematic maps for
the classification task. For that we propose a new approach, at decision level, to
handle with an amount of decisions from different classifiers, and combine them
for a final decision for each pixel in the thematic map. Contrary to approaches
from the literature, our method uses the kappa index [12] as effectiveness measure
to compare two classifiers. This fact brings some advantages since kappa index
is more robust in dealing with unbalanced training sets.

3 Proposed Method

The proposed method is projected to receive two images from the same place with
different domains as input: an image with very high spatial (V HS) resolution and
another one with hyperspectral (HS) resolution. Our method is developed for a
multiclass mapping scenario. Its main characteristic is to exploit the expertise
of each learning approach over each class in order to find the most specialized
classifiers. The result of this process is a dynamic weight matrix.

Our approach is divided into five main steps: object representation, fea-
ture extraction, training, dynamic weight matrix construction, and predicting.
Figure 1 illustrates the proposed framework. We detail each step next.

Fig. 1. The Proposed Dynamic Weight Matrix (DWM)-based framework

Object Representation. Let YR, the set of labels of regions R, be the input
dataset, Y t

R is the training set. In an experimental scenario, YR = Y t
R ∪Y t′

R , where
Y t′
R is the test set. Let IV HS and IHS be the input images, the first step is to define

the objects to be described by the feature extraction algorithms. For the IV HS

image, we perform a segmentation process over the regions of Y t
R in order to split

the entire image into more spatially homogeneous objects. It allows the codifica-
tion of suitable texture features for each part of the image. Due to the low spa-
tial resolution, we consider the pixel as the unique spatial unit for the IHS image.



62 E.F. de Andrade Jr. et al.

(a) (b)

Fig. 2. (a) V HS input image segmented. (b) HS input image with reflectance values.

Anyway, we are more interested in exploiting the spectral signature of each pixel.
Figure 2 illustrates the object representation phase for each input image.
Feature Extraction. We use the descriptor definition proposed by
Torres et al. [13]. Concerning IV HS image, we have used image descriptors based
on visible color and texture information to encode complementary features. For
the IHS image, we exploit dimensionality reduction/projection properties from
the spectral signature in order to obtain diversity.

Training. Let Y v
R ⊂ Y t

R be a validation set split from the training set. We use the
features extracted by each descriptors over the remaining training samples and
a set of learning methods to create an amount of classifiers (tuples of descrip-
tor/learning method). We use the obtained classifiers to learn the probability
distribution of the training set. Notice that training process requires a mapping
between spatial and spectral resolutions, using an interpolation method, since
IV HS and IHS images are from different domains.

Dynamic Weight Matrix Construction. Algorithm 1 outlines the proposed
steps for the construction of the dynamic weight matrix (Wdyn). Let C = {ci ∈
C, 1 < i ≤ |C|, i ∈ N

∗}, be a set of trained classifiers ci over different features
from spatial and spectral domains, and evaluated in the Y v

R . Let MC = {Mi ∈
MC , 1 < i ≤ |C|, i ∈ N

∗}, the set of confusion matrices Mi computed from ci,
be the input of the algorithm. Let L = {li ∈ L, 2 < i ≤ |L|, i ∈ N

∗}, be a
set of all classes li in the problem. For each li, the hits at the class li (hli) are
extracted from MC , and created a list of pairs (hli/ci) sorted by the hli (Line
2), and for every pair (hli/ci) a initial weight is assigned in Wdyn, regarding
with the position j of the pair (hli/ci) in the sorted list (Line 3-4). In Lines 5-6,
the column i of Mi is used to compute: (1) the sparsity S, which indicates the
degree of importance of ci at li, given by the ratio of the highest miss value at
column i (maxmiss) and the sum of all predicts, (hits and misses); and (2) the
uniform misses expected for each class (mexp), given by the the percentage of
misses (pmiss) uniformly distributed to the other classes. Finally, at Lines 7-11
the weights of Wdyn are updated when the kappa index of ci (κci) is greater than
the mean of all classifiers kappa’s index (κ̄). When S is less than mexp, the weight
in Wdyn for ci in li is increased and decreased otherwise, regarding with the ratio
between κci and κ̄. The reweight in the Wdyn aims to explore the specialty of
each classifier in every class, given a gain (or penalty) for those classifiers which
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Algorithm 1. Construction of the Dynamic Weight Matrix.

1 Input: Stack of Confusion Matrices (MC)
2 Initializing: Set Wdyn ← 0, individual κci and mean κ̄ kappa index.
3 for each class li in L do
4 Creating of a sorted list of pairs (hli/ci)
5 for every pair (hli/ci) at position j do
6 Initial weight in Wdyn ← (j + 1.0)/|L|
7 Compute the sparsity S ← maxmiss/(hits + misses)
8 Compute mexp ← pmiss/(|L| − 1)
9 if κci > κ̄ then

10 if S < 2 ∗ mexp then
11 Gain at Wdyn ← (κci/κ̄)*Wdyn

12 else
13 Penalty at Wdyn ← (κ̄/κci)*Wdyn

14 end for
15 end for

show a sparsity (or density) in the predicts by class at the confusion matrix,
regarding to the validation set.

