Supporting Real-Time Monitoring in Criminal
Investigations

Robin Keskisarkka™) and Eva Blomqvist

Link6ping University, Link6ping, Sweden
{robin.keskisarkka,eva.blomqvist}@liu.se

Abstract. Being able to analyze information collected from streams of
data, generated by different types of sensors, is becoming increasingly
important in many domains. This paper presents an approach for cre-
ating a decoupled semantically enabled event processing system, which
leverages existing Semantic Web technologies. By implementing the actor
model, we show how we can create flexible and robust event processing
systems, which can leverage different technologies in the same general
workflow. We argue that in this context RSP systems can be viewed
as generic systems for creating semantically enabled event processing
agents. In the demonstration scenario we show how real-time monitoring
can be used to support criminal intelligence analysis, and describe how
the actor model can be leveraged further to support scalability.

Keywords: Semantic event processing + Event processing + RDF stream
processing - Actor model - Criminal intelligence

1 Introduction

Semantic Web (SW) technologies provide flexible tools for working with hetero-
geneous data, and Linked Data principles enable information to be shared by
explicitly articulating the underlying schemas and ontologies.

Traditional SW technologies have been developed to support slowly evolving
(or static) data, and scale quite poorly when data is highly dynamic. In recent
years, a number of RDF Stream Processing (RSP) systems have therefore been
developed to support streaming Linked Data, focusing on timely execution of
continuous queries over streams.

Unlike most types of event processing approaches, such as Drools fusion' and
ESPER?, RSP systems use the Linked Data principles to leverage the semantics
in the streaming data. The available RSP systems, however, provide only a
limited set of features out-of-the-box. For example, in the available versions
of C-SPARQL [3], CQELS [5], INSTANS [8], and ETALIS/EP-SPARQL [1],
streams, queries, and result listeners are closely coupled with their respective
engine. This can make them difficult to use in settings where streams are not

! http://www.drools.org/.
2 http:/ /esper.codehaus.org/.
© Springer International Publishing Switzerland 2015

F. Gandon et al. (Eds.): ESWC 2015, LNCS 9341, pp. 82-86, 2015.
DOI: 10.1007/978-3-319-25639-9_16


http://www.drools.org/
http://esper.codehaus.org/

Supporting Real-Time Monitoring in Criminal Investigations 83

under the direct control of the system itself, or when other technologies need to
be included in the event processing pipeline.

In this paper we present an approach for creating decoupled semantically
enabled event processing systems by leveraging existing technologies, and demon-
strate its applicability in a criminal intelligence scenario.

2 Related Work

The Streaming Linked Data framework, based on C-SPARQL, allows publish-
ers to stream data to a central server, where the data can be queried, stored,
replayed, decorated, and republished as new streams [2]. This drastically improves
the flexibility of the RSP system, making it possible to provide APIs and add
functionality to the standard C-SPARQL system.

The Super Stream Collider is platform for combining semantically anno-
tated Linked Stream and Linked Data sources [7]. It was constructed around the
CQELS engine and supports registering of streams and queries in a web-based
interface. This simplifies the querying of static and dynamic resources, and allows
rapid development Linked Stream mashups that can be used by applications.

Both approaches significantly increase the flexibility of their respective RSP
systems, but the frameworks are still closely coupled with the structure of the
underlying engines. There are several issues related with closely coupled systems.
For example, a close coupling with the data streams limits the ability to handle
stream overload. Most engines naively attempt to handle the full set of streaming
data, regardless of rate, volume, and number of registered queries, which can
create bottlenecks that deteriorate performance across the entire system.

CQELS Cloud uses scalable parallel algorithms to support elastic parallelis-
ing of query execution [6]. This approach helps to scale processing, both in terms
of parallel queries and stream rates, but the underlying assumption is still that
it will be possible to scale up the processing to handle all the incoming data.

3 Architecture Overview

In a decoupled event processing system the states of event producers, events,
and event consumers are independent of each other [4]. This demo implements
the actor model to handle message based communication, which completely sep-
arates the states of the different parts of the event processing system.

