Interval Arithmetic and Self Similarity Based
Subthreshold Leakage Optimization
in RTL Datapaths

Shilpa Pendyala and Srinivas Katkoori®?

Department of Computer Science and Engineering,
University of South Florida, 4202 East Fowler Avenue, ENB 118,
Tampa, FL 33620, USA
{spendya2,katkoori}@mail.usf.edu

Abstract. We propose top-down and bottom-up interval propagation
techniques for identifying low leakage input vectors at primary inputs of
an RTL datapath. Empirically, we observed self-similarity in the leakage
distribution of adder/multiplier modules i.e., leakage distribution at the
sub-space level is similar to that at the entire input space. We exploit
this property to quickly search low leakage vectors. The proposed mod-
ule library leakage characterization is scalable and is demonstrated on
adders/multipliers. Given an RTL datapath, interval propagation is car-
ried out with the low leakage intervals of the module instances with
primary inputs. The reduced interval set is further processed with simu-
lated annealing, to arrive at the best low leakage vector set at the primary
inputs. Experimental results for various DSP filters simulated in 16 nm
CMOS technology with top-down and bottom-up approaches yield leak-
age savings of 93.6 % and 89.2 % respectively with no area, timing, or
control overheads.

Keywords: Sub-threshold leakage optimization -+ Minimum leakage
input vector -+ Interval arithmetic - Self similarity - RTL datapath
optimization

1 Introduction and Motivation

Excessive subthreshold leakage power consumption is a serious concern in deep-
submicron technology nodes [1]. Input vector control technique is widely used
for subthreshold leakage optimization due to its low latency overhead. However,
determination of minimum leakage vector (MLV) for large circuits is a difficult
problem by itself as it requires excessive simulation time [2]. An MLV is an input
vector that puts the circuit in lowest leakage state possible i.e., it is an optimal
vector. We refer to sub-optimal MLVs as low leakage vectors (LLVs) that put
the circuit with leakage close to the optimal leakage.

For a given datapath, applying MLV to each RTL module incurs significant
area and control overhead. The additional area stems from input multiplexers

© IFIP International Federation for Information Processing 2015
L. Claesen et al. (Eds.): VLSI-SoC 2014, IFIP AICT 464, pp. 75-94, 2015.
DOI: 10.1007/978-3-319-25279-7_5

76 S. Pendyala and S. Katkoori

needed to apply the minimum leakage vector. Control overhead is incurred from
the select lines of these multiplexers. As data values propagate through RTL
modules, we have proposed [3] to identify a set of input vectors such that they
not only put the module instances at primary inputs (PIs) into low leakage,
but also result in low leakage input vectors at internal module instances. In
[4] (conference version of this chapter), we leverage self-similarity of module-
level leakage distributions. In this book chapter, we further extend the idea by
experimenting with bottom up interval propagation. We experimented with five
DSP filters and obtained average leakage savings of 93 % with top down approach
and 89.2% with bottom up approach. In both cases, we did not require any
internal control points for any design, thus the proposed approaches incur no
overhead in terms of area, control, or delay.

The overall optimization flow is as follows: First, we characterize the module
library to gather low leakage vector intervals with two-phase Monte-Carlo sim-
ulation. Next, we propagate interval sets of module instances at primary inputs
through the datapath. We have two choices: top-down or bottom-up. In top-
down interval sets at PIs are propagated to primary outputs (POs) and in case
of bottom-up, interval sets at POs are propagated back to PIs. The interval
propagation yields a reduced set of low leakage intervals at the PIs. A simulated
annealing algorithm is devised to find the best input vector set from the reduced
interval set. Next, we briefly describe the self-similarity based scalable module
leakage characterization for bit-sliced adder/multipliers.

As the search space grows exponentially with the module bit-width, finding
low leakage vectors by exhaustive simulation is infeasible. In order to make the
problem tractable, we exploit the self-similarity property of leakage distribution
of a given functional unit. Briefly, given a stochastic distribution, it is said to be
self-similar [5,6], if any arbitrary sub-distribution (built by choosing contiguous
samples) is similar to the original distribution. Hurst parameter is a commonly
used metric to determine self-similarity of a distribution. For two module types,
adder and multiplier, we empirically observe that their leakage distributions
are self-similar. Given a confidence level («) and an error tolerance (3), Halter
and Najm [7] derived a formula to determine the minimum number of random
vectors needed to find a LLV that is no worse than 8% of vectors with a%
confidence, provided the leakage distribution is normal. While the goal of any
MLV heuristic is to find one vector, our goal is to find as many LLVs as possible
so that we can expand them into LLV data intervals. For adder and multiplier,
we also empirically observe that their leakage distributions are normal. This
normal leakage distribution along with self-similarity of a module enables us to
partition the input space into small sub-spaces and then randomly sample each
subspace with fixed number of vectors.

The chapter organization as follows: Section 2 presents background, related
work, and terminology. Section3 describes the module library characteriza-
tion. Section 4 presents the proposed top-down and bottom-up interval propaga-
tion approaches followed by simulated annealing. Section 5 reports experimental
results. Finally, Section 6 draws conclusions.

Self Similarity and Interval Arithmetic Based Leakage Optimization 7

2 Background, Related Work, and Terminology

We first review input vector control techniques from the literature. We then
provide a brief overview of fractal theory and self-similarity. Lastly, we present
an overview of interval arithmetic.

