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Abstract. This paper discusses the problems of analyzing title page
layouts and extracting bibliographic information from academic papers.
Information extraction is an important function for digital libraries to
offer, providing versatile and effective access paths to library content.
Sequence analyzers, such as those based on a conditional random field,
are often used to extract information from object pages. Recently, dig-
ital libraries have grown and can now handle a large number and wide
variety of papers. Because of the variety of page layouts, it is necessary
to prepare multiple analyzers, one for each type of layout, to achieve
high extraction accuracy. This makes rule management important. For
example, at what stage should we invest in a new analyzer, and how
can we acquire it efficiently, when receiving papers with a new layout?
This paper focuses on the detection of layout changes and how we learn
to use a new sequence analyzer efficiently. We evaluate the confidence
metrics for sequence analyzers to judge whether they would be suited to
title page analysis by testing three academic journals. The results show
that they are effective for measuring suitability. We also examine the
sampling of training data when learning how to use a new analyzer.

Keywords: Page layout analysis - Information extraction - Digital
libraries - Conditional random field

1 Introduction

The digitization of documents has infiltrated our society and one piece of evi-
dence is the rapid spread of electronic book reading devices such as iPad and
Kindle. What we really need in such circumstances is not just the digitization
of books, but digitization of all the printed or written documents in our society,
which would create an information archive accessible from all over the world.
Needless to say, digital libraries (DLs) would be one such type of information
archive. Recently, some universities and research institutions have set up web-
accessible archives as their own institutional repositories. Although metadata
such as bibliographic information about documents are indispensable for the
efficient access to and utilization of digital documents, techniques for creating
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digital documents with appropriate metadata are not yet mature enough to
be used in real applications. Extracting information that includes bibliographic
data from documents is a key technology for realizing such information archives
as intellectual legacies because it will enable the extraction of various kinds of
metadata and will provide the users of such archives with full access to rich
information sources.

For documents such as the academic papers studied here, the important
bibliographic information will include the title, author information, and jour-
nal name. Extracting such bibliographic information from an academic paper is
useful in creating or reconstructing metadata. For example, it could be used to
link identical records stored in different DLs and for faceted retrieval. Although
many researchers have studied bibliographic information extraction from papers
and documents [2,12,15], it remains an active research area, with several com-
petitions having been held!.

For accurate information extraction, researchers have developed various rule-
based methods that can exploit both logical structure and page layout. However,
document archives such as DLs usually handle several different types of docu-
ment. Because formulating and managing them requires effective and efficient
methods, the rules used should be tailored to suit each type of document. Rule
management becomes harder as the system grows and contains more papers
with more varieties of types of layout. For example, when receiving a fresh set of
documents, we must determine whether we should generate a new set of rules or
use the existing rules. In addition, the rules should be properly updated because
the layout of a particular type of document may sometimes change over time.
To maintain such document archives, we require a rule management facility that
can measure the suitability of rules and recompile sets of rules when required.

As reported previously, we have been developing a DL system for academic
papers [9,10,15]. We are especially interested in extracting bibliographic infor-
mation such as authors and titles. In previous studies, we applied a conditional
random field (CRF) [5] to extract bibliographic information from the title pages
of academic papers. In these studies, we observed that rule-based methods,
whereby a CRF exploits several rules as a form of feature vector, can extract
metadata with high accuracy. However, we had to use multiple CRF's, choosing
the one to use according to the page layout of the target journal. In other words,
we had to access sufficient homogeneously laid-out pages to be able to iden-
tify a CRF that could analyze the pages with high accuracy for this metadata
extraction task.

The use of multiple CRFs for metadata extraction from documents requires
rule management functions such as choosing the appropriate CRF for a particular
document or deciding when to make a new CRF to handle a new or changed
page layout. This led us to study management rules for page layout analysis and
bibliographic information extraction from title pages [16].

