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Abstract. Virtual prototyping allows designers to set up an electronic
system level software simulator of a full HW/SW platform to carry out
SW development and HW design almost in parallel. To achieve the goal
virtual prototyping tools allow the co-simulation between an efficient
instruction set simulator, mainly based on dynamic binary translation
of the target code, and simulation kernels for HW models, described by
means of traditional hardware description languages, like, for example,
SystemC. In this context, some approaches have been proposed for co-
simulation between QEMU and SystemC, both from EDA companies
and academic research groups. On the contrary, no paper addresses inte-
gration between Open Virtual Platform (OVP) and SystemC. Indeed,
OVP models and the related simulator can be integrated into SystemC
designs by using TLM 2.0 wrappers and opportune OVP APIs. However,
this solution presents some disadvantages, like the incapability of sup-
porting cycle-accurate models, and the necessity of re-design, in terms
of SystemC modules, all OVP components that should be integrated in
the target platform. To avoid such drawbacks, and provide an easy way
to port SystemC models from a QEMU-based to an OVP-based virtual
platform and vice versa, this paper presents a common co-simulation app-
roach that works for integrating SystemC components with both QEMU
and OVP. Experimental results show the effectiveness of the proposed
architecture.

1 Introduction

Virtual prototyping is today an essential technology for modelling, verification
and re-design of full HW/SW platforms [1]. With respect to the serialized app-
roach, where the majority of SW is developed and verified after the completion
of the silicon design, with the risk of failing aggressive time-to-market requests,
virtual prototyping guarantees a faster development process by implementing the
software part almost in parallel with the hardware design (Fig. 1). This enables
software engineers to start implementation months before the hardware platform
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is complete. The core of virtual prototyping is represented by the virtual system
prototype, i.e., an electronic system level (ESL) software simulator of the entire
system, used first at the architectural level and then as a executable golden
reference model throughout the design cycle. Virtual prototyping brings several
benefits like, for example, efficient management of design complexity, decoupling
of SW development from the availability of the actual HW implementation, and
control of prototyping costs. More pragmatically, it enables developers to accu-
rately and efficiently explore different solutions with the aim of balancing design
functionality, flexibility, performance, power consumption, quality, ergonomics,

schedule and cost.
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and test and test and test
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Fig. 1. The virtual prototyping approach.

A common aspect in modern virtual platform approaches is the use of an ISS
that exploits DBT [2]. This technique has become the de facto standard to guar-
antee high speed and accuracy of cross-compiled software, thus many groups,
both in industry and academia, have started to consider DBT as a key tech-
nology of their virtual prototyping solutions. Companies, like VaST (acquired
by Synopsys) and Virtutech (acquired by Intel/Windriver) introduced virtual
prototyping platforms for rapid development and fast execution of target soft-
ware [3,4]. Meanwhile all of the three main EDA companies (Synopsys, Cadence,
Mentor) have their own virtual prototyping platform [5-7]. All of them are using
fast simulation technologies that are based on DBT. However, as they target to
keep their markets, most of them did not support open standard interfaces.
The technology itself is proprietary and provided under binary format, making
it impossible to perform modifications within the models, i.e., addition of new
features or annotations. Furthermore, most commercial products bind the cus-
tomer to their own standard languages and features limiting the reuse of models
towards and from other tools.
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Taking an opposite view to this closed-source approach, several research
groups have recently focused on QEMU [8], an open-source DBT-based vir-
tualization platform that allows cross-platform operating system execution and
provides a very fast emulation comparable to commercially available tools. As
an alternative to QEMU, Imperas has proposed the Open Virtual Platform
(OVP) initiative [9]. OVP, similarly to QEMU, offers a simulation kernel based
on a code morphing DBT mechanism to guarantee very efficient simulation of
full HW/SW systems. It includes several models of processors, peripherals and
behavioural components that the software communicates with. One difference
between QEMU and OVP is that the former is more targeted for homogeneous
single/multi-core platforms, while OVP has been thought to better support het-
erogeneous MPSoC architectures. For this reason, it is likely that OVP will gain
more and more consensus, in the near future, for virtual prototyping of modern
cyber-physical systems, which heavily rely on heterogeneous architectures.