2.1 Input Vector Control Techniques

As the leakage depends only on the current input vector, during the idle mode,
we can apply the minimum leakage vector (MLV). Thus, MLV needs to be deter-
mined a priort and incorporated into the circuit. This technique is known as the
Input Vector Control (IVC). For an n-input module, as the input space grows
exponentially (2"), MLV determination heuristics have been proposed [2,8]. For
an IVC technique, the area penalty occurs due to additional hardware needed
to incorporate MLV into the circuit. Delay penalty is incurred if this additional
hardware is in the critical path of the circuit.

To the best of our knowledge, all the proposed IVC techniques are at the
logic level. Abdollahi, Fallah, and Pedram [2] propose gate-level leakage reduc-
tion with two techniques. The first technique is an input vector control wherein
SAT based formulation is employed to find the minimum leakage vector. The
second technique involves adding nMOS and pMOS transistors to the gate in
order to increase the controllability of the internal signals. The additional tran-
sistors increase the stacking effect leading to leakage current reduction. The
authors report over 70 % leakage reduction with up to 15 % delay penalty. Gao
and Hayes [9] present integer linear programming (ILP) and mixed integer lin-
ear programming (MILP) approaches, wherein MILP performs better than ILP
and is thirteen times faster. Average leakage current is about 25 % larger than
minimum leakage current. IVC technique does not work effectively for circuits
with large logic depth. Yuan and Qu [8] have proposed a technique to replace
the gates of worst leakage state with other gates in active mode. A divide-and-
conquer approach is presented that integrates gate replacement, an optimal MLV
searching algorithm for tree circuits, and a genetic algorithm to connect the tree
circuits. Compared with the leakage achieved by optimal MLV in small circuits,
the gate replacement heuristic and the divide-and-conquer approach can reduce
on average 13 % and 17 % leakage, respectively.

2.2 Fractals and Self Similarity

Fractals are shapes made of parts similar to the whole [5]. Property of scaling
is exhibited by fractals, which means the degree of irregularity in them tends to
be identical at all scales [5,6]. Many examples of fractal behaviors are observed
in nature. Figurel shows a romanesco broccoli in which we can observe the
self similar property of its shape. In VLSI structures, H-tree based clock signal
network, employed for zero-skew, exhibits fractal behavior (Fig.2).

The main classifications of fractals are time or space, self-similar or self-
affine, and deterministic or stochastic. Space fractals are structures exhibiting

78 S. Pendyala and S. Katkoori

the fractal property in the space domain. While time fractals are those exhibiting
in time domain. Self-similar fractals have symmetry over entire scale, which is
identical to recursion, i.e., a pattern inside another pattern. The details spread
across finer and finer scales with certain constant measurements. Hurst para-
meter (0 < H < 1), is a measure of the correlation or long range dependence
in the data which leads to the fractal behavior of the data set [10]. A random
process has H value equal to 0.5. If H is less than 0.5 then the process exhibits
anti-persistence. If H value is between 0.5 and 1, then the process has long term
persistence [5]. A stochastic process can be said to exhibit fractal behavior [11]
if the H value is between 0.5 and 1. Methods to estimate Hurst parameter are
described in [10]. In this work, we employed the R/S plot method.

Fig. 1. Romanesco broccoli - an example of self-similar behavior occurring in nature.
Photo credit [12].

Self similarity has been leveraged in estimation and optimization problems
in diverse fields. We give three examples. Premarathne et al. [14] employ self-
similarity to detect anamalous events in network traffic by showing that traf-
fic’s self-similarity property is temporarily disturbed in the event of an attack.
Radjassamy and Carothers [10] proposed a vector compaction technique to gen-
erate a compact vector set representative of original vector set such that it mimics
power-determining behavior of the latter. Such vector compaction can speed up
power estimation of circuits. Qian and Rasheed [15] proposed Hurst parameter
based financial market analysis wherein series with high H are predicted more
accurately than those with H close to 0.5. For more examples, interested reader
is referred to [16].

Self Similarity and Interval Arithmetic Based Leakage Optimization 79

Fig. 2. H tree - an example of a VLSI structure exhibiting self-similar behavior. Photo
credit [13].

2.3 Interval Arithmetic

Interval arithmetic (TA) [17] is concerned with arithmetic operations such as
addition and subtraction on intervals. The intervals can be either discrete or
continuous. IA has been extensively applied in error bound analysis arising in
numerical analysis.

In this work, we are concerned with integer arithmetic therefore we restrict
our discussion to integer intervals. An interval I = [a, b] represents all integers
a < i < b. Further, the above interval is a closed interval as it includes both
extremal values. We can have an open interval, such as I = (a, b) where a < i < b.
The width of an interval is the difference between the extremal values |b — al. If
the interval width is zero, then the interval is referred to as a degenerate interval
(for example [1, 1]). We can represent a given integer, say a, as a degenerate
interval [a, al.

Given two intervals U = [a,b] and V = [¢, d],the following equations hold:

U-I—V [a+c,b+d] (1)
=[a—d,b—| (2)
UV =[min(a*xc,axd,bx*c,bxd),max(a*c,axd,bxc,bx*d)] (3)
= [min(a +c,a+d,b+c,b+d),mazx(a+c,a+d,b+c,b+d)] (4)

2.4 Notation and Problem Formulation

- ADFG, G(V, E), is a directed graph such that v; € V represents an operation
and e = (v;,v,) € E represents a data transfer from operation v; to v;.

80 S. Pendyala and S. Katkoori

— A low leakage interval set, L£(t,w), is the set of all low leakage intervals of a
given module of type ¢ and w.

— A low leakage output interval set, LO(¢, w), is the set of corresponding outputs
of all low leakage input intervals of a given module of type ¢t and w.