In this paper, we first examine the effectiveness of multiple CRFs for informa-
tion extraction from pages with various page layouts. We compare the labeling

! http://www.icdar2013.org/program/competitions.
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performance of a single CRF and multiple CRFs in active learning and show
that multiple CRFs perform better when analyzing the title pages of multiple
journals. We then propose a method that uses confidence metrics calculated for
the CRFs to measure the suitability of each CRF to a particular page layout
among the layouts used for training. Our experimental results show that the
metric’s value decreases significantly when the CRF is applied to the title page
of a journal that is different from the one used for learning the CRF.

This result indicates that the confidence metrics are effective in detecting page
layout changes. We also examine the effectiveness of the metrics in selecting train-
ing samples during active sampling when learning a CRF for a new page layout.

The remainder of the paper is organized as follows. Section2 defines the
problem addressed by this study. Section 3 proposes a rule management method
for title page analysis. Our experimental results are given in Sect. 4.

2 Problem Definition

Information extraction from academic papers has been studied by the document
image analysis community [6,14]. In early work, researchers aimed to extract
information from scanned document images. To realize highly accurate extrac-
tion, they have recently developed extraction methods specific to document
components such as mathematical expressions [18], figures [1], and tables [17].
This paper deals with the extraction of bibliographic information such as titles,
authors, and abstracts [12], which is one of the fundamental extraction tasks.
Although bibliographic information may appear in various parts of the docu-
ment, including title pages and reference sections, this paper focuses on title
page analysis.

To extract bibliographic components such as the title and authors from title
pages, we first extract tokens and apply a sequence analyzer to label each token
with its type of bibliographic component. A character, word, or line can be
regarded as a token. We choose lines as tokens because they achieved higher
extraction accuracy in our preliminary experiments. Figure 1 shows an example
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of a title page. The red rectangles are tokens extracted from the portable-
document-format (PDF) file of the paper. In the figure, note that some biblio-
graphic components are separated into tokens, such as the abstract. In addition,
lines themselves can be split into multiple tokens, such as the title of the paper.
The sequence analyzer merges the tokens comprising a single bibliographic com-
ponent by labeling them as the same component. As a result, we obtain a set
of bibliographic components, each of which comprises one or more tokens, as
shown in Fig. 1.

Because bibliographic components are located in a two-dimensional (2D)
space, some researchers have proposed rules that can analyze components of
a page based on a page grammar [3] or a 2D CRF [7,19]. Others have pro-
posed applying sequential analysis after serializing components of the page in a
preceding step. For example, Peng et al. [12] proposed a CRF-based method for
extracting bibliographic components from the title pages and reference sections
of academic papers in PDF format. Councill et al. [2] developed a CRF-based
toolkit for page analysis and information extraction. We adopt their approach
and use a linear-chain CRF [5] as a sequence analyzer.

If the layout of the title page is different from that used when learning the
CRF, the accuracy of extraction of the bibliographic components can be degraded.
For large DLs, which will usually contain a variety of journals, the system will
need to prepare multiple CRFs and choose one suitable for the target title page.
The DL system will sometimes receive title pages for a new journal or for one with
a redesigned layout. For these changes of layout, the system may not be able to
analyze the title pages accurately. To address these difficulties, this paper consid-
ers the following problems:

— measuring the suitability of a CRF for a type of title page,

— detecting title pages that cannot be analyzed accurately with existing CRFs,
and

— learning a new CRF so as to analyze pages efficiently for a new layout.

3 Layout Change Detection and CRF Learning

3.1 System Overview

We are developing a DL system to handle the variety of journals published in
Japan. Because their bibliographic information is stored in multiple databases,
the system creates linkages by locating identical papers in the multiple data-
bases. It also provides a testbed for scholarly information studies such as citation
analysis and paper recommendation.