The advent of QEMU and OVP, due to their high efficiency and flexibility,
has then replaced SystemC as the main open-source approach for virtual pro-
totyping of full HW/SW systems. SystemC allows to model entire systems at
different levels of abstractions and with different degrees of detail, however, its
simulation performances are poor when accurate and realistic CPU models, good
enough to run real operating systems, are desired. SystemC processes are exe-
cuted sequentially and managed by a centralized kernel, which definitely repre-
sents a bottleneck for simulation. Thus, for example, the processing power offered
by multi- and many-core architectures cannot be sufficiently exploited by adopt-
ing SystemC. However, SystemC guarantees to model customized (non stan-
dard) HW components with a level of details that cannot be achieved neither by
QEMU nor by OVP. Furthermore, effective virtual prototyping approaches can-
not exclude design reuse and bottom-up component-based design, where already
defined (SystemC) models are integrated in new prototypes, to reduce the time
to market. For this reason, several approaches, like [10-13], propose the use of
QEMU, for efficient instruction set simulation, in combination with SystemC,
for specification and reuse of customized HW components. In particular, [10]
proposes a QEMU-SystemC approach developed by the GreenSoCs company
which represents the main way for connecting SystemC models, as peripherals,
to QEMU. On the contrary, Imperas supports the integration between SystemC
and OVP by allowing the encapsulation of OVP models, wrapped by a TLM
2.0 interface, inside SystemC designs. However, such an encapsulation presents
some disadvantages. First, it works natively only for TLM designs; the OVP user
guide discourages from the integration of OVP models into non-TLM systems,
highlighting the risk of incorrect results [14]. This prevents accurate simulation
of RTL SystemC models. Secondly, encapsulation of OVP models inside Sys-
temC modules is a quite complex operation, which does not allow a rapid reuse
of SystemC components. In fact, all OVP models included in the target plat-
form must be redesigned in terms of SystemC modules (through OVP APIs and
TLM interfaces) to be co-simulated with the customized SystemC hardware.
Furthermore, the porting of a SystemC component, originally linked inside a
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QEMU-based platform, towards an MPSoC OVP-based platform would require
a huge effort. Similar considerations apply in the opposite case, when porting
from the OVP world to QEMU’s one is desired.

To overcome these drawbacks, this paper, as an extension of [15], proposes
a common architecture to integrate SystemC components in both QEMU and
OVP-based virtual platforms. Starting from the idea presented in [10], our app-
roach defines an efficient, shared-memory based architecture that allows the
communication between a SystemC peripheral and a SW program, which runs
either on a QEMU or on an OVP CPU model, through a common PCI virtual
device bridge. In this way, porting of SystemC components from a QEMU-based
to an OVP-based virtual platform is straightforward, since it requires only to
redefine the virtual device in terms of either OVP or QEMU APIs. Finally,
there is no limitation about the abstraction level at which SystemC models are
implemented.

The rest of the paper is organized as follows. Section 2 briefly presents the
main characteristics of QEMU and OVP, and it summarizes approaches for
their co-simulation with SystemC. Section 3 describes the proposed common co-
simulation architecture. Section4 is devoted to experimental results. Finally,
concluding remarks are reported in Sect. 5.

2 Background and Related Works

QEMU and OVP are two very popular open-source environments for rapid pro-
totyping of virtual platforms. Both of them allow a very efficient emulation of
several architectures and they can interface with many types of physical host
hardware. QEMU is mainly intended for simulation of a fixed, defined single
processor platform. OVP is more suited to model heterogeneous platforms with
arbitrary shared and local memory configurations. Next subsections report a
brief summary of their main characteristics and the state of the art related to
their integration with SystemC.

2.1 QEMU

QEMU is a machine emulator relying on dynamic binary translation of the target
CPU application code. Each instruction of the target CPU is translated into a set
of micro-operations that are implemented by C functions for the host machine.
Such C functions are then compiled to obtain a dynamic code generator which
is called, at run time, to generate the corresponding code to be executed on
the host machine. QEMU works at basic block level. Each block is translated,
the first time it is encountered, into the corresponding code for the target CPU,
then it is stored in a cache for future uses. In addition to such a common feature,
different optimizations can be implemented to further keep execution speed close
to native execution, like, for example, dynamic recompilation where some parts
of the code are recompiled to exploit information that are available only at run
time.
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There is no a native way to integrate SystemC models into QEMU, thus
some co-simulation approaches have been proposed in the past [10,12,13,16].
The intent of [10] is to facilitate the development of software and device drivers
for whatever operating system without spending too much effort on modifying
the virtual platform itself by plugging SystemC TLM 2.0 models into the QEMU-
based virtual platform. This work is further extended in [13] where the authors
introduce a checkpoint-based feature to save and restore the SystemC state into
the simulator. Alternatively, in [12,16], the authors propose a QEMU /SystemC-
based framework for virtual platform prototyping that cannot only estimate the
performance of a target system, but also co-simulate with hardware models down
to the cycle accurate level.