— P(V,t,w) is the leakage power function which calculates the total leakage of
the filter.

— Problem Formulation: Given the following inputs: (1) a data flow graph
G(V,E); (2) set of low leakage interval sets, U, ,L(t,w), and (3)
Utw LO(t,w), for all distinct operations of type ¢ and width w, we need
to identify best low leakage vector on primary inputs and a set of control
points C such that the objective functions, >, i P(V, 7 (v;), W(v;)) and C,
are minimized, where C is the set of control points.

3 Self Similarity Based Monte Carlo Characterization for
Low Leakage Intervals

In this Section, we first study the leakage profiles of adder and multiplier mod-
ules. Then we introduce a Monte Carlo leakage characterization technique based
on self-similarity to extract low leakage interval set of a functional unit.

3.1 Leakage Profile and Scope for Optimization

Figure 3 shows the leakage current distribution of an 8 bit ripple carry adder
based on simulation with all possible (exhaustive) vectors and 1000 vectors. Sim-
ilarly, Fig. 4 shows the leakage current distributions of an 8 bit parallel multiplier
for exhaustive and 1000 vectors respectively. The data has been generated by
Synopsys Nanosim simulations of the CMOS layouts in 16 nm technology node
with PTM spice models [18-20]. Similar normal leakage distribution plots were
obtained for 16 bit adder and 16 bit multiplier with 1000 random vectors as
shown in Figs.5 and 6 respectively. We observed that even with increased bit
width, the leakage distribution is normal for both adder and multiplier. Several
prior works in literature for eg., [21,22] report similar nomal power distribu-
tions. Based on this empirical evidence, we assume that the leakage distribution
of adder and multiplier modules with any bit width is normal.

Consider the exhaustive simulation of 8 bit adder and multiplier. The leakage
current ranges are [0.084 A, 4.3 A] and [1.4 A, 56 LA] respectively. Thus, the
approximate max-to-min leakage current ratio for 8b adder and 8b multiplier are
51 and 40 respectively. For 10 % tolerance (¢=0.1), the number of distinct LLVs
for the adder is 119. Thus, the percentage of input space that puts the adder in a
low-leakage state is (119/(28 x 28))x100 = 0.18 %. These vectors can be merged
into 80 low leakage intervals. Similarly, for multiplier, number of low leakage
vectors is 490 and the size of the interval set is 329. The percentage of input space
that puts the multiplier in a low-leakage state for e=0.1, is (490/(28 x 28))x100
= 0.74 %. Based on these numbers, we can see only a small percentage of input
space can result in significant leakage reduction. Our next challenge is to locate
all these low leakage intervals in the entire input space.

Number of occurrences

Number of occurrences

Self Similarity and Interval Arithmetic Based Leakage Optimization

14000
12000
10000
8000
6000
4000
2000

4000
3500
3000
2500
2000
1500
1000

500

0
0 05 1 15 2 25 3 35 4

Leakage (UA)

(exhaustive)

250

200

150

100

50

Number of occurrences

0

0 05 1 15 2 25 3 35 4
Leakage (UA)

(1000 random vectors)

Fig. 3. Leakage current distribution for 8 bit adder.

Leakage (1A)

(exhaustive)

250

200

150

100

50

Number of occurrences

0

0 05 1 15 2 25 3 35 4
Leakage (uA)

(1000 random vectors)

Fig. 4. Leakage current distribution for 8 bit parallel multiplier.

200
180 |
160 r
140
120 |
100 |
80 t
60
40 ¢
20

Number of occurrences

2 3
Leakage (1A)

Fig. 5. Leakage current distribution for 16 bit adder (1000 random vectors).

81

82 S. Pendyala and S. Katkoori

45
8 40t
o

§ 357
5 30°f
3

g 25}
s 20t
3 15|
E 10}
P4 5 |

0 L L i
0 20 40 60 80 100 120 140
Leakage (uA)

Fig. 6. Leakage current distribution for 16 bit parallel multiplier (1000 random vectors).

3.2 Self Similarity of Leakage Distributions in n Bit Adders and
Multipliers

We empirically observed that the sub-threshold leakage distributions of adders
and multipliers exhibit self similarity property. For example, in Fig. 7 for an 8 bit
adder we show the Hurst values for various sub spaces obtained by partitioning
the input space in three different ways. Recall that a distribution is self similar if
Hurst value is between 0.5 and 1. For each partitioning scheme, we see that the
leakage distribution of each sub space is self similar to the parent distribution.
Similar results have been obtained in the case of 8 bit multiplier, 16 bit adder,
and 16 bit multiplier. Due to limited space, we do not include these plots. Based
on these empirical results, we assume in general that the leakage distribution of
a n bit adder or multiplier is self-similar. The concept of self similarity enables
us to develop a scalable methodology to identify low leakage intervals for a given
module.

3.3 Monte Carlo Based Low Leakage Interval Search

We propose a two-stage Monte Carlo (MC) approach to deal with large input
space. Typically, an MC based approach has four steps: (a) input space determi-
nation; (b) input sampling based on a probability distribution; (¢) computation
of property of interest; and (d) result aggregation.

