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Abstract. The biclustering methods have an increasing interest in the
community of machine learning and data mining. These methods iden-
tify subsets of examples and features with interesting patterns. Recently
ensemble approach has been applied to the biclustering problems with
success. Their principle is to generate a set of different biclusters then
aggregate them into only one. The crucial step of this approach is the
consensus functions that compute the aggregation of the biclusters. We
identify the main consensus functions commonly used in the clustering
ensemble and show how to extend them in the biclustering context. We
evaluate and analyze the performances of these consensus functions on
several experiments based on both artificial and real data.
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1 Introduction

Biclustering, also called direct clustering [18], simultaneous clustering in [14,29]
or block clustering in [15] is now a widely used method of data mining in various
domains in particular in text mining and bioinformatics. For instance, in docu-
ment clustering, in [7] the author proposed a spectral block clustering method
which makes use of the clear duality between rows (documents) and columns
(words). In the analysis of microarray data, where data are often presented as
matrices of expression levels of genes under different conditions, the co- clustering
of genes and conditions overcomes the problem encountered in conventional clus-
tering methods concerning the choice of similarity. Cheng and Church [4] were the
first to propose a biclustering algorithm for microarray data analysis. They con-
sidered that biclusters follow an additive model and used a greedy iterative search
to minimize the mean square residue (MSR). Their algorithm identifies the biclus-
ters one by one and was applied to yeast cell cycle data, and made it possible to
identify several biologically relevant biclusters. Lazzeroni and Owen [20] have pro-
posed the popular plaid model which has been improved by Turner et al. [29]. The
authors assumed that biclusters are organized in layers and follow a given statisti-
cal model incorporating additive two way ANOVA models. The search approach
is iterative: once (K — 1) layers (biclusters) were identified, the K-th bicluster
minimizing a merit function depending on all layers is selected. Applied to data
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from the yeast, the proposed algorithm reveals that genes in biclusters share the
same biological functions. In [11] the authors developed their localization proce-
dure which improves the performance of a greedy iterative biclustering algorithm.
Several other methods have been proposed in the literature, two complete surveys
of biclustering methods can be found in [3,22].

Here we propose to use the ensemble methods to improve the performance of
biclustering. It is important to note that we do not propose a new biclustering
method in competition with the previously mentioned algorithms. We seek to
adapt the ensemble approach to the biclustering problem in order to improve the
performance of any biclustering algorithm. The principle of ensemble biclustering
is to generate a set of different biclustering solutions, then aggregate them into
only one solution. The crucial step is based on the consensus functions computing
the aggregation of the different solutions. In this paper we have identified four
types of consensus function commonly used in ensemble clustering and giving
the best results. We show how to extend their use in the biclustering context. We
evaluate their performances on a set of both numerical and real data experiments.

The paper is organized as follows. In Sect. 2, we review the ensemble methods
in clustering and biclustering. In Sect. 3, we formalize the collection of bicluster-
ing solutions and show how to construct it from the Cheng and Church algorithm
that we chose for our study. In Sect.4, we extend four commonly used consen-
sus functions to the biclustering context. Section 5 is devoted to evaluate these
new consensus functions on several experimentations. Finally, we summarize the
main points resulting from our approach.

2 Ensemble Methods

The principle of ensemble methods is to construct a set of models, then to aggre-
gate them into a single model. It is well-known that these methods often perform
better than a single model [9]. Ensemble methods first appeared in supervised
learning problems. A combination of classifiers is more accurate than single clas-
sifiers [21]. A pioneer method boosting, the most popular algorithm which is
adaboost, was developed mainly by Shapire [25]. The principle is to assign a
weight to each training example, then several classifiers are learned iteratively
and between each learning step the weight of the examples is adjusted depend-
ing on the classifier results. The final classifier is a weighted vote of classifiers
constructed during the procedure. Another type of popular ensemble methods
is bagging, proposed by Breiman [1]. The principle is to create a set a classifiers
based on bootstrap samples of the original data. The random forests [2] are the
most famous application of bagging. They are a combination of tree predictors,
and have given very good results in many domains [8].