2.2 OVP

OVP is a virtual platform emulator released by Imperas for enabling the sim-
ulation of embedded systems running real application code. It includes a fast
Just-In-Time (JIT) code morphing simulator engine (OVPsim), a set of APIs
for modelling new platforms and components, like CPUs and peripherals, and a
set of already designed models. An OVP platform is composed of one or more
processors, memories, interconnections, and possibly some peripherals. A plat-
form is modelled through the following sets of APIs:

— Innovative CPU Manager (ICM): ICM functions enable instantiation, inter-
connection and simulation of complex multiprocessor platforms composed of
processors, memories and busses in arbitrary topology.

— Virtual Machine Interface (VMI): VMI functions are used to create new mod-
els of processors to be run inside the OVPsim. CPU instructions are mapped
onto the JIT code morphing compiler primitives to speed-up the simulation.

— Behavioural Hardware Modelling (BHM): BHM functions allow to define
behavioural models of hardware and software components that act as periph-
erals to the processors. They are executed by the Peripheral Simulation Engine
(PSE) in a separate (protected) process with respect to OVPsim.

— Peripheral Programming Model (PPM): PPM functions are used in conjunc-
tion with BHM functions to model interfaces to the platform and connections
(bus ports, net ports, etc.).

The use of OVP to model heterogeneous multiprocessor architectures is
described in [17] through a set of case studies. A drag and drop interactive
approach for MPSoC exploration using OVP is proposed in [18]. A technique
exploiting OVP for development and optimization of embedded computing appli-
cations by handling heterogeneity at the chip, node, and network level is pro-
posed in [19]. Heterogeneity is handled by providing an infrastructure to connect
multiple virtual platforms like OVP and QEMU.

None of previous works considers co-simulation between an OVP-based vir-
tual platform and external SystemC models. However, OVPsim platform models
can be compiled as shared objects. Thus, they can be encapsulated in any simu-
lation environment that is able to load shared objects, including SystemC. The
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QEMU-based architecture OVP-based architecture
Software Hardware Software Hardware
Application Application

SystemC SystemC
Target OS peripheral Target OS peripheral

Virtual device

SystemC bridge

Virtual device

SystemC bridge

Fig. 2. Co-simulation architectures. Pink boxes indicate unchanged code between
QEMU and OVP (Colour figure online).

integration with SystemC is enabled by the ICM APIs. OVP models and OVPsim
can be encapsulated inside a SystemC design to create a virtual platform where
SystemC components and OVP models simulate together under the control of
the SystemC simulation engine. However, the OVP CPUManager is not intended
for cycle-accurate or pin-level simulation. For this reason ICM APIs provide only
loosely timed TLM 2.0 interfaces. Thus, integration of OVP models in a SystemC
RTL system would require the definition of TLM-to-RTL transactors. However,
the OVP user guide discourages from the integration of OVP models into non-
TLM systems, highlighting the risk of incorrect results [14]. Moreover, as shown
in our experimental results, simulation performances are heavily penalized when
OVP is integrated inside SystemC.

3 Co-simulation Architecture

In this paper, the HW/SW co-simulation architecture depicted in Fig. 2 is pro-
posed. Similarly to the approaches presented in [10,13], it reflects the traditional
operating system-based stack where software applications interact with hardware
peripherals through device drivers. The target platform, where software applica-
tions run, is emulated by using, indifferently, QEMU or OVP, and it is connected
to a SystemC hardware peripheral through a virtual PCI' device, a SystemC
bridge and a device driver for the target operating system.

The virtual PCI device, connected to the PCI bus of the virtual platform,
acts as an interface between the SystemC simulator and the QEMU or OVP
virtual platforms. The virtual device code is different for the QEMU-based and
the OVP-based architectures, since it depends on the APIs exported by QEMU
and OVP for modeling new devices.

The SystemC bridge consists of a set of functions that allow the commu-
nication with SystemC. The bridge is compiled as a C library linked to the

! The same approach can be adopted also for other kinds of buses, like for example
AMBA.
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implementation code of each virtual device, thus it is independent from the
selected virtual platform and it is the same for both the QEMU-based and the
OVP-based architectures.

Finally, a device driver must be developed for the target operating system to
use the hardware peripheral. Its code is clearly independent from the selected
virtual platform and it does not need to be changed when it is moved to the
actual platform.

This approach allows a rapid interchange from a QEMU-based to an OVP-
based SystemC co-simulation and vice versa, since only the virtual device must
be re-coded moving from a QEMU virtual platform to an OVP virtual platform.