Given a confidence level («) and error tolerance () and assuming a normal
leakage distribution, Halter and Najm [7] derived a formula (Eq.5) to determine
the minimum number of random vectors needed to guarantee with (100x«) %
confidence that the number of vectors with leakage lower than the lowest leak-
age found is (100x3) %. For example, if =0.99 and $=0.01, then 460 random
vectors are sufficient to give us 99 % confidence that only 1 % of vectors will have
better leakage than the observed.

n =log, (1 —a)/log.(1 -) ()

Self Similarity and Interval Arithmetic Based Leakage Optimization 83

255 255 255
0.74 | 0.74 | 0.74 | 0.74
0.77 0.77 192
. . . 0.79 | 0.73 | 0.79 | 0.73
2 |os0|o07a|078| 078 g 18 g 128
- = - 0.78 | 0.73 | 0.73 | 0.74
0.81 0.76 64
0.79 | 0.79 | 0.79 | 0.72
0 0 0
0 64 128 192 255 0 128 255 0 64 128 192 255
Input a Input a Inputa
(a) (b) (c)

Fig. 7. Eight bit adder - Measured H values of leakage distributions at sub-space level
with: (a) vertical partitioning into 4 sub-spaces; (b) horizontal and vertical partitioning
into four sub-spaces; and (c) sixteen sub-spaces. Note that in each partition H value
satisfies the self-similarity condition (0.5 < H < 1).

In Sects. 3.1 and 3.2 we empirically observed that the leakage distributions
of n bit adders/multipliers are normal and self-similar. Consequently, we can
now partition a module instance’s input space into sub-spaces and then sample
each sub-space with a fixed number of vectors as determined by Eq.5 for user
specified confidence and error tolerance levels.

Given the SPICE-level model of an n bit module instance, we perform two
successive MC runs. The property of interest is the leakage power.

Stage I - Coarse grained MC run: The input space under consideration is the
entire space, i.e., 22" input vectors, which is partitioned into equal sized sub-
spaces (as illustrated in Fig.7). Let us assume «=0.99 and 3=0.01. Then, we
uniformly sample each sub-space to identify 460 random vectors and then simu-
late with the vectors. For result aggregation in this stage, from each sub-space,
we collect 5% of the vectors that yield low leakage for further consideration in
Stage II.

Stage II - Fine grained MC run: From the leakage profiles of the functional
units, we also observed that low leakage values are clustered. Hence, the sampling
in this stage is biased in the neighborhood of low leakage vectors identified in
previous stage. The result aggregation involves merging input vectors to create
set of low leakage intervals.

Run Time Complexity. We would like to estimate the run time complexity
of the characterization for a module of size n.

Stage I: The total run time of Stage I is S x K x T(n), where S is the
number of sub-spaces resulting from partitioning the entire input space, K is
the minimum number of vectors required for user-given confidence («) and error
tolerance () levels, and T'(n) is the simulation time for one vector. Note that
K is a constant for fixed a and values. The user can keep the number of sub-
spaces fixed i.e., S is a constant. T'(n) is proportional to the gate complexity.
In case of ripple carry adder, T'(n) = O(n) as gate complexity grows linearly with
bit width, while for parallel multiplier, T'(n) = O(n?). Therefore, the complexity

84 S. Pendyala and S. Katkoori

of Stage I is O(n) and O(n?) for adder and multiplier respectively. If the user
chooses to linearly scale the number of sub-spaces with the module complexity
(i.e., S = O(n)), then the run time complexity increases to O(n?) and O(n?3) for
adder and multiplier respectively.

Stage I1: We perform two steps: (1) local search around the vectors found in
Stage I; and (2) then merge the low leakage vectors into low leakage intervals.
The run-time complexity of first step is same as that of stage I, as we sample
fixed number of vectors in the neighborhood of each vector from Stage I. The
worst-case run time complexity of step 2 is same as that of a two-key sorting
algorithm, O(nlogn), since, we sort all input vectors and then merge immediate
neighbors into intervals. Therefore, the complexity of Stage II in case of an adder
is O(n) + O(nlogn) = O(nlogn), while for multiplier it is O(n?) + O(nlogn) =
O(n?).

Since the two stages are performed sequentially, the overall runtime com-
plexity of MC based leakage interval characterization procedure is O(nlogn) and
O(n?) for n bit adder and multiplier respectively.

4 Proposed Approach

For low leakage interval propagation, we propose two variants: top down and
bottom up approaches. The motivation to propose the two variants is to compare
the amount of leakage savings possible by starting at PIs and at POs.

— In top down approach, we carry out the propagation in two iterations. In first
iteration, we start with a raw set of low leakage intervals at PIs and propagate
them to the POs i.e., forward propagation. The raw low leakage intervals at
PIs are obtained through characterization presented in detail in Sect.3. In
second iteration, these output intervals are propagated backwards reducing
the input interval set at each intermediate node and thus ending up with a
sparser set of low leakage intervals at PIs. This sparser interval set is further
processed with simulated annealing to identify the best LLV.

— In bottom up approach, we start with raw set of low leakage output intervals
at POs and propagate them all the way to the PIs where we end up with a
minimized interval set. This minimized set is again processed with simulated
annealing to arrive at the best LLV.

We present two motivating examples illustrating top down and bottom up
approaches.

4.1 Motivating Examples

Example 1: Top Down Approach. In Fig. 8, we show an example DFG with two
adders (A1, A2) and one multiplier (M1). Let us say the low leakage vector sets
are: L(+,8) = {([2, 4], [6, 8]), ([8, 12], [8, 12]), ([14, 20], [14, 24])} and L(x*,8)
= {([3, 41, [, 6]), ([9, 10], [5, 6]), ([13, 24], [5, 6])}.

Self Similarity and Interval Arithmetic Based Leakage Optimization 85

{2, 41, {[6, 8], {12, 4], {I6, 8],
8, 12], 18, 12], 18, 12], 8, 12],
[14,20]} [14,24] (14,201} [14,24]

/

{5, 61}

8,12
6 28] L
[28, 44]} [28: 44]i ’

{I3, 41,
[9, 10],
[13, 24}

uol3alig uonesedold |eAsaiu|

Fig. 8. Example 1: Top down approach - forward propagation of interval sets.