Several works have shown that ensemble methods can also be used in unsu-
pervised learning. Topchy et al. [27] showed theoretically that ensemble methods
may improve the clustering performance. The principle of boosting was exploited
by Frossyniotis et al. [13] in order to provide a consistent partitioning of the
data. The boost-clustering approach creates, at each iteration, a new training
set using weighted random sampling from original data, and a simple clustering



Aggregation of Biclustering Solutions for Ensemble Approach 21

algorithm is applied to provide new clusters. Dudoit and Fridlyand [10] used bag-
ging to improve the accuracy of clustering in reducing the variability of the PAM
algorithm (Partitioning Around Medoids) results [19]. Their method has been
applied to leukemia and melanoma datasets and made it possible to differentiate
the different subtypes of tissues. Strehl et al. [26] proposed an approach to com-
bine multiple partitioning obtained from different sources into a single one. They
introduced heuristics based on a voting consensus. Each example is assigned to
one cluster for each partition, an example has therefore as many assignments as
number of partitions in the collection. In the aggregated partition, the example
is assigned to the cluster to which it was the most often assigned. One problem
with this consensus is that it requires knowledge of the cluster correspondence
between the different partitions. They also proposed a cluster-based similarity
partitioning algorithm. The collection is used to compute a similarity matrix of
the examples. The similarity between two examples is based on the frequency
of their co-association to the same cluster over the collection. The aggregated
partition is computed by a clustering of the examples from the similarity matrix.
Fern [12] formalized the aggregation procedure by a bipartite graph partitioning.
The collection is represented by a bipartite graph. The examples and clusters
of partitions are the two sets of vertices. An edge between an example and a
cluster means that example has been assigned to this cluster. A partition of the
graph is performed and each sub-graph represents an aggregated cluster. Topchy
[28] proposed to modelize the consensus of the collection by a multinomial mix-
ture model. In the collection, each example is defined by a set of labels that
represents their assigned clusters in each partition. This can be seen as a new
space in which the examples are defined, each dimension being a partition of the
collection. The aggregated partition is computed from a clustering of examples
in this new space. Since the labels are discrete variables, a multinomial mixture
model is used. Each component of the model represents an aggregated cluster.

Some recent works have shown that the ensemble approach can also be useful
in biclustering problems [17]. DeSmet presented a method of ensemble biclustering
for querying gene expression compendia from experimental lists [5]. Actually the
ensemble approach is performed only one dimension of the data (the gene dimen-
sion). Then biclusters are extracted from the gene consensus clusters. A bagging
version of biclustering algorithms has been proposed and tested for microarray
data [16]. Although this last method improves the performance of biclustering, in
some cases it fails and returns empty biclusters, i.e. without examples or features.
This is because the consensus function handles the sets of examples and features
on the same dimension as in the clustering context. The consensus function must
respect the structure of the biclusters. For this reason, the consensus functions
mentioned above, can be applied to biclustering problems. In this paper we adapt
these consensus functions to the biclustering context.

3 Biclustering Solution Collection

The first step of ensemble biclustering is to generate a collection of biclustering
solution. Here we give the formalization of the collection and a method to generate
it from the Cheng and Church algorithm that we have chosen for our study.
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3.1 Formalization of the Collection

Let a data matrix be X = {IE,F} where E = {ey, ..., ex} is the set of N examples
represented by M-dimensional vectors and F = {fi,..., far} is the set of M
features represented by N-dimensional vectors. A bicluster B is a submatrix of
X defined by a subset of examples and a subset of features: B = {(Fp, F)|Ep C
E, Fp C F}. A biclustering operator @ is a function that returns a biclustering
solution (i.e. a set of biclusters) from a data matrix: &(X) = {B, ..., Bk } where
K is the number of biclusters. Let ¢ be the function giving for each point of
the data matrix the label of the bicluster to which it belongs. The label is 0 for
points belonging to no bicluster.

() = 4 ¥ il € € Ep, and f; € Fp,
W0 if e & Ep, or f; ¢ Fp, Vk € [1,K].

A biclustering solution can be represented by a label matrix L giving for each
point: I;; = ¢(x;;). In the following it will be convenient to represent this label
matrix by an label vector indexed by u defined as u = i % |IF| 4 (|| — j), where |.|
denotes the cardinality. J is the vector form of the matrix L: J,, = Jju |4 (r—j =
P(xij.