Further details about the SystemC bridge and the virtual device are reported,
respectively in Sects. 3.1 and 3.2, while Sect. 3.3 describes how the device driver
and the virtual device interact to implement the interrupt handling mechanism.

i QEMU/OVP thread : ' SystemC thread :
! QEMU/OVP startup b v
! P sc_elab_and_sim
! Guest HW startup : ! :
! Guest PCl bus . : sc_main .
i startup . l Device instance .
i | : and binding !
i SystemC b with SystemC !
bridge t i bridge !
! startup . : .
! sc_start !
! Guest OS startup : ! I

Fig. 3. Startup of the cosimulation between QEMU/OVP and SystemC.

3.1 SystemC Bridge

The SystemC bridge is a C++ class implementing a singleton design pattern
that exposes a set of APIs towards the virtual device for interfacing with Sys-
temC. Moreover, it manages the communication protocol and the synchroniza-
tion mechanism between QEMU/OVP and SystemC. Since both QEMU and
OVP are written in C, the bridge wraps the SystemC APIs through a set of C
functions included in a library, which is statically linked to the SystemC runtime
library.
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The QEMU and the OVP virtual platforms? initially call a function imple-
mented in the bridge to start the SystemC simulator. Until the SystemC runtime
is operative, the virtual platform is blocked to prevent its premature request to
the hardware device. Differently from [10], the SystemC simulator is run as a sep-
arate thread inside the same process where the QEMU emulator or OVP simu-
lator is executed (Fig. 3), such that the communication between the two worlds
is based on shared memory and thread synchronization primitives. This prevents
the use of expensive interprocess communication mechanisms (like sockets). Then,
the starting routine of the thread launches the SystemC sc_main function where
the following steps are executed:

— instantiation and initialization of the SystemC device to be connected to the
bridge; in particular, input and output ports of the device are registered in
the bridge;

— unlocking of the semaphore that is blocking the virtual platform;

— starting of the SystemC simulator.

The SystemC bridge exports two functions (i.e., sc_ioport-read and
sc_ioport_write) towards the virtual platform to allow reading from/writing to
the SystemC module.

Read operations are performed by calling the sc_ioport_read function. This
invokes the read method of the SystemC bridge on the target signal (Sys-
temc_To_VirtualPlatform_Signal), which represents an output port for the Sys-
temC device. The signal is implemented like a proxy for a sc_core::sc_out as
reported in Fig.4. In particular, it is an SC_MODULE with a method, run,
which updates the signal value each time a change happens in the output port
of the SystemC device. Then, the read method retrieves the current value of
the signal each time the virtual platform calls the sc_ioport_read function, as
reported in the sequence diagram of Fig.5. To guarantee atomicity of opera-
tions, read and run methods are made mutually exclusive through the use of a
mutex.

Write operations are performed in a similar way by invoking the
sc_ioport_write function. As shown in the sequence diagram of Fig.7, it calls
the write method of the SystemC bridge on the target signal (VirtualPlat-
form_To_Systemc_Signal), which represents an input port for the SystemC
device. Such a signal is implemented in a similar way with respect to the Sys-
teme_To_VirtualPlatform_Signal (Fig.6). The only difference is represented by
the necessity of preventing concurrent write operations by the virtual platform,
which would be missed by the SystemC runtime. This is obtained by using a
mutex that is locked as soon as the write method is invoked and by a flag that is
used to notify a pending write operation to the SystemC device. Then, the run
method is executed at each clock cycle checking for a pending operation from
the virtual platform; in case of its presence, the pending value is written to the

2 In the following, we use the generic name virtual platform to refer, without distinction,
to the QEMU as well as the OVP environment.
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1| template <typename T>
2 SC_MODULE( Systemc_To _VirtualPlatform Signal),
3 public Systemc To VirtualPlatform Signal Base {
4
5 SC_HAS PROCESS(SystemC_To VirtualPlatform Signal);
6
7 Systemc To VirtualPlatform Signal(
8 sc_core::sc_out<T>& port,
9 sc_core::sc_module name name) : sc_module(name) {
10
11 SC_METHOD(run ) ;
12 sensitive << signal;
13 port.bind(signal);
14
15
16 virtual uint64 t read() {
17 Scoped Lock sl (mutex);
18 return static_cast<uint64_t>(native);
19 }
20
21 void run() {
22 Scoped Lock sl (mutex);
23 native = signal.read ();
24 }
25
26 virtual std::string name() const {
27 return sc_module::name();
28 }
29
30 private:
31 Mutex mutex;
32 T native;
33 sc_core::sc_signal<T> signal;
341}

Fig. 4. Implementation of a SystemC to virtual platform signal to allow QEMU/OVP

reading from the SystemC device.