The system aims to handle both newly published papers and papers published
previously but not yet included in the system. As stated in the previous section,
we use multiple CRFs in extracting information from the variety of journals.
The system chooses a CRF according to the journal title and then applies it to
that journal’s papers to extract bibliographic information.
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Whenever the layout of a paper changes or a new journal is incorporated, we
must judge whether we can use a CRF already in the system or should build a
new CRF. The system supports rule maintenance by:

— checking the suitability of a CRF for a given set of papers and alerting the
user if the CRF does not analyze them with high confidence, and
— supporting the labeling of training data when a new CRF is generated.

3.2 The CRF

As described above, we have adopted a linear-chain CRF for the extraction of
bibliographic information from the title pages of academic papers. Let L denote
a set of labels. For a token sequence « := x5 - - - £, a linear-chain CRF derives
a sequence y = Y1y - - - Yn, of labels, i.e., y € L™. A CRF M defines a conditional
probability by:

P(y|w7M) exp{zz)\kfk Yi—1,Yi, & )}a (1)

i=1 k=1

where Z(x) is the partition constant. The feature function fi(y;—1,¥:, ) is
defined over consecutive labels y;_; and y; and the input sequence x. Each
feature function is associated with a parameter Aj that gives the weight of the
feature.

In the learning phase, the parameter Ay is estimated from labeled token
sequences. In the prediction phase, the CRF assigns the label sequence y* to the
given token sequence x that maximizes the conditional probability in Eq. (1).

3.3 Change Detection

To detect a layout change in a token sequence, we use metrics that give the
likelihood that the token sequence was generated from the model. This problem
is similar to the sampling problem in active sampling [13].

In Eq. (1), the CRF calculates the likelihood based on the transition weight
from y;_1 to y; and the correlation between a feature vector x; and a hidden
label y;. A change of page layout may affect the transition weight between hid-
den labels in addition to the layout features in ;. This will lead to a decrease in
the likelihood P(y* | x, M) of the optimal label sequence y* given by Eq. (1). A
natural way to measure the model suitability is to use this likelihood. The CRF
calculates the hidden label sequence y* that maximizes the conditional probabil-
ity given by Eq. (1). A higher P( | £, M) means a more confident assignment
of labels, whereas a lower P(y* | &, M) means that the token sequence will make
it hard for the current CRF model to assign labels.

The conditional probability is affected by the length of the token sequence «.
We therefore use the normalized conditional probability for the model suitability
measure, as follows:

Cilw) = 8 (Py" =) @)

|z|



Utilization of Multiple Sequence Analyzers 227

Here, || denotes the length of the token sequence x. We refer to the metric
given by Eq. (2) as the normalized likelihood. The normalized likelihood is a
type of confidence measure for when the model assigns labels to all tokens in the
sequence .

A second measure is based on the confidence in assigning labels to a single
token in the sequence. For a sequence x, let Y; denote a random variable for
assigning a label to the ith token in @. For label [ in a set L of labels, P(Y; =1)
denotes the marginal probability that label [ is assigned to the ith token. If the
token has feature values clearly supporting a specific label [ € L, P(Y; = [) must
be significantly high and P(Y; =1') (I’ # 1) must be low. The following entropy
value can therefore quantify a token-level confidence:

e(z,i) =Y —P(Y; = 1)log(P(Y; = 1)) . (3)
leL

A low entropy value signifies that the label of token z; is likely to be [. For the
sequence analysis, an analyzer is regarded as succeeding in its analysis only if
it assigns the correct label to every token. In other words, its confidence should
be measured by the most difficult token to label. According to this perspective,
we can use the maximum entropy of a token sequence x as another model of

confidence, as follows:
Ce(x) := — max e(x,q). 4
(@)= = max e(a.i) (4)

As opposed to the normalized likelihood, the maximum entropy can be
regarded as a worst-case token-level metric.

The third metric is similar to the maximum entropy, but it measures the
token-level confidence in terms of the maximum probability of label assignment
to the token. It measures the confidence in the CRF for a token sequence x as
the minimum of the token-level maximum probabilities over the sequence. It is
defined formally as follows:

Cm(x) = 1%?51@\ r{leaixP(Sﬁ =1). (5)

It is referred to as the min-mazx label probability.