Let’s the true biclustering solution of the data set X represented by @(X)*,
L* and J_*. An estimated biclustering solution is a biclustering solution returned
by an algorithm from the data matrix, it is denoted by @(X), L and J. The
objective of the biclustering task is to find the closest estimated biclustering
solution from the true biclustering solution. In ensemble methods, we do not use
only one estimated biclustering solutions but we generate a collection of several
solutions. We denote this collection of biclustering solutions as follows C =
{@(X)(l), - é(X)u? }. This collection can be represented by an NM x R matrix
J= T, ..., 1%,)7T by merging together all label vectors L, = (Jy1, ..., Jur)?
where Jy, = ¢(wi;)) with r € [1, R]. The objective of the consensus function
is to form an aggregated biclustering solution, represented by @(X), L and J,
from the collection of estimated solutions. Each of these functions is illustrated
with an example in Fig. 1.

3.2 Construction of the Collection

The key point of the generation of the collection is to find a good trade-off
between the quality and diversity of the biclustering solutions of the collection.
If all the generated solutions are the same, the aggregated solution is identical
to the biclusters of the collection. Different sources of the diversity are possible.
We can use a resampling method such as bootstrap or jacknife. In applying the
biclustering operator to each resampled data, different solutions are produced.
We can also include the source of diversity directly in the biclustering operator.
In this case the algorithm is not deterministic and will produce different solutions
from the same original data.
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Step 1: Generation of the biclustering solution collection
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Fig. 1. Procedure of ensemble biclustering with the four consensus functions. (1) 3
different biclustering solutions with 2 biclusters for the same data matrix forming the
collection. (2a) The collumns represents the labels of each data points obtained by
the three biclustering solution. The last column represents the results of the VOTE
consensus. (2b) The first three columns give the probability for each data point to
be associated to the three labels of the mixture model. The last column represents
the results of the MIX consensus. (2¢) The bipartite graph representing all biclusters
of the collection. The cuts of the graph give the results of the BGP consensus. (2d)
The coassociation matrice of the data points. The 3 clusters obtained from this matrix
represent the results of the COAS consensus. (3) An example of the reconstruction step

of our methods.
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In our experiments the biclustering operator is the Cheng and Church algo-
rithm (CC) (algorithm 4in the reference [4]). This algorithm returns a set of
biclusters minimizing the mean square residue (M SR).

MSR(Bk) |B | Zzzkwjk Xzy ik — /J]k + /~Lk) B

where py, is the average of By, p, and pj; are respectively the means of E;
and F; belonging to bicluster By. z and w are the indicator functions of the
examples and features. z;; = 1 when the feature i belongs to the bicluster k,
zix = 0 otherwise. w;, = 1 when the example j belongs to the bicluster k,
wjr, = 0 otherwise.

The CC algorithm is iterative and the biclusters are identified one by one. To
detect each bicluster, the algorithm begins with all the features and examples,
then it drops the feature or example minimizing the mean square residue (MSR)
of the remaining matrix. This procedure is totally deterministic. We modified
the CC algorithm by including a source of diversity in the computation of the
bicluster. At each iteration, we selected the top a% of the features and exam-
ples minimizing MSR of the remaining matrix. The element to be dropped was
randomly chosen from this selection. Thus the parameter o controls the level of
diversity of the bicluster collection; in our simulations o = 5% seemed a good
threshold. This modified version of the algorithm was used in all our experiments
in order to generate the collection of biclustering solutions from a dataset.

4 Consensus Functions for Biclustering

The second step of the ensemble approach is the aggregation of the collection of
biclustering solutions. We present here the extension of four consensus functions
for biclustering ensemble. These methods assign a bicluster label to the N x M
points of the data matrix. Note that even when the numbers of biclusters in the
different solutions of the collection are not equal, these consensus functions can
be used; it suffices to fix the final number of aggregated biclusters to K.

4.1 Co-association Consensus (COAS)

The idea of COAS is to group in a bicluster the points that are assigned together
in the biclustering collection. This consensus is based on the bicluster assignation
similarity between the points of the data matrix. The similarity between two
points is defined by the proportion of times that they are associated to the same
bicluster over the whole collection. All these similarities are represented by a
distance matrix D defined by:

'lL’l) - 1 'lL'l" - 1)7"

HM:U
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where 0(z) returns 0 when z is false and 1 when true. From this dissimilarity data
matrix, K + 1 clusters are identified in using the Partitioning Around Medoids
(PAM) algorithm [10]. The K clusters of points represent the K aggregated
biclusters, the last cluster groups all the points that belongs to no bicluster.