:VirtualPlatform ‘ ’ :SC_bridge ‘ ’

:sc_ioport_read()

:read()

:SystemC_To_VirtualPlatform_Signal ‘ ’ :SystemC ‘

run()

Fig. 5. Sequence diagram of a read operation from a SystemC device.

port of the SystemC device and the mutex is unlocked allowing further write
operations from the virtual platform.

To optimize performance, time synchronization between QEMU/OVP and
SystemC is not clock accurate, but it happens only when a call to a SystemC
device is performed in order to update the SystemC time to be the same as
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1| template <typename T>

2 SC_MODULE( VirtualPlatform To Systemc Signal),
3 public VirtualPlatform To Systemc Signal Base {
4

5 SC_HAS PROCESS(VirtualPlatform To_ Systemc_Signal);
6

7 VirtualPlatform To Systemc Signal(

8 sc_core::sc_in<T>& port,

9 sc_core::sc_clock& clock signal,
10 sc_core::sc_module name name) : sc_module(name) {
11

12 is_vp_ write = false;

13 SC_METHOD(run );

14 sensitive pos << clock.pos();
15 clock.bind(clock signal);

16 port.bind(signal);

17 }

18

19 virtual void write (uint64_t value) {
20 token . hold;

21 native = static cast<T>(value);

22 is _vp_ write = true;

23 }

24

25 void run() {

26 if (is_vp_ write) {

27 signal . write (native );

28 is _vp_ write = false;

29 token.release ();

30 }

31 }

32

33 virtual std::string name() const {
34 return sc_module::name ();

35 }

36

37 private:

38 Token token;

39 T native;

40 sc_core::sc_signal<T> signal;

41 bool is_vp write;

42 sc_core::sc_in_clk clock;

43|}

Fig. 6. Implementation of a virtual platform to SystemC signal to allow QEMU/OVP
writing to the SystemC device.

QEMU time. This only guarantees that two subsequent operations do not inter-
fere with each other, which is a sufficient condition for functional verification
but not enough for other kind of analysis (e.g., power consumption/timing esti-
mation). Future works will deal with a more accurate time synchronization.

3.2 Virtual Device

A device can be made visible to the QEMU and OVP virtual platforms by
implementing a virtual device. In our work, we considered PCI devices, however,
in a similar way other kinds of bus can be adopted. Differently from the SystemC
bridge, whose implementation code is the same for QEMU and OVP, the creation
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:VirtualPlatform ‘ ’ :SC_bridge ‘ ’ :VirtuaIPIatform_To_SystemC_SignaI ‘ ’ :SystemC ‘

:sc_ioport_write()

:write ()

i

:run()

:write ()

Fig. 7. Sequence diagram of a write operation to a SystemC device.

of a virtual device is tightly coupled to the APIs exported by the virtual platform.
Thus, QEMU and OVP implementations will be described separately.

QEMU Virtual Device. The implementation of the QEMU virtual device
is based on the PCI APIs. The device is plugged to the selected machine (in
our experiments a Malta platform) and connected to a PCI bus. The device
characteristics (name, parent class, size of the occupied memory, initialization
routine) are described into a structure which is passed to the selected machine
during the device registration phase. The initialization routine is executed when
a new instance of the device is initialized. Its role consists of registering the
I/O ports memory regions and starting the SystemC simulation through the
SystemC bridge. The registration of the I/O ports memory region reserves a
chunk of memory for the virtual device and retrieves the pointers to functions
for reading/writing from/to the virtual device I/O ports that are mapped to
the actual SystemC device I/O ports. Such function invokes the corresponding
sc_ioport_read and sc_ioport_write of the SystemC bridge.

OVP Virtual Device. The implementation of the virtual device in OVP is
split in two parts: the device and the intercepted functions. The device consists
of a C application with a standard main function. It first executes a set of initial-
ization activities (SystemC simulation, PCI configuration header, PCI memory
regions); then it connects the PCI configuration port (necessary to read the PCI
configuration header) and the PCI master bus. Finally, it registers some call
back functions that are triggered at each read/write operation from/to the PCI
I/O port regions. The interaction between the SystemC bridge and the virtual
device is performed by means of a set of intercepted functions. The PSE simu-
lator intercepts such functions through the Application Binary Interface (ABI),
which specifies size, layout and alignment of data types, how an application
should make a system call to the operating system, and the calling conventions
(how arguments of a function are passed, and how return value is retrieved). In
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particular, there is an intercepted function for reading from the SystemC device
and one for writing to the SystemC device. Their role consists in calling the
corresponding sc_ioport_read and sc_ioport_write of the SystemC bridge.