2, 4], 6, 8],
(22 fn0 b 6l
612 1812 (14,20} [14,24])

{I8, 12],

[16, 24],
{[9.10], (28, 441}
[16,24]}

uonoaJiq uonesedold [eAlaiu|

Fig. 9. Example 1: Top down approach - backward propagation of interval sets.

We start applying low leakage vector interval sets for Al and A2 i.e., {[2, 4],
[8, 12], [14, 20]} on the first input and {[6, 8], [8, 12], [14, 24]} on the second
input. Using Eq. (1) of interval arithmetic, we compute Al’s and A2’s output
range to be {[8, 12], [16, 24], [28, 44]}. As we want to apply low leakage vector
to M1, we need to reduce the interval sets generated by Al and A2 to those
identified as LLVs for M1. Thus, the interval set of M1 for input 1 is {[8, 12],
[16, 24], [28, 44]} N{[3,4],[9, 10],[13,24]} = {[9, 10], [16, 24]} and for input 2 is
{[8, 12], [16, 24], [28, 44]} N{[5,6]}= @. In Fig. 8, for sake of clarity, we show
the intervals corresponding to multiplier in bold font, while those for adders in
regular font. At the second input of M1 as we obtained an empty set, we will
introduce a control point to put M1 in low leakage mode. The control point
consists of a multiplexer that can be used to force a low leakage vector in idle
state. Generally speaking, if the interval intersection results in an empty set, we
will insert a control point and start with an entire low leakage vector set from
that point.

To determine the LLV at PIs, a backward propagation of minimized interval
sets is implemented. Figure 9 illustrates this step for this example. The intervals
available at input 1 of M1 are fed as outputs to Al and these intervals are

86 S. Pendyala and S. Katkoori

. 21 {[2. 21} {2y {441
N

{2, 41} N {[2, 8]}
={2, 41} {I8, 81} N {2, 8]}
={8, 8}

uo|32a41qg uonededoud [easaiu|

{[16, 24]}

Fig. 10. Example 2: Bottom up approach - backward propagation of output intervals.

propagated to the inputs of Al. This gives a minimized interval set on which
simulated annealing algorithm is applied to find the best LLV.

Ezxample 2: Bottom Up Approach. Now consider the same DFG for bottom
up approach, however with output low leakage vector sets: £(+,8) = {[2, 8]}
and L(*,8) = {[16, 24]}. For a given output low leakage set {[16, 24]} to M1,
the corresponding input leakage set is {([2, 4], [8, 8])}. Similarly, for an adder’s
output set {[2, 4]}, input sets are {([1, 2], [2, 2])} and {[8, 8]}, the corresponding
input sets are {([2, 2], [4, 4])}. We apply output low leakage vector interval sets
on primary outputs (Fig. 10).

We start applying output low leakage vector set for M1 i.e., {[16, 24]} at
output. It propagates corresponding input vectors {[2, 4]} to input 1 and {8,
8]} to input 2 and M1 is set to low leakage mode. The input intervals at M1
are intersected with £(+,8) and L(x,8). For the resulting output intervals {[2,
4]} and {[8, 8]} the corresponding input intervals of Al and A2 are {([1, 2], [2,
2))} and {([2, 2], [4, 4])}, respectively. The best LLV is found by processing the
reduced set with simulated annealing algorithm described in Sect. 4.2.

4.2 Low Leakage Vector Determination

Figure 11 shows the pseudo-code of the proposed heuristic for low leakage vector
determination. It accepts an input DFG (directed acyclic graph) and low leakage
vector sets for distinct types and operations obtained from the characterization
procedure as described in Sect. 3. Breadth First Search is used to cover all the
nodes of the graph. Flag is used to determine the direction of propagation (top
down or bottom up).

First, the graph is topologically sorted (line 5) to yield a sorted list L. A set
C that collects the control points, is initialized (line 6). The for loop in lines 8-27
visits each node in the order specified by L. If a node is a PI node (i.e., both
inputs to the node are primary), then the intervals on both inputs are intial-
ized to the appropriate low leakage vector sets (line 13). Both inputs are added
to the set C (line 14). On line 16, we call a function Interval_Propagate() that
accepts an ordered interval pair and the operation type of the node (i.e., 7 (v;)).

Self Similarity and Interval Arithmetic Based Leakage Optimization 87

1 Algorithm find_LLV

2 Inputs: (a) Graph G(V,E); (b) Low Leakage Vector Sets;
(c) Flag € {TopDown, BottomUp}

3 Outputs: output_llv and Control Points

4 begin

5 L + Topological Sort(G) /* L is a sorted list */

6 C <« /* internal control points */

7 if(Flag == TopDown) then

8 foreach v; € L do

9 Let a and b denote input edges of v;

10 ¢ the output edge of v;

11 if v; is a PI node

12 then

13 Ia,b — L(T(U1)7 W(’Ul))

14 C+ CU{a,b}

15 end if

16 I. < Interval_Propagate(Iap, T (vs))
17 Let v; be the successor of v;

18 Let d be the second input of v;

19 /* check for interval intersection */

20 contains < FALSE
21 Interval_Intersection(Ic, L(T (v;), W(v;))

22 if(not contains) then

23 /* insert a new control point */

24 Ie.a < L(T (v5), W(vy))

25 C+ CU{cd}

26 end if

27 end for

28 reduced LLV set + Back_Propagate (LOreduced(T (v;), W(v;)))
29 else

30 reduced LLV set + Back_Propagate (LO(T (v;), W(v;)))

31 end if

32 outputllv + Simulated_Annealing_Leakage (reduced LLV set)
33 end Algorithm

Fig. 11. Algorithm to determine low leakage vector.