4.2 Voting Consensus (VOTE)

This consensus function is based on the majority vote of the labels. Each point
is assigned to the bicluster with which it has been assigned the most of the time
in the biclustering collection. For each point of the data matrix, the consensus
returns the most represented label in the collection of the biclustering solution.
The main problem of this approach is that there is no correspondence between
the labels of two different estimated biclustering solutions. All the biclusters
of the collection have to be re-labeled according to their best agreement with
some chosen reference solution. Any estimated solution can be used as reference,
here we used the first one Qg(X )(1)- The agreement problem can be solved in
polynomial time by the Hungarian method [23] which relabels the estimated
solution such the similarity between the solutions is maximized. The similarity
between two biclustering solutions was computed by using the F-measure (details
in Sect.5.1). The label of the aggregated biclustering solution for a point is
therefore defined by:

R
L, = argmaxy, <Z (I (Jur) = k)) .

r=1

where I is the relabelling operator performed by the Hungarian algorithm.

4.3 Bipartite Graph Partitionning Consensus (BGP)

In this consensus the collection of estimated solutions is represented by a bipar-
tite graph where the vertices are divided into two sets: the point vertices and
the label vertices. The point vertices represent the points of the data matrix
{(es, f;)} while the set of label vertices represents all the estimated biclusters of
the collection {Bk,(r)}, for each estimated solution there is also a vertice that
represents the points belonging to no bicluster. An edge links a point vertice to
a label vertice if the point belongs to the corresponding estimated bicluster. The
degree of each point is therefore R and the degree of each estimated bicluster
represents the number of points that it contains. Finding a consensus consists
in finding a partition of this bipartite graph. The optimal partition is the one
that maximizes the numbers of edges inside each cluster of nodes and minimizes
the number of edges between nodes of different clusters. This graph partitioning
problem is a NP-hard problem, so we rely on a heuristic to an approximation of
the optimal solution. We used a method based on a spin-glass model and simu-
lated annealing [24] in order to identify the clusters of nodes. Each cluster of the
partition represents an aggregated bicluster formed by all the points contained
in this cluster.
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4.4 Multivariate Mixture Model Consensus (MIX)

In [28], the authors have used the mixture approach to propose a consensus
function. In the sequel we propose to extend it to our situation. In model-based
clustering it is assumed that the data are generated by a mixture of under-
lying probability distributions, where each component k of the mixture repre-
sents a cluster. Specifically, the NM x R data matrix J is assumed to be an
Ji1,...,du, ...,y 1.d sample where J_, from a probability distribution with
density

,u|9 Z”rkpk —u|9k

where Py (J,|0k) is the density of label J, from the kth component and the
Oxs are the corresponding class parameters. These densities belong to the same
parametric family. The parameter 7 is the probability that an object belongs
to the kth component, and K, which is assumed to be known, is the num-
ber of components in the mixture. The number of components corresponds to
the number of biclusters minus one since one of the components represents the
points belonging to no bicluster. The parameter of this model is the vector
O = (pio,-..,Pik,00,...,0k). The mixture density of the observed data J can
be expressed as

NM K

p(J|O) = HZWkPk (L] Ok)-

u=1 k=0

The J, labels are nominal categorical variables, we consider the latent class
model and assume that all R categorical variables are independent, condition-
nally on their memebership of a component;

R
Pk(J—ulek) = H Pk,(r)(Jur|9k,(r))'
r=1
Note that Py (;)(Ju|0k,(r)) represents the probability to have J_, labels in the kth

component for the estimated solution é(X Y- If o/,;(J ) is the probability that
the rth label takes the value 7 when an J_, belongs to the component k, then the
probability of the mixture can be written Py ()L, |0) = Hf’:l HjK:l [aZ(J)]‘s(J“"‘:j).
The parameter of the mixture © is fitted in maximizing the likelihood function:

NM
0" = argmaze <log (H P(Ju9)>> .