Software Device Virtual SystemC ECC HW
app driver device bridge module
write data N i

> L write data | write data . |
write data |
[ ] [ writ dat
start
- OPV
read result thread
bt I
[ read is_ready i readis_ready
is_ready == 0? status of is_ready
T status of is_ready]|
Interrupt Interrupt
read result P
read result
] read result
" it return result return result
return resu < L]
return result T i

Fig. 8. Sequence diagram of the interrupt mechanism for ECC benchmark.

3.3 Interrupt Handling

The basic architecture described in the previous sections supports only 1/0
requests from the virtual platform to the SystemC device, while the second acts
only as a slave. However, an effective virtual prototyping solution cannot forget
to provide support for interrupt-based asynchronous communication, through
which, for example, a device can notify the completion of a task to the CPU.
To achieve this goal, an interrupt handling mechanism has been defined. Its
implementation is composed of two parts, which does not involve the SystemC
bridge: the first part is embedded in the device driver, the second in the virtual
device. As an explanatory example, we refer to the interaction between a SW
application and a SystemC module representing and error correction code (ECC)
that we used in the experimental result section (see Sect.4). Figure8 shows
the sequence diagram that describes these interactions. In particular, a write
operation is performed on the ECC module and then a subsequent read operation
is called. The device driver and the virtual device manage the correct sequencing
of the two operations such that the read is executed only after the write has
completed. The completion of the write is notified by the virtual device through
an interrupt that is raised as soon as the is_ready line of ECC becomes high.
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// wariable declarations

// semaphore for wunlocking read operation upon interrupt
struct semaphore readLock;

// device driver opening
static int open(struct inodex inode, struct filex file) { ... }

// device driver releasing
static int release(struct inodex inode, struct filex file) { ... }

// read operation callback

static ssize t read(struct filex file , charx buf,
size t count, loff t= ppos)

{

// initializations and sanity checks

// blocking via semaphore (unlocked by interrupt handler method)
wait(&readLock);
// read operation

}

// write operation callback
static ssize t write(struct filex file , const charx buf,
size _t count, loff tx ppos)

// write operation

// Interrupt handler method

static irqreturn_t irq_handler (int received irq, voidx dev_ id) {
// data ready unlock semaphore
signal (&readLock);
return IRQ HANDLED;

}
// Device driver initialization
static int _  init init (void)
{
// variables and wutilities initializations
// Semaphore initalization and interrupt handler registration
sema _init(&readLock, 1);
if ((err = request _irq (15, irq_handler,
IRQF_SHARED, DRV_NAME, (voidx*)(irq_handler))))
{
pr_err(‘‘Cannot obtain irq, aborting’’);
return —1;
}
return 0;
}

// other functions

Fig. 9. Device driver implementation for ECC.
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1| // Interrupt checking thread method

2| static void interruptCheckThread(voidx data)

3

4 Uns32 result = 0;

5

6 while (1)

7 {

8 // wait until write operation is called on the devicel|
9 bhmWaitEvent (threadEventHandle );

10 while (result == 0) // Check if ECC is ready?
11

12 result read _ecc_is_ready();

13 // wield for a while to avoid hogging the CPU
14 bhmWaitDelay (100);

15 }

16

17 // When ECC is ready send interrupt

18 ppmWriteNet (intPort , 1);

19 ppmWriteNet (intPort , 0);

20 }

21| }

22

23| // main: used as OVP peripheral constructor
24 | int main(int argc, char sxkxargv) {

25 // peripheral initializations

26

27 // PCI initialization

28 pciHeaderInit ();

29 pciMappingInit ();

30 pciRegisterCallBack ();

31 // Bus ports initializations

32 ppmOpenSlaveBusPort (‘‘config’’, config window, sizeof(config window));
33 pciConnectConfigSlavePort (PREFIX, NULL);

34

35 // initialization of the Interrupt line

36 intPort = ppmOpenNetPort(‘‘sclinkInterrupt’’);

37

38 // initialization of the interrupt checking thread

39 threadEventHandle = bhmCreateEvent ();

40 threadHandle bhmCreateThread (interruptCheckThread ,

41 NULL, threadName, &threadStackData|THREAD STACK]);
42 bhmEventHandle finished = bhmGetSystemEvent (BHI\/[isEiEND*OFisIMTJLATION);
43 bhmWaitEvent (finished );

44 bhmMessage (‘‘I’’, PREFIX, ‘‘Shutting down’’);

45

46 terminate ();

47 return 0;

48| }

Fig. 10. Interrupt handling inside the OVP virtual device for ECC.

Monitoring such a line is the role of a dedicated OVP thread, which is activated
as soon as a new write is requested by the software application.