Interval_Propagate() implements the interval arithmetic equations as mentioned
in Sect. 2.3 and returns an appropriate output interval I.. In line 21, we invoke
Interval_Intersection() that checks if the computed interval is contained in low
leakage vector set of the successor v;. If the check succeeds, then we move onto to
the next node in the list. If the check fails, then a new control point is inserted
by resetting the inputs of node v; to its low leakage vector set (lines 22-26)
and adding the inputs of v; to control point set. On line 28, Back-Propagate()
further reduces interval set at primary outputs, LOreduced(t,w), by performing
similar propagation in backward direction to primary inputs as shown in Fig. 12.
Back_Propagate() function (line 30) performs backward propagation on the com-
plete low leakage output interval set, LO(¢,w), to obtain reduced interval set

88 S. Pendyala and S. Katkoori

1 Algorithm Back_Propagate

2 Inputs: (a) Graph G(V,E); (b) Low Leakage Output Vector Set
3 Outputs: reduced LLV set and Control Points

4 begin

5 foreach v; € L do

6 Let a and b denote input edges of v;

7 ¢ the output edge of v;

8 if v; is a PO node

9 then

10 I. < LO(T (vi), W(vi))

11 C+ CuU{c}

12 end if

13 Iop < Interval_Propagate(Ic, T (vs))
14 Let v; be the predecessor of v;

15 Let a be the output of v;

16 /* check for interval intersection */

17 contains <— FALSE
18 Interval_Intersection(Ila, LO(T (v;), W(v;))

19 if(not contains) then

20 /* insert a new control point */
21 I, < L(T (vj), W(v5))

22 C + CU{a}

23 end if

24 end for

25 end Algorithm
Fig. 12. Interval back propagation algorithm.

at primary inputs. The algorithm is similar to find_LLV(), therefore we do not
elaborate in detail.

On line 32 of find_LLV(), we invoke Simulated_Annealing_Leakage() (Fig. 13)
to find the best LLV from the reduced LLV set. The initial temperature value
Temp is set to 100 and cooling coefficient v to 0.99 on lines 5 and 6 respectively.
The number of iterations at each temperature is equal to (500 x Temp) (line
11). An LLV is initially chosen at random (line 7) from the reduced interval set.
In each iteration, a new LLV is chosen (line 12) from the neighborhood of the
current LLV. The neighborhood window size is equal to the current temperature
(Temp). Est_Leakage() function (line 26) calculates the leakage of the DFG for
any given input vector. output_llv is the best LLV found by the algorithm.

In the find_LLV() algorithm, we assume only one successor for each node.
This assumption is made to simplify the presentation of the algorithm. It is
straightforward to extend the algorithm to multiple successors.

Run Time Complexity. In the first step of find_LLV(), topological sort has a
time complexity of O(]V| + |E|). The maximum number of edges in a DAG is
(IVD(|V| — 1)/2. Hence the time complexity of topological sort is O(|V|?). The
for loop (lines 8-27) runs |V| times. If the node is PI, initial interval set is ini-
tialized at the node. This initialization takes a constant time. We also have the

Self Similarity and Interval Arithmetic Based Leakage Optimization 89

1 Algorithm Simulated_Annealing_Leakage
2 Inputs: (a) Reduced low leakage vector sets
3 Output: Best low leakage vector output_llv

4 begin
5 Temp < 100
6 v+ 0.99

7 best_llv < random(reduced LLV set)

8 curr.llv < bestllv

9 best_leak + leakage(curr_llv)

10 while T'emp > 0 do

11 foreach iteration in 1 to 500xTemp do

12 curr_llv < curr_llv + random(reduced LLV set in T'emp window)
13 curr_leak < leakage(curr_llv)

14 if curr_leak <best_leak or random(0,1) < e~ (best-leak—curr-leak)/Temp
15 then

16 if curr_leak <best_leak

17 then

18 output_llv < curr_llv

19 end if

20 best_llv + curr_llv

21 best_leak < leakage(curr_llv)

22 end if

23 end for

24 Temp < Temp X v

25 end while

26 best_leak < Est_Leakage(output_llv)
27 end Algorithm

Fig. 13. Simulated annealing algorithm to find the best LLV.

Interval_Propagate() and Interval_Intersection() which take time proportional
to I?, where I is the number of low leakage intervals. The number of inter-
vals I is a constant obtained from characterization as described in Subsect. 3.3.
Back_Propagate() function on lines 28 and 31 has the same complexity as that of
the code on lines 8-27. Finally, simulated annealing algorithm takes a constant
time based on the quality of solution desired. Hence, the run time complexity of
the algorithm is O(|V|?).

5 Experimental Results

We report the experiment results obtained by applying the best LLV from top
down and bottom up approaches on five datapath-intensive benchmarks, namely,
IIR, FIR, Elliptic, Lattice, and Differential Equation Solver. Only functional unit
sharing (resource optimization technique during high level synthesis) is assumed.
As described in Sect. 3 the library is characterized a priori and the low leakage
vectors sets saved. Top down and bottom up techniques process these low leakage
vector sets to obtain a reduced set. The best LLV is further obtained by applying

90 S. Pendyala and S. Katkoori

simulated annealing algorithm on the reduced set. The leakage power values are
measured at the layout level using Synopsys Nanosim. We employ the Predictive
Technology Models for 16 nm technology node generated by the online model
generation tool available on the ASU PTM website [18]. The simulations were
carried out on a SunOS workstation (16 CPUs, 96 GBRAM).