u=1

The optimal solution of this maximization problem cannot generally be com-
puted, we therefore rely on an estimation given by the EM algorithm [6].
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In E-step, we compute the posterior probabilities of each label s, o Py (J-.|0k)
and in the M-step we estimate the parameters of the mixture as follows

Zu Suk Zu Suk(s(t]ur = ])
NM Zu Suk '

To limit the problems of local minimum during the EM algorithm, we performd
the optimization process ten times with different initializations and kept the
solution maximizing the log-likelihood. At the convergence, we consider that
the largest m; corresponds to labels representing the points belonging to no
biclusters. The estimators of posterior probabilities give rise to a fuzzy or hard
clustering using the maximum a posteriori principle (MAP). Then the consensus
function consists in taking for each J,, the cluster such that k¥ maximizing its
conditional probability k = argmax¢=1,. rSue¢, and we obtained the ensemble
solution noted ®(X).

T = and az(j ) —

4.5 Reconstruction of the Biclusters

The four consensus functions presented above, return a partition in K +1 clusters
of the points of the data matrix. K of these clusters represent the K aggregated
biclusters, the last one groups all the points that belong to no biclusters in the
aggregated solution. The k aggregated biclusters are not actual biclusters yet.
They are just sets of points that do not necessarily form submatrices of the data
matrix. A reconstruction step has to be applied to each aggregated bicluster in
order to transform it into a submatrix. This procedure consists in finding the
submatrix containing the maximum of points that are in the aggregated bicluster
and the minimum of points that are not in the aggregated bicluster. The k-th
aggregated bicluster is reconstructed by minimizing the following function:

N M
L(By) =Y d(e; € Ep, A fi € Fp,)d(Ii; # k)

i=1 j=1

+ 5(61 ¢ EBk \% fi ¢ ka)(s(T” = k)

This optimization problem is solved by a heuristic procedure. We started with all
the examples and features involved in the aggregated bicluster. Then iteratively,
we dropped the example or feature that maximizes the decrease of L(By). This
step was iterated until L(By) did not decrease. Once the reconstruction proce-
dure was finished, we obtained the final aggregated biclusters.

5 Results and Discussion

5.1 Performance of Consensus Functions

In our simulations, we considered six different data structures with M = N = 100
in which a true biclustering solution is included. The number of biclusters varies
from 2 to 6 and their sizes from 10 examples by 10 features to 30 examples by 30
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S1 S2 S3 S4 S5 S6

Fig. 2. The six data structures considered in the experiments.

features. We have defined six different structures of biclusters depicted in Fig. 2.
For each data, from each true bicluster an estimated bicluster was generated,
then a collection of estimated biclustering solutions was obtained. The quality of
the collection is controlled by the parameters oy, and ou.. that are the average
precision and recall between estimated biclusters and their corresponding true
biclusters. To generate an estimated bicluster we started with the true bicluster,
then we randomly removed features/examples and have added features/examples
that were not in the true bicluster in order to obtain the target precision oy
and recall a,.... Once the collection was generated, the four consensus functions
were applied to obtain the aggregated biclustering solutions. Finally to evaluate
the performance of each aggregated solution we computed the F-measure (noted
A) between the obtained solution ¢(X) and the true biclustering solution &(X)*;

A(@(X)", B(X)) = § iy Mpice (B, Br) where Mpice(Bj, Br) = {gAtel s
the Dice measure.

Figure 3 shows the performance of the different consensus in function on the
size of the biclustering solution collection R with apre = @ree = 0.5. Each of
the six panels gives the results on the six data structures. The dot, triangle,
cross and diamond curves represent respectively the F-measure in function of
R for VOTE, COAS, BGP and MIX consensus. The full gray curve represents
the mean of the performance of the biclustering collection. In the six panels, the
performance of the collection is constantly around 0.5. That is be expected, since
the performance of the collection does not depend on its size and by construction
the theoretical performance of each estimated solution is 0.5. On the six dataset
structures, from R > 40, all the consensus functions give much better perfor-
mances than the estimated solutions of the collection. The performances of MIX
in all the situations are strongly increasing with the size of the collection. Mix
does not require a high value of R to record good results, for R > 20 it converges
to their maximum and reaches 1in all panels. The curves of BGP have the same
shape, they begin with a strong increase then they converge to their maximums,
but the increase phase is much longer than in MIX. It also worth noting that
BGP begins with very low performances for small values of R, it is often lower
than the performances of the collection. BGP reaches its best performances with
R > 60, in four panels it obtains the second best results and the third on the two
last panels. The performance of VOTE increases slowly and more or less linearly
with the collection size. Even with very low values of R, the performance of the
consensus is significantly better than the collection. VOTE gives the second best
performances for S1 and S5 and the third best for the four other data structures.
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The performance of COAS is more or less constant whatever R; it obtains the
worst results in all panels.