The device driver side is implemented in the traditional way. From the point
of view of interrupt handling, it just requires the definition of a function that
is called through the interrupt service routine when this is triggered by the
arrival of the corresponding interrupt. For example, let us consider the piece of
code reported in Fig.9. It shows the skeleton of the device driver written for
ECC. An interrupt is raised by the ECC module as soon as a write operation is
concluded. As a consequence, the irg_handler function is executed (lines 34-38),
which unlocks the readLock semaphore (line 36). Such a semaphore is used to
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block the read routine that waits till the ECC device is ready for a read operation
(line 19).

Then, the most effort for implementing the interrupt handling resides in
the virtual device side. The mechanism is the same for both QEMU and OVP,
given that, on the virtual device side, either QEMU or OVP APIs are adopted.
Figure 10 shows the skeleton for the OVP case. ECC raises an interrupt by fixing
to 1 the line is_ready as soon as a write operation on the device is completed.
At platform level, a signal is used to connect the virtual device to the interrupt
lines provided by the platform chipset (line 36). When an interrupt is generated
by the SystemC device, the interrupt is notified to the chipset through such a
signal (lines 18-19). To catch the interrupt from the SystemC module, the virtual
device creates an OVP thread (line 40-41) that cyclically checks the is_ready line
of the SystemC module (lines 1-21). A waiting time is introduced between two
consecutive checks to avoid hogging the CPU (line 14). The thread is finally
suspended, to reduce its busy waiting activity, after the interrupt is raised till a
new write operation is called on the ECC (line 9).

4 Experimental Results

Experimental results have been executed by setting up a virtual platform com-
posed of a MIPS-based Malta platform and a SystemC RTL module connected
through the PCI bus. The SystemC module implements an Error Correction
Code (ECC) algorithm as an external hardware peripheral. Two versions of the
platform have been implemented, one based on QEMU and one on OVP. The
Malta platform is equipped with a MIPS 34Kf CPU running a Debian 6.0.9 with
a2.6.32.5 Linux kernel. The host machine is an Intel Core2Quad Q6600 @2.4 GHz
with 4 GB of RAM, running Ubuntu 12.04, QEMU 1.0.50, OVP v20140127.0 and
SystemC 2.3.0.

Experimental results concerning simulation times are reported in Table 1. A
software application running on the target CPU has been required to ask the
SystemC peripheral to compute the ECC a variable number of times (Column
ITERATIONS. The experiment has been executed on the QEMU-SystemC and
OVP-SystemC common architecture described in Sect. 3 (respectively, columns
QEMU-SYSTEMC BRIDGE and OVP-SYSTEMC BRIDGE). Moreover, a virtual
platform has been implemented by wrapping the OVP modules of the Malta
platform into a SystemC design by following the official guidelines reported in
the OVP documentation [14] (columns OVP WRAPPED INTO SYSTEMC). This
requires also to implement a transactor to convert the RTL interface of the
ECC module towards a TLM 2.0 interface. Two different sets of experiments
have been executed by setting the clock period of the SystemC RTL peripheral,
respectively to 10 ms (left part of the table) and 1ns (right part of the table).
This different setting negatively impacted on the results of the official OVP-
SystemC schema, since it was not able to carry on the simulation for clock
periods lower than 10 ms. The simulation blocked during the initialization phase.
Indeed, OVP guidelines explicitly state that CPU manager is based on the TLM
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2.0 loosely time model, and it is not intended for cycle-accurate simulation of
RTL components. Attempting to use other models gives incorrect results. On the
contrary, with a period of 1 ms the simulation works correctly, but the simulation

time is negatively affected with respect to the co-simulation schemas proposed
in this paper.

Table 1. Comparison of simulation times between the SystemC-QEMU/OVP common
co-simulation architecture proposed in this paper and the native way of integrating
OVP into SystemC described in the OVP guidelines [14].

ITERATIONS | SystemC clock set at 10 ms ‘ SystemC clock set at 1 ns
Boor |Boot & RUN|RUN ‘ Boor ‘ Boot & RUN | RUN

QEMU-SYSTEMC BRIDGE

5,000 80.54s |92.84 s 12.30 s | 79.79s|91.18 s 11.39 s

10,000 103.11 s 22.57 s 102.45 s 22.66 s

50,000 191.07 s 110.53 s 197.65 s 117.86 s

100,000 314.65 s 234.11 s 305.84 s 226.05 s

OVP-SYSTEMC BRIDGE

5,000 85.50 s | 125.07 s 39.57s |79.95s 123.68s 43.73 s

10,000 170.19 s 84.69 s 171.41 s 91.46 s

50,000 475.60 s 390.10 s 474.30 s 394.43 s

100,000 899.92 s 814.42 s 903.76 s 823.81 s

OVP WRAPPED INTO SYSTEMC [14]