Suppose that CRF M is used to label a token sequence obtained from a title
page. There is more than one way to define the change detection problem, but
the most basic definition is as follows. Given a new token sequence x, determine
whether the sequence is from the same information source as that from which
the current CRF M was learned.

A token sequence x is judged to be a token sequence from the same infor-
mation source if C'(x) > o holds for a predefined threshold o, where C'is C; C.,
or C,,. Otherwise, the layout is regarded as having changed.

Because an issue of a journal will usually contain multiple papers, the change
detection problem can be solved by detecting a change of title page layout
adopted in journals when given a set of token sequences.
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3.4 Learning a CRF for a New Layout

If we detect papers with a page layout that is different from those already
known, we must derive a new CRF for these papers. We apply an active sampling
technique [13], as follows:

1. Gather a significant number of papers T" without labeling.
2. Choose an initial small number of papers Ty from T, label them, and learn
an initial CRF My using the labeled papers.
3. At the tth iteration:
(a) Let T be T — UIZAT;.
(b) Calculate a metric described in Sect. 3.3 for each page in T using the CRF
M;_1 obtained in the previous iteration.
(c) Choose the bottom-k papers T; from T according to the metric.
(d) Label the papers T; manually.
(e) Learn CRF M, using the labeled papers U!_,T;.

The aim of active sampling is to reduce the cost of labeling required to learn
the CRF. Note that we need to delay learning a new CRF until we have gathered
enough papers in the new layout (Step 1).

In active sampling, the sampling strategy for the initial CRF (Step 2) and
for updating the CRF (Step 3(c)) is important. For the initial CRF, we choose
k papers in T with the lowest values for the metric C introduced in Sect. 3.3,
where C' is calculated using the CRF's that we have at that time. This strategy
means that we choose training papers T that differ most in layout from those
that we have so far.

In the tth update phase, we choose k training papers from T—Uf;éTi with the
lowest values for the metric C, where C' is calculated using the CRF M;_; that
we obtained in the previous step. This strategy means that we choose training
papers with a different layout from those in UE;éTi.

4 Experimental Results

This section examines empirically the metrics for model fitness described in
Sect. 3 by evaluating their effectiveness in detecting layout changes and in select-
ing training samples incrementally in active sampling.

4.1 Dataset

For this experiment, we used the same three journals as in our previous study [§],
as follows:

— Journal of Information Processing by the Information Processing Society of
Japan (IPSJ): We used papers published in 2003 in this experiment. This
dataset contains 479 papers, most of them written in Japanese.
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— English IEICE Transactions by the Institute of Electronics, Information and
Communication Engineers in Japan (IEICE-E): We used papers published in
2003. This dataset contains 473 papers, all written in English.

— Japanese IEICE Transactions by the Institute of Electronics, Information and
Communication Engineers in Japan (IEICE-J): We used papers published
between 2000 and 2005. This dataset contains 964 papers, most of them writ-
ten in Japanese.

As in [8], we used the following labels for the bibliographic components:

— Title: We used separate labels for Japanese and English titles because
Japanese papers contained titles in both languages.

— Authors: We used separate labels for author names in Japanese and English
as in the title.

— Abstract: As with the title and authors, we used separate labels for Japanese
and English abstracts.

— Keywords: Only Japanese keywords are marked up in the IEICE-J.

— Other: Title pages usually contain paragraphs such as introductory paragraphs
that are not classified into any of the above bibliographic components. We
assigned the label “other” to the tokens in these paragraphs.

Note that different journals have different bibliographic components in their title
pages.

Because we used the chain-model CRF, the tokens must be serialized. We
therefore used lines extracted via OCR as tokens and serialized them according
to the order generated by the OCR system. We labeled each token for training
and evaluation manually.