We implemented the actor model using the Akka® toolkit and runtime envi-
ronment, which supports efficient, lightweight, and scalable, asynchronous mes-
sage communication between its actors. This approach supports a robust and
possibly distributed system, which avoids slow-downs that may result from indi-
vidual components.

FEvent producers generate internal event streams from event sources, which
are typically outside the control of the system, and these event streams are then

3 http://akka.io/.


http://akka.io/

84 R. Keskisarkka and E. Blomqvist

fed to event consumers. Event Processing Agents (EPAs) are special in that they
are both event consumers and event producers [4]. To handle the communication
between producers and consumers we created an event distribution mechanism,
which pushes data from event producers (identified by URIs) to the listening
event consumers. Sequential processing of event streams is made possible by
pipelining several EPAs, thus enabling event processing requiring multiple steps.

The novelty of this approach in the RSP context is that it allows us to
abstract from the implementation specific aspects of individual RSP engines,
facilitating the use of multiple different engines within the same system. We
represent events as RDF graphs, which requires RSP engines that support only
RDF triples streams to decompose the events into triples internally. To demon-
strate our approach we integrated the CQELS engine by creating wrappers for
its internal RDF stream and query listener.

We can view each registered RSP query together with its output stream as an
EPA. This allows us to seamlessly integrate different RSP engines in the overall
workflow, and we can use optimized EPA components for such things as text
analysis, stream decoration, and statistical analysis.

4 Demonstration Scenario

Criminal investigations involve a wide range of data sources, ranging from crim-
inal records, modus operandi descriptions, case files, criminal reports, videos,
images and more. When large volumes of data need to be interpreted, analysts
have to rely heavily on their own domain expertise and skill to detect potential
patterns in the data. However, pure manual work scales poorly as the amount of
accumulated and continuously delivered data increases. Although many of the
tasks of the analysts are difficult to articulate some can be formalized as rules,
for example, to filter, aggregate, or decorate events.

The task in the demonstration scenario is inspired by real-world investigative
tasks of the police. Based on a stream of Automatic Number Plate Recognition
(ANPR) observations, originating from CCTV footage, the task is to monitor
vehicles to detect when two “persons of interest” are possibly meeting up.

The system generates an alert when two vehicles, belonging to persons of
interest in an investigation, are observed in close proximity of each other within
a small time window. All observations are visualized on a map, while detected
events are persisted in a separate tab.

The available data is: (1) a stream of ANPR observations, (2) a dataset con-
taining the locations of the ANPR cameras, and pre-calculated distances between
them, (3) a dataset containing registered owners of vehicles, and (4) “persons
of interest” within specific investigations. The static datasets (2-4) are repre-
sented as RDF, while the ANPR stream is converted into RDF (from csv) in
real-time via a direct mapping by a designated event producer. A diagram of the
demonstration setup can be seen in Fig. 1.

The data used in the demonstration was created artificially (by the authors),
but care was taken to follow the format of the ANPR data available within



Supporting Real-Time Monitoring in Criminal Investigations 85

v

Fig. 1. An event producer, Si, converts a stream of csv-strings into an RDF stream.
The generated event stream is decorated with camera location information, EPA;.
Vehicle owner information is added to the stream, EPAs, and finally, vehicles belonging
to the same cases that are potentially meeting up are detected, EPAs. The event
streams generated by EPA; and EPAjs are consumed by the output formatter, O,
which converts them for use in the web-interface.

the VALCRI project?, which in turn reflects the formatting of actual ANPR
data used by the UK police. The locations of the ANPR cameras were set to
street crossings in small section of London (UK), and possible paths were gen-
erated within and through this area. Observations of randomized registration
plate numbers were assigned to paths, and the average delay between observa-
tions was approximated based on the distance between cameras. The number
of observations were balanced against time of day to roughly correspond to the
distribution of ANPR data in the VALCRI project. The queries and datasets
used in the demo, and a recording of the running demo is available at http://
valcri.ida.liu.se:8080/eswc2015/.