Figure 4 shows the performances of the different consensus in function of the
performances of the estimated solution collection controlled by the parameter
O = Qpre = Oyee. The performances of all consensus are naturally decreasing
with «. By definition the performances of the collection follow the line y =
1 —z. For @ < 0.4 and in all the cases the consensus functions give the almost
perfect biclustering solution with A ~ 1, expected for COAS in S4. MIX is
still clearly the best consensus, it produces almost the perfect biclustering and
its performances are never less than 0.9. BGP is the second best consensus,
it is always significantly better than the collection whatever the value of a.
VOTE and COAS have similar behavior. They begin with the perfect biclustering
solution then, when o > 0.5, their performances decrease and are at best, for
VOTE, around the collection performance.

The F-measure can be decomposed into a combination of precision and recall.
When we examine the results in detail we see that for VOTE and COAS the
precision is much greater than the recall. That means these consensus produce
smaller biclusters than the true ones, the features and examples associated to
biclusters are generally good but these biclusters are incomplete i.e. examples
and features are missing. Conversely BGP produces biclusters with high recall
and low precision. The aggregated biclusters are generally complete but they also
contain some extra wrong features and examples. MIX gives balanced biclus-
ters with equal precision and recall. The experiment on S4 makes it possible to
observe the influence of the size of the biclusters on the results. We can see that
COAS obtains very bad performance on the small biclusters, since the recall on
the two smallest biclusters is 0. MIX, VOTE, COAS are independent from the
size of the biclusters, their performances are similar with the four biclusters.

5.2 Computing Time

Although the performances of the consensus functions are good, they also present
some critical drawbacks. The use of these methods requires large amount of
resources. Table1 gives the computing time of each consensus function with
R =50. VOTE is the fastest method followed by MIX which is about ten times
slower than VOTE, this inconvenient could be overcomed by using the eLEM
algorithm proposed in [?] or the classification EM algorithm [?]. COAS is the
third, about ten times slower than MIX and BGP needs the most computing

Table 1. Computing time (in s) of the consensus functions.

S1 S2 S3 S4 S5 S6

VOTE | 2.6 2.9 2.812.6 2.5 2.5
MIX |13.1 28.5| 60.7|54 12.3 10.8
COAS [199.6 | 205.6 | 234.1|240.8 247.4| 248.1
BGP |2502 | 3147.2|3345.1|3043.5 | 2806.6 | 2834.5
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time, about ten times more than COAS. After observing S1, S2, S3 we can note
that the number of biclusters has an impact of the computing time, specially
for MIX. VOTE and MIX require loading an NM X R matrix than contains all
the labels of the collection. BGP has to generate a graph containing NM + R
vertices while COAS requires computing resources for large distance matrices of
size NM x NM.

5.3 Results on Real Data

To evaluate our approach in terms of performance on real datasets, we used four
datasets:

— Nutt: Gene expression data on the classification of gliomas in the brain.

— Pomeroy: Gene expression data on different types of tumors in the central
nervous system.

— Sonar: Sonar signal from metal objects or rocks.

— Wdbc: Biological data on breast cancer.

The description of these datasets in terms of size is given in Table 2.

Table 2. Description of the four datasets.