4.2 Features of the CRF

As in [8], 15 feature templates were adopted. Of these, 14 were unigram features,
i.e., the feature function fi(y;—1,¥:, @) in Eq. (1) is calculated independently
of the label y;_1. There was one remaining bigram feature, i.e., the feature
function fx(yi—1,yi, ) is calculated independently of the token sequence x. The
unigram feature templates were further categorized into two kinds of features.
Some involved layout features such as location, size, and gaps between lines.
Others involved linguistic features such as the proportions of several kinds of
characters in the tokens and the appearance of characteristic keywords that often
appear in a particular bibliographic component such as “Institute” in affiliations.
Table 1 summarizes the set of feature templates. Their values were calculated
automatically from the token and label sequences.
An example of the bigram feature template < y(—1),y(0) > is:

1if ;1 = title,y; = author
0 otherwise ’

fk(yi—l,yi,w) :{
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Table 1. Feature templates of CRF for bibliographic component labeling [8].

Type Feature Description
Unigram | < i(0) > Current line ID
< z(0) > Current line abscissa
< y(0) > Current line ordinate
< w(0) > Current line width
< h(0) > Current line height
< g(0) > Gap between current and preceding lines
< cw(0) > Median of character widths in the current line
< ch(0) > Median of character heights in the current line
< #c(0) > Number of characters in the current line
< ec(0) > Proportion of alphanumerics in the current line
< ke(0) > Proportion of kanji in the current line
< je(0) > Proportion of hiragana and katakana in the current line
< s(0) > Proportion of symbols in the current line
< kw(0) > Presence of predefined keywords in the current line
Bigram | < y(—1),y(0) > | Previous and current labels

This bigram feature indicates whether an author name follows a title in a label
sequence, with the corresponding parameter A\ showing how likely it is that an
author name follows a title. CRF++ 0.582 [4] was used to learn and to label the
token sequence for the title pages of each journal.

4.3 Bibliographic Component Labeling Accuracy

We first examined the bibliographic component labeling accuracy of CRFs. The
purpose of this experiment was to evaluate the effectiveness of:

— the metrics described in Sect. 3.3 for active sampling, and
— multiple CRFs, each of which was learned for a particular layout of title pages.

We applied fivefold cross-validation. For each of the IPSJ, IEICE-E, and
IEICE-J journals, we randomly split manually labeled title pages into five equal-
sized groups of pages. In each round of the cross-validation, we examined the
active sampling described in Sect. 3.4, choosing 10 papers randomly as the ini-
tial training data and the 10 least-confidently labeled papers according to the
normalized likelihood at each iteration of the active sampling process.

We measured the accuracy of a learned CRF using the test token sequences
for the same journal as the training data in each round of the cross-validation.

2 https://code.google.com /p/crfpp/.
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The accuracy was measured by:

#successfully labeled sequences 7

#test sequences ' (™)
Note that a CRF was only regarded as having succeeded in labeling if it assigned
correct labels to all tokens in the token sequence. In other words, if a CRF
assigned an incorrect label to one token despite correctly labeling all other tokens
in a sequence x, it was regarded as having failed.

Figures2 (a), (b), and (c¢) show the accuracy of CRFs for the IPSJ, IEICE-E,
and IEICE-J journals, respectively. Each graph in the figure plots the accuracy of
the CRF with respect to the size of training samples obtained at each iteration of
the active sampling process. We first plotted the results of normalized likelihood,
shown as a green curve in Fig.2 and labeled as nlh. As shown in the graph,
the accuracy increases as the active sampling proceeds. It converges when the
training data size reaches about 50 for IPSJ and IEICE-E, whereas IEICE-J
required about 250 training pages.

To evaluate the effectiveness of the metric for active sampling, we measured
the accuracy of CRF's obtained for various quantities of randomly chosen training
data. The purple curves labeled as random show the average accuracy of the
random sampling with respect to the size of the set of training data. As shown
in Fig. 2, we need much more training data to achieve an accuracy competitive
with active sampling. In fact, we needed about 250 training pages for IPSJ
and IEICE-E and more than 500 training pages for IEICE-J. In summary, using
active sampling with the normalized likelihood described in Sect. 3.3 significantly
reduces the training data required for learning CRFs to be used in bibliographic
component labeling.