Predicting. Once the Wdyn is built, the same method of segmentation is used
in Y t′

R , and the segmented objects are labeled by the classifiers as regions (spa-
tial tuple) or pixel by pixel (spectral tuple) creating a thematic map for each
classifier. Once more, since the thematic maps from the IHS image have a differ-
ent resolution, we apply the same interpolation method as in training phase, to
map its outcomes to the spatial resolution domain. Finally, the thematic maps
are used as input of the dynamic majority vote technique. We used the weight
of each classifier in their respective predicted classes for each labeled pixel in
thematic maps with the dynamic weight matrix previously built, and taking the
final decision according to the highest final weight class for that pixel in specific.
An example of how to use the Wdyn is showed in Figure 3.

Fig. 3. Given the output of the classifiers in a pixel, the relevance of each prediction is
given by the dynamic weight matrix, and chosen the class with the highest final weight.
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4 Experiments

4.1 Setup

Dataset. We have used the grss dfc 2014 [14]. It is an urban classification sce-
nario with two sensors information: (a) Very High Spatial (VHS) resolution;
and (2) Hyper Spectral (HS) resolution. Measures. We used Overall Accuracy
and Kappa index. For the statistical test of significance, we used paired Stu-
dent t-test (confidence of 95%), with 10 samples for each experiment, since in
a statistical way that will still provide the desired confidence for our experi-
ments. Segmentation. We used the IFT-Watershed [15] with spatial radius 5
and volume threshold equal to 100. Feature Extraction. We used four image
descriptors to encode spatial information [16]: BIC, CCV, GCH, and Unser. To
extract spectral information, we have used four different approaches: (1) the
raw data of HS image (84 Bands), (3) the Fisher Linear Discriminant (FLD)
[17] components, (3) the first 3 principal components of PCA [18], and (4) the
first 4 PCA components. Training. A validation set is split from training set
and trained in a Stratified ShuffleSplit cross validation scheme, using a group
of 6 weak learners: Gaussian Naive Bayes, k-Nearest Neighbors (3, 5 and 10-
Nearest Neighbors), Decision Tree, and a Support Vector Machine with linear
kernel, using the features extracted by each descriptors, resulting in the total of
48 classifiers (24 from each domain). We have used the implementation of those
learning methods available in the Scikit-Learn Python library All learning meth-
ods were used with default parameters which means we did not optimize them
whatsoever. The management of HS data is made using the Spectral Python
(SPy) Library, including the extraction of features from spectral domain. We
used the Nearest-neighbor interpolation to the mapping in training and predict-
ing phases. Baselines. We have implemented a diversity-based fusion framework
as proposed by Faria et al. [19], varying the number of classifiers selected, and
using the majority vote at the meta learning phase. We setup the framework
with 4 different ways: using only the spatial and spectral images, the spatial and
spectral images in parallel and fusioning the results, and combining the spatial
and spectral domains at the construction of the validation matrix. Refer to [19]
for further details about the framework.

4.2 Results and Discussion

The results obtained by the proposed method (Dynamic Majority Vote) against
the baselines, with the confidence intervals (95%), are presented in Figure 4.

The comparison shows a statistical significant difference among our approach
and the baseline proposed at the confidence of 95%, regarding with the t-student
test. Since our method is based on the simple majority vote, a special case where
all weights in the dynamic weight matrix are equal to 1, was already expected
the outperforms results. Our approach has the ability to handle with the issue
of instead give to a classifier a fix weight (when used a weight majority vote),
assign to each classifier a separated weight for each class predicted. In this way
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Fig. 4. The results of the proposed approach in comparison with the baselines based
on [19], regarding of the accuracy measure in (a) and kappa index in (b).

we exploit these classifiers who have a specialty in some specifics classes, but
would be suppressed by the others classifiers in an equal weight scheme.

Another good point in our approach, is the capacity to deal with information
from different domains, without being unfair in the weighting, just because the
initial weight is assigned without seeing the general performance of the classifier,
but only at the specific class. As a drawback, our method do is not handle with
the binary classification problem (since the analysis of the sparsity of a classifier
with two classes does not make sense), and the initial weight might not be enough
to deal with an amount of bad classifiers.

5 Conclusion

In this paper, we proposed a framework called Dynamic Majority Vote for
remote sensing image classification with data from multiple sensors. Our approach
extracts features from different domains, which are trained with different learn-
ing techniques. This process creates a set of classifiers with different expertise.
Our method assigns a weigh for each classifier according to their expertise in each
specific class. The creation of the final thematic maps consists in classifying each
non-labeled region by fusioning the predicted output of each classifier according
to their weights. We conducted a series of experiments in the grss dfc 2014 [14]
dataset (IEEE GRSS Data Fusion Contest 2014) that demonstrate a significant
improvement in comparison with the proposed baselines. For the future work, we
intend to extend this framework exploring the use of more descriptors, classifiers,
and other late fusions methods. We also plan to test our method with other real
scenarios, such as agriculture and environmental monitoring.
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