To obtain the experimental results, we initially vary the value of € and deter-
mine the optimum (lowest) value for maximum leakage savings (i.e., leakage
increase in any module up to € % is tolerated). Figures 14 and 15 show the vari-
ation of leakage savings with tolerance in different designs for top down and
bottom up approaches, respectively. From Fig. 14, it can be observed that the
optimum tolerance value for top down approach is 10 % (i.e., leakage increase in
any module up to 10 % is tolerated). The low leakage vector is captured within
10 % tolerance itself. Even if the tolerance is increased above 10 %, it is observed
that leakage savings do not increase any further. From Fig. 15, the optimum
tolerance value for bottom up approach is observed to be 15 %.

80 FIR —e—
75 P IR —e—
e EWF —m—
. Latice —=—
g 70 c— ¥ * Diffeq —¥—
g’! 65 = =)
.E L=} L=
=
& 60t - ’
&
S 55
o
[+§]
- 50}
45
40

5 10 15 20 25 30
Tolerance (%)

Fig. 14. Leakage vs. tolerance - top down approach.

Tables 1 and 2 report the results for top down and bottom up approaches
respectively. Column 3 presents the leakage value obtained from interval propa-
gation with simulated annealing. We can see a significant improvement compared
to the random case in Column 2. Column 4 reports leakage savings. The top down
approach achieved average leakage savings of 93.6 % for 10 % tolerance with no
area overhead. On the other hand, bottom up approach achieved 89.2 % average
leakage savings for 15 % tolerance with no area overhead.

Self Similarity and Interval Arithmetic Based Leakage Optimization 91

2 g B4 * FIR —e—
4 b4 IR —e—
i b EWF —m—
i = & lLattice —5—
L=} = L=} ﬁffeq ;I
*: ¥

<

2

wv

(=1}

=

&

%]

[+1]

g

©

[+ 1]

= L L |

56
54

10 15 20 25 30 35 40
Tolerance (%)

Fig. 15. Leakage vs. tolerance - bottom up approach.

Table 1. Power savings - top down approach.

Design Leakage (uA) Savings (%)
Random | Top down

Diffeq (2+, 5%) | 197.9 | 16.42 91.70

EWF (26+, 8%) 654.0 64.13 90.19

FIR (44+, 5%) 220.9 9.95 95.50

IIR (44+, 5%) 266.8 11.94 95.50

Lattice (8+, 5%) | 2264 | 11.01 95.10

Table 2. Power savings - bottom up approach.

Design Leakage (1A) Savings (%)
Random | Bottom up

Diffeq (24, 5%) 197.9 21.6 89.0

EWF (26+, 8%) 654.0 72.8 88.9

FIR (4+, 5%) 220.9 25.8 88.3

IIR (44, 5%) 266.8 25.3 90.5

Lattice (84, 5*) | 226.4 23.9 89.4

92 S. Pendyala and S. Katkoori

Table 3. Speed up with interval propagation.

Design | Interval + SA SA Leakage improvement (%) | Speed up
Leakage | Time | Leakage | Time
(WA) | (min)| (wA) | (min)
Diffeq 20.60 12 18.75 170 +8.98 14x
EWF 55.24 13 71.62 812 —29.65 62x
FIR 16.50 2 16.30 247 +1.21 124x
IIR 16.55 18 14.46 244 +12.63 14x
Lattice | 23.00 6 21.83 440 +5.09 73x

Table 4. Simulated Annealing (SA) Only vs. interval propagation + SA.

Design Leakage with SA Interval + SA
10min | 1h 2h 3h | Leakage | Time
(LA) | (nA) | (BA) | (mA) | (RA) | (min.)
Diffeq | 32.08 | 27.65|25.24 | 22.20| 20.60 12
EWF | 99.12 |83.50|87.18 | 85.95| 55.24 13

FIR 34.74 | 31.80|33.10 | 26.06 | 16.50 2
IIR 45.53 | 27.56{29.90 | 28.16 | 16.55 18
Lattice | 41.24 | 36.64|32.71|33.21| 23.00 6

We conducted an experiment to compare the proposed interval arithimetic
followed by pure SA based approach. Table3 reports the simulation speed up
obtained when we use simulated annealing on reduced set of intervals from top
down propagation as opposed to pure simulated annealing. Columns 2 and 4
present the leakage values. Execution time is reported in columns 3 and 5 in
Table 3. It shows that simulated annealing with top down propagation is much
faster than simulated annealing alone to obtain a similar solution quality. The
difference in solution quality is also presented in column 6 of Table 3. For EWF
benchmark, a solution that is much better than pure simulated annealing solu-
tion is obtained with interval propagation and simulated annealing combined.
For the rest of the benchmarks, the difference between solutions is small. Column
7 reports speed up resulting from IA with as much as 124X in case of FIR fil-
ter. The results of this experiment demonstrate that Interval Arithmetic greatly
helps in finding a good low leakage vector quickly.

Table4 compares the solution quality obtained by pure simulated anneal-
ing(SA) for 10min, 1h, 2h, and 3h with that by top down approach with simu-
lated annealing (an average of 10 min). Columns 2-5 report the leakage obtained
by pure SA. Column 6 reports the leakage obtained from top down approach.
It is observed that the leakage found by interval propagation with SA in 10 min
is better than the solution found by pure SA in 3 h. These results reiterate the
efficacy of interval propagation based approach.