To evaluate the effectiveness of learning a separate CRF for each journal, we
measured the accuracy of CRFs that were learned from merged training data
for the three journals. More precisely, we merged the training data of the three
journals to form the T used for the active sampling described in Sect. 3.4. We
call the resultant CRF a general-purpose CRF. As in the evaluation of active
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Fig. 2. Bibliographic component labeling accuracy.
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sampling, we chose 10 initial training pages and the 10 least-confidently labeled
pages from the merged training data and measured the accuracy of the learned
CRF's with respect to the test data for each journal separately. This experiment
corresponds to the case of a single CRF being used to analyze the title pages of
three journals.

The blue curves labeled as all-nlh in Fig. 2 show the average accuracy of the
general-purpose CRFs when they were tested with the papers of the journals
IPSJ in Fig. 2 (a), IEICE-E in Fig.2 (b), and IEICE-J in Fig. 2 (c), respectively.
Note that the convergence of the general-purpose CRF's differs according to the
test journal used. For example, the accuracy converges at about 400 training
papers for IPSJ papers, whereas more than 450 training papers were required
for IEICE-J and IEICE-E papers. By comparing nlh and all-nlh, we can see
that the separate CRFs converge for a smaller training dataset than that for
a general-purpose CRF. In a fairer comparison, the separate CRF's require 50,
50, and 250 training papers for IPSJ, IEICE-E, and IEICE-J journals, respec-
tively. This means that we would require 350 training papers in all to learn
the separate CRF's, whereas we required more than 500 training papers for the
general-purpose CRF.

The separate CRFs are more accurate than the general-purpose CRF. At
convergence, the increased accuracy for the separate CRFs, as compared to
the general-purpose CRF, are 2.2 % for IPSJ, 8.9 % for IEICE-E, and 2.6 % for
TEICE-J. We also learned CRF's using randomly chosen papers from the merged
training data. The red curves labeled as all-random show the average accuracy
with respect to the training dataset size. We observed that using active sampling
is effective, as with the separate CRF's, except for the IEICE-E case. Even in
this exceptional case, active sampling achieved better accuracy for larger train-
ing datasets. In general, the metric described in Sect. 3.3 is effective in enabling
active sampling to learn CRFs for bibliographic component labeling.

4.4 Change Detection Performance

This section evaluates the sensitivity of the confidence metrics with respect to
layout change. For this purpose, we first learned a CRF by using training data
for each journal. In the test phase, we merged the test sets for two journals
including the training set and let the CRF judge if each title page in the merged
test sets came from the training journal. If the title page was judged to come
from the training journal, we regarded the page as positive. Otherwise it was
regarded as negative.

The receiver operating characteristic (ROC) curve was used for evaluation.
That is, the merged sets of test title pages were ranked according to the metric
described in Sect. 3.3. By regarding the top k£ pages in the list as positive, we
calculated the true-positive and false-positive fractions for each k. For each false-
positive fraction, we plotted the averaged true-positive fractions over the five
trials in the cross-validation as the ROC curve.

Figure 3 shows the ROC curves for each pair of journals. Each panel contains
the ROC curves for the normalized likelihood labeled as nlh, for the maximum
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Fig. 3. Change detection performance.

entropy labeled as me, and for the min-max label probability labeled as mp. For
example, the ROC curves in Fig.3 (a) are the results of detecting title pages
of IEICE-E from those of IPSJ using the CRF learned by labeled IPSJ training
sequences. Similarly, the ROC curves in panel (b) are the results of detecting title
pages of IEICE-J from those of IEICE-E using the CRF learned from labeled
IEICE-E training data.