Data sets | N | M

Nutt 50 | 500
Pomeroy | 42| 500
Sonar 208 | 60
Wdbc 569 | 30

Unlike numerical experiments and since we do not known the true biclustering
solutions, the measures of performance can be based on external indices, like Dice
score. Obviously, the quality of a biclustering solution can be measured by the
AMSR i.e. the average of MSR computed from each bicluster belonging to the
biclustering solution; the lower the AMSR, the better the solution. A problem
with this approach is that the MSR is biased by the size of the biclusters. Indeed,
the smallest biclusters favour AMSR. To remove this size bias we set the size of
the biclusters in the parameters of the algorithms. All the methods will therefore
return biclusters of the same size. The better solutions will be those minimizing
AMSR. To compare the different consensus functions, we computed their gain
which is the percentage of AMSR decreasing from the single biclustering solution
i.e. the solution obtained by the classic CC algorithm without the ensemble
approach. This is computed by:

AMSR(Esingle) - AMSR(Eensemble)

Gain = 100 — ,
AMSR(Pgingte)
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Table 3. Gain of each consensus function on the four real datasets in function of the
size of the biclusters.

Nutt dataset

50 | 100 | 200 | 300 | 400 | 600 | 800
VOTE |94 | 64 | 18 | 20| 34 | 27| 27
MIX |13 3| 43| 39| 36 | 18
COAS |28 | 37 | 14 | 14| 32 5
BGP |73 | 68 | 74 1/ 30 | 22| 16
Pomeroy dataset
50 | 100 | 200 | 300 | 400 | 600 | 800
VOTE |79 | 8 | 79| 69| 32 | 63| 60
MIX |84 | 8 | 69 | 52| 37 | 75| 74
COAS |69 | 78 | 21 | 36| 30 | 43| 39
BGP |68 | 80 | 21 | 22, 30 | 46, 51
Sonar dataset
50 | 100 | 200 | 300 | 400 | 600 | 800
VOTE 20 | 30 | 41 | 75| 93 | 86 88
MIX |29 | 47 | 55 | 88| 92 | 77| 82
COAS |28 | 17 | 33 | 45| 72 | 36| 76
BGP |34 | 51 | 50 | 46| 20 | 21| 32
Wdbc dataset
50 | 100 | 200 | 300 | 400 | 600 | 800
VOTE |15 |20 |28 |20 |4 1 |3
MIX |26 |19 (42 |32 |23 |21 |12
COAS | —4|—-18 —15| -7  —17| -8 | =25
BGP |6 |13 37 |31 2 10 |—4

where 5smgle and Pensempie are the biclustering solution returned respectively
by the single and ensemble approaches.

Table 3 gives the gain of each consensus function for all the datasets in func-
tion on the size of the biclusters. We can observe that:

— In all the situations, all the consencus functions give an interesting gain,
expected for COAS for Wdbc dataset. We know that in the merging process,
once a cluster is formed it does not undo what was previously done; no modi-
fications or permutations of objects are therefore possible. This disadvantage
can be a handicap for COAS in some situations such as in Wdbc dataset.

— VOTE and MIX outperform BGP in most cases. In addition their behavior
does not to depend on the size of biclusters. In Nutt and Sonar datasets, their
performance has increased or decreased respectively.
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— VOTE appears more efficient than MIX for the Nutt dataset which is the
larger. However, the size of the biclusters seems unaffacted MIX in other
experiments.

— The difference of performance between VOTE/MIX and BGP/COAS is large.
We observe that the size of the bicluster may impact the performance of the
methods but there is no clear rule, it is only dependent on the data. Further
investigation will be necessary.

In summary VOTE and MIX produce the best performances, the third is BGP
and the last is COAS. Knowing that VOTE and MIX require less computing
time than BGP, both appear therefore more efficient.

6 Conclusions

Unlike to the standard clustering contexts, biclustering considers both dimen-
sions of the matrix in order to produce homogeneous submatrices. In this work,
we have presented the approach of ensemble biclustering which consists in gen-
erating a collection of biclustering solutions then to aggregate them. First, we
have showed how to use the CC algorithm to generate the collection. Secondly,
concerning the aggregation of the collection of biclustering solutions, we have
extended the use of four consensus functions commonly used in the clustering
context. Thirdly we have evaluated the performance of each of them.

On simulated and real datasets, the ensemble approach appears fruitful. The
results show that it improves significantly the performance of biclustering what-
ever the consensus function among VOTE, MIX and BGP. Specifically, VOTE
and MIX give clearly the best results in all experiments and require less comput-
ing than BGP. We thus recommend to use one of these two methods for ensemble
biclustering problems.
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