6

Self Similarity and Interval Arithmetic Based Leakage Optimization 93

Conclusion

We have formulated the low leakage vector identification technique based on
interval propagation and successfully demonstrated that significant subthreshold
leakage savings can be obtained with no area overhead (i.e., no internal control
points). We also proposed a self similarity based module characterization pro-
cedure that is scalable with module complexity. Both top down and bottom up
approaches are equally effective (although in case of the benchmarks tested in
this work, top down performs slightly better than bottom up approach).

References

10.

11.

12.

13.

14.

STA: International technology roadmap for semiconductors (itrs). http://www.itrs.
net/(2010)

Abdollahi, A., Fallah, F., Pedram, M.: Leakage current reduction in CMOS VLSI
circuits by input vector control. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
12(2), 140-154 (2004)

Pendyala, S., Katkoori, S.: Interval arithmetic based input vector control for RTL
subthreshold leakage minimization. In: 2012 IEEE/IFIP 20th International Con-
ference on VLSI and System-on-Chip (VLSI-SoC), pp. 141-14, October 2012
Pendyala, S., Katkoori, S.: Self similarity and interval arithmetic based leakage
optimization in RTL datapaths. In: 2014 22nd International Conference on Very
Large Scale Integration (VLSI-SoC), pp. 1-6, October 2014

Mandelbrot, B.B.: Fractal Geometry of Nature. Freeman, New York (1983)
Barnsley, M.F.: Fractals Everywhere. Morgan Kaufmann, Orlando (2000)

Halter, J., Najm, F.: A gate-level leakage power reduction method for ultra-low-
power CMOS circuits. In: Proceedings of the CICC, pp. 475-478 (1997)

Yuan, L., Qu, G.: A combined gate replacement and input vector control approach
for leakage current reduction. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
14(2), 173-182 (2006)

Gao, F., Hayes, J.: Exact and heuristic approaches to input vector control for leak-
age power reduction. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 25(11),
2564-2571 (2006)

Radjassamy, R., Carothers, J.: Faster power estimation of CMOS designs using
vector compaction - a fractal approach. IEEE Trans. Syst. Man Cybern. Part B:
Cybern. 33(3), 476-488 (2003)

Leland, W., Takku, M., Willinger, W., Wilson, D.: Statistical analysis and sto-
chastic modeling of self-similar data traffic. In: Proceedings 14th International
Teletraffic Congress, pp. 319-328 (1994)

Sullivan, J.: Wikimedia commons. http://commons.wikimedia.org/wiki/File%
3AFractal_Broccoli.jpg

Eppstein, D.: Wikimedia commons. http://commons.wikimedia.org/wiki/File%
3AH _tree.svg

Premarathne, U., Premaratne, U., Samarasinghe, K.: Network traffic self similarity
measurements using classifier based hurst parameter estimation. In: 2010 5th Inter-
national Conference on Information and Automation for Sustainability (ICIAFs),
pp. 64-69 (2010)

http://www.itrs.net/
http://www.itrs.net/
http://commons.wikimedia.org/wiki/File%3AFractal_Broccoli.jpg
http://commons.wikimedia.org/wiki/File%3AFractal_Broccoli.jpg
http://commons.wikimedia.org/wiki/File%3AH_tree.svg
http://commons.wikimedia.org/wiki/File%3AH_tree.svg

94

15.

16.

17.

18.

19.

20.

21.

22.

S. Pendyala and S. Katkoori

Qian, B., Rasheed, K.: Hurst exponent and financial market predictability. In:
Proceedings of the 2nd TASTED International Conference on Financial Engineering
and Applications, Cambridge, MA, USA, pp. 203-209 (2004)

Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd
edn. Wiley, New York (2003)

Moore, R.E.: Methods and applications of interval analysis. Siam, Philadelphia
(1979)

Cao, Y.: Asu predictive technology model website. http://ptm.asu.edu

Zhao, W., Cao, Y.: New generation of predictive technology model for sub-45nm
design exploration. In: 7Tth International Symposium on Quality Electronic Design,
ISQED 2006, pp. 585-590, March 2006

Zhao, W., Cao, Y.: New generation of predictive technology model for sub-45 nm
early design exploration. IEEE Trans. Electron Devices 53(11), 2816-2823 (2006)
Evmorfopoulos, N., Stamoulis, G., Avaritsiotis, J.: A monte carlo approach for
maximum power estimation based on extreme value theory. IEEE Trans. Comput.
Aided Design Integr. Circuits Syst. 21(4), 415-432 (2002)

Qiu, Q., Wu, Q., Pedram, M.: Maximum power estimation using the limiting dis-
tributions of extreme order statistics. In: Proceedings of the Design Automation
Conference, pp. 684-689 (1998)

http://ptm.asu.edu

	Interval Arithmetic and Self Similarity Based Subthreshold Leakage Optimization in RTL Datapaths
	1 Introduction and Motivation
	2 Background, Related Work, and Terminology
	2.1 Input Vector Control Techniques
	2.2 Fractals and Self Similarity
	2.3 Interval Arithmetic
	2.4 Notation and Problem Formulation

	3 Self Similarity Based Monte Carlo Characterization for Low Leakage Intervals
	3.1 Leakage Profile and Scope for Optimization
	3.2 Self Similarity of Leakage Distributions in n Bit Adders and Multipliers
	3.3 Monte Carlo Based Low Leakage Interval Search

	4 Proposed Approach
	4.1 Motivating Examples
	4.2 Low Leakage Vector Determination

	5 Experimental Results
	6 Conclusion
	References