Two conclusions can be drawn from these results. First, the ROC curves
show that the three metrics are very effective for detecting a test page different
from the journal used for learning. Among the three metrics, the normalized
likelihood is most effective for this detection. Note that both the maximum
entropy and the min-max label probability can estimate the worst-case token-
level confidence. This result indicates that focusing on the least-confident token
in the sequence is not a good strategy for layout-change detection. We did not
observe a significant difference between the maximum entropy and the min-max
label probability. The latter was effective for detecting IEICE-E from IPSJ, as
shown in Fig.3 (a), whereas the former was effective for detecting IPSJ from
IEICE-J, as shown in Fig. 3 (f).

Second, the journal used for learning affects the ability to detect changes.
For example, compare panels (d) and (f) in Fig.3. In both panels, we could
discriminate IPSJ and IEICE-J. However, IPSJ was used for training in panel
(d), whereas IEICE-J was used for training in panel (f). The panels show that
the CRF learned by IEICE-J is better than the CRF learned by IPSJ.

4.5 CRF Learning Using Additional Training Data

In Sect. 4.3, we evaluated the effectiveness of the active sampling when applied
to each journal independently. When learning a new CRF for pages whose layout
is different from those in the system, we can utilize the labeled training data for
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Fig. 4. Learning a new CRF.

journals already stored in the system. It may further reduce the cost of preparing
the training data, as in the case of transfer learning [11]. To examine the effect
of labeled data associated with other journals, we modified the active sampling
procedure described in Sect. 4.3. That is, we added 100 randomly chosen pages
from the labeled training title pages of another journal to the 10 initial training
title pages. The accuracy of the CRF was measured using Eq. (7).

Figure4 shows the accuracy of the CRFs for journals IPSJ, IEICE-E, and
IEICE-J. Each graph in the figure plots the accuracy of the CRF with respect
to the size of the training sample dataset chosen according to the normalized
likelihood and the min-max label probability. For example, panel (a) shows the
accuracy of the CRF learned from title pages of IPSJ with 100 additional title
pages from IEICE-E.

The red curve labeled as tr-nlh depicts the accuracy for the case of training
samples being chosen according to the normalized likelihood. The blue curve
labeled as tr-mp depicts the accuracy for the case of training samples being
chosen according to the min-max label probability. For comparison, the green
curve labeled as nlh depicts the accuracy of the CRF that was learned without
additional training data and sampled according to the normalized likelihood.
Note that the green curves are the same as nlh in Fig. 2.

We observe that the normalized likelihood and the min-max label probability
have similar performance with respect to the training dataset size, for all the
cases in the experiment. One remarkable point is that the min-max label proba-
bility performed better than the normalized likelihood at the initial step, where
10 training datasets and 100 additional training datasets were used for training.

By comparing the curves nlh and tr-mp, we observe that tr-mp tends to per-
form better than nlh for a training dataset size of 10. For larger training datasets,
tr-mp performs as well as nlh for IPSJ and IEICE-E, whereas it performs less
well than nlh for IEICE-J. This result indicates that using additional training
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datasets from different journals is effective for the initial CRF learning, but it
may become less effective as more training datasets for the target journal is used.
This could be improved by introducing a weighting to the pages of the target
and other journals according to the training dataset size.

5 Conclusions

We examined three confidence measures derived from a linear-chain CRF for
detecting layout changes in the title pages of academic papers. We applied the
measures to the active sampling process used in learning CRFs. Our experi-
ments revealed that the confidence measures are very effective in detecting lay-
out changes and that the measures can be used for active sampling, which will
reduce the labeling cost for the training data.

We plan to extend this study in several directions. First, we will study meth-
ods that might make the best use of the data accumulated in the system so
far. In our experiments, we observed that additional training data is effective
when obtaining an initial CRF in the active sampling process. We will look for
effective ways to utilize additional training data, as occurs in transfer learning.
Second, we will study methods for making clusters of title pages for learning
separate CRFs. In this paper, we split the data according to the journal type,
when learning the separate CRFs. In future work, we will seek optimal ways of
splitting the data for learning separate CRF's.
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