5 Scalability

The demonstration scenario was run on standard PC with a 1.7 GHz dual-core
processor and 4 Gb RAM. In the scenario, the CQELS engine runs three parallel
queries and processes up to 85 events per second, which is equivalent to approx-
imately 285 triples per second. When benchmarking the system the same setup
gives acceptable performance even when increasing the application time by up to
15 times, thereby processing more than 1200 events per second (corresponding
to more than 4000 triples per second).

The Akka framework supports communication between different virtual
machines running on the same machine, as well as communication in a peer-
to-peer fashion. This means that the approach could be used to tackle several
scalability issues, for example, to support more parallel queries by running and
interlinking several instances of RSP engines on separate machines.

6 Conclusions

We have shown the potential of leveraging SW technologies and RSP engines in
the context of semantic event processing. Our demo application demonstrates

* http://www.valcri.org/.


http://valcri.ida.liu.se:8080/eswc2015/
http://valcri.ida.liu.se:8080/eswc2015/
http://www.valcri.org/

86 R. Keskisarkka and E. Blomqvist

how an actor system can be used as a way of setting up a decoupled event
processing system, where RSP engines can be viewed as a generic means for
creating semantically enabled EPAs. We also describe how the same architecture
can be used to distribute processing and leverage more than a single RSP system,
for example, to take advantage of engine specific features.

In criminal investigations manually processing continuously delivered mes-
sages is often not possible. Limited resources means that data is often logged
until need for analysis arises, thereby missing out on the potential benefit of
detecting events in real-time. The demo scenario shows how event processing
can be used to support some investigative tasks, and how RSP systems can
be used to support semantically enabled event processing. The demo visualiza-
tion shows how this has the potential to be used to develop tools for criminal
investigations.

Acknowledgments. This work was supported by the EU FP7 project Visual Analyt-
ics for Sense-making in Criminal Intelligence Analysis (VALCRI) under grant number
FP7-SEC-2013-608142.

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: Proceedings of the 20th International
Conference on World Wide Web (2011)

2. Balduini, M., Della Valle, E., Dell’Aglio, D., Tsytsarau, M., Palpanas, T.,
Confalonieri, C.: Social listening of city scale events using the streaming linked
data framework. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C.,
Parreira, J.X., Aroyo, L., Noy, N., et al. (eds.) ISWC 2013, Part II. LNCS, vol.
8219, pp. 1-16. Springer, Heidelberg (2013)

3. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF
streams with C-SPARQL. SIGMOD Rec. 39(1), 20-26 (2010)

4. Etzion, O., Niblett, P.: Event Processing in Action, 1st edn. Manning Publications
Co., Greenwich (2010)

5. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and linked data. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370-388. Springer, Heidelberg (2011)

6. Le-Phuoc, D., Quoc, H.N.M., Le Van, C., Hauswirth, M.: Elastic and scalable
processing of linked stream data in the cloud. In: Alani, H., Kagal, L., Fokoue,
A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., et al. (eds.) ISWC
2013, Part I. LNCS, vol. 8218, pp. 280-297. Springer, Heidelberg (2013)

7. Quoc, H.N.M., Serrano, M., Le-Phuoc, D., Hauswirth, M.: Super stream collider-
linked stream mashups for everyone. In: Proceedings of the Semantic Web Challenge
Co-located with the 11th International Semantic Web Conference, Boston, MA,
USA, November 2012

8. Rinne, M., Nuutila, E., Térmé, S.: INSTANS: high-performance event processing
with standard RDF and SPARQL. In: Proceedings of the ISWC 2012 Posters and
Demonstrations Track, Boston, US (2012)



	Supporting Real-Time Monitoring in Criminal Investigations
	1 Introduction
	2 Related Work
	3 Architecture Overview
	4 Demonstration Scenario
	5 Scalability
	6 Conclusions
	References