5,000 101.83 s | 458.46 s 356.63 s |- - -

10,000 835.62 s 733.79 s |- - -

50,000 3808.38 s 3706.55 s | - - -

100,000 7509.38 s 7407.55 s | - - -

The table reports the time required to boot and shut down the virtual plat-
form without running the application (BooT)?, the time required to boot, run
the application and shut down (BooT & RUN), and finally, the time referred
to only the run of the application (RUN). This final value is the most inter-
esting, since it includes the time required for the communication between the
QEMU/OVP virtual platform and the SystemC peripheral. There is a signifi-
cant difference in the communication time. This is highlighted in Table 2, where a
comparison between the OVP-SystemC co-simulation proposed in this paper and
the native way of integrating OVP into SystemC described in the OVP guide-
lines is reported, taking the QEMU-SystemC architecture, which is the fastest,
as reference for the simulation time. Columns of the table report the simulation

3 As expected, the boot time is not influenced by the iteration number in all the three
schemas.
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Table 2. Comparison between the OVP-SystemC co-simulation proposed in this paper
and the native way of integrating OVP into SystemC described in the OVP guide-
lines [14], taking the QEMU-SystemC architecture as reference for the simulation time.

ITERATION | SystemC clock set at 10 ms SystemC clock set at 1 ns
QEMU-SC | OVP-SC | OVPW-SC | QEMU-SC | OVP-SC | OVPW-SC
SIM. TIME | MUL. FAC. | MUL. FAC. | SIM. TIME | MUL. FAC. | MUL. FACT

Boor

5,000 80.54 s 1.1x 1.3x 79.79 s 1.0x -

10,000

50,000

100,000

Run

5,000 12.30 s 3.2x 29.0x 11.39 s 3.8x -

10,000 22.57 s 3.8x 32.5x 22.66 s 4.0x -

50,000 110.53 s 3.5x 33.x5 117.86 s 3.3x -

100,000 234.11 s 3.5x 31.6x 226.05 s 3.6x -

time for the QEMU-based architecture (QEMU-SC SiM. TIME), and its ratio
(multiplication factor) with respect to the simulation time of the OVP-SystemC
archicture based on the SytemC bridge (OVP-SC MUL. FAC.) and the archi-
tecture proposed in [14] (OVPW-SC MuL. FAC.). While boot time (columns
Boor) is almost similar among the three approaches, the communication with
the SystemC peripheral introduces an higher overhead in the OVP-based plat-
forms rather than in the QEMU one (columns RUN). However, it is worth noting
that the overhead is much higher by adopting the co-simulation proposed in [14]
with respect to using the bridge-based architecture proposed in this paper. This
shows that the architecture described in this paper is more efficient with respect
to wrapping OVP models into SystemC.

5 Conclusions

In this paper, we present a common architecture to integrate SystemC with both
QEMU and OVP. The architecture is based on a SystemC bridge, which man-
ages the communication protocol and the synchronization mechanism between
QEMU/OVP and SystemC, and a virtual device, which acts as an interface
between the SystemC simulator and the QEMU or OVP world. Interrupt han-
dling is also supported. The bridge is the same for both QEMU and OVP, while
only the virtual device must be coded according to the APIs exported by QEMU
and OVP. This allows to rapidly reuse SystemC components from a QEMU-based
to an OVP-based virtual platform and vice versa.

Experimental results highlighted that the QEMU-based approach is almost 4
times faster than the corresponding OVP-based approach. However, compared to



On the Co-simulation of SystemC with QEMU and OVP Virtual Platforms 127

the official way of integrating SystemC with OVP reported in the OVP guide-
lines, the OVP co-simulation approach proposed in this paper is one order of
magnitude faster. Furthermore, we support cycle-accurate simulation of RTL
(as well as TLM) models, while only TLM 2.0 loosely timed models work prop-
erly with the official OVP-SystemC co-simulation schema.

Future works will be mainly devoted to the definition of a more precise tim-
ing synchronization. Currently, synchronization between QEMU/OVP and Sys-
temC is not clock accurate. A further extension will be related to the possibility
of instantiating an arbitrary number of SystemC components. In the current
approach, this requires to run a separate instance of the SystemC simulation
kernel for each SystemC model.

Acknowledgements. The authors would like to thank Filippo Cucchetto and Stefano
Angeleri for their contribution in applying the proposed architecture to the case study
reported in experimental results.
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