
A Multi-reasoner, Justification-Based Approach
to Reasoner Correctness

Michael Lee(B), Nico Matentzoglu, Bijan Parsia, and Uli Sattler

The University of Manchester, Oxford Road, Manchester M13 9PL, UK
{michael.lee-5,nicolas.matentzoglu,

bijan.parsia,uli.sattler}@manchester.ac.uk

Abstract. OWL 2 DL is a complex logic with reasoning problems that
have a high worst case complexity. Modern reasoners perform mostly
very well on naturally occurring ontologies of varying sizes and complex-
ity. This performance is achieved through a suite of complex optimisa-
tions (with complex interactions) and elaborate engineering. While the
formal basis of the core reasoner procedures are well understood, many
optimisations are less so, and most of the engineering details (and their
possible effect on reasoner correctness) are unreviewed by anyone but
the reasoner developer. Thus, it is unclear how much confidence should
be placed in the correctness of implemented reasoners. To date, there is
no principled, correctness unit test-like suite for simple language features
and, even if there were, it is unclear that passing such a suite would say
much about correctness on naturally occurring ontologies. This problem
is not merely theoretical: Divergence in behaviour (thus known bugginess
of implementations) has been observed in the OWL Reasoner Evaluation
(ORE) contests to the point where a simple, majority voting procedure
has been put in place to resolve disagreements.

In this paper, we present a new technique for finding and resolving rea-
soner disagreement. We use justifications to cross check disagreements.
Some cases are resolved automatically, others need to be manually veri-
fied. We evaluate the technique on a corpus of naturally occurring ontolo-
gies and a set of popular reasoners. We successfully identify several cor-
rectness bugs across different reasoners, identify causes for most of these,
and generate appropriate bug reports and patches to ontologies to work
around the bug.

Keywords: OWL · Reasoning · Debugging · Justifications

1 Introduction

A key advantage of expressive description logic ontologies (such as those encoded
into OWL 2 DL) is that automated reasoners help. As often stated, reasoners
make implicit knowledge explicit and this has benefits both at development
time and at run time. One of the most obvious development time uses is for
debugging ontologies. Reasoners detect faulty entailments (e.g., contradictions or
unsatisfiable classes) and are a key component in explaining them. At runtime,
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part II, LNCS 9367, pp. 393–408, 2015.
DOI: 10.1007/978-3-319-25010-6 26

394 M. Lee et al.

reasoners enable new sorts of functionality such as post-coordination [7,11,12] of
terminologies as well as the discovery of new knowledge [17] or on the fly data
integration [3].

Reasoners are complex pieces of software and their behaviour is opaque even
to experts. Modern ontologies are typically too large and complex for any rea-
sonable verification of the reasoners behaviour: Indeed, we rely on reasoners to
help us manage those ontologies in the first place. Thus, we need techniques to
help verify reasoner correctness.

This is not merely a theoretical issue (as bug lists for various reasoners attest).
The complexity of the implementation makes a formal verification of correct-
ness, or even the generation of a non-arbitrary set of automated unit tests, a
near impossibility. Incompleteness (i.e., missing some entailments) is particu-
larly challenging for human inspectors to detect both because the number of
nonsubsumptions in any ontologies is very large (compared to the number of
subsumptions) and because positive information has much higher saliency than
missing information.

However, even if we can detect that there is a problem with a reasoner, coping
with that problem is also difficult. Ideally, ontology engineers should be able to
generate a succinct, informative bug report and a “patch” to their ontology that
mitigates the problem (if switching from a buggy reasoner is not possible).

The detection problem can be mitigated by the use of multiple reasoners. If
reasoners disagree on some entailment we know that there is at least one problem
in at least one of the reasoners. Such disagreements naturally emerge in reasoner
competitions such as the one conducted as part of the OWL Reasoner Evaluation
workshop (ORE). Majority voting (MV) is often used in those competitions to
resolve disagreements. When a disagreement occurs in the inferred class hierar-
chy, the verdict of the majority of reasoners is taken as truth. In case of a tie, the
correct reasoner is selected at random. This technique is obviously unreliable: the
majority might be wrong, in particular because some reasoners share algorithms,
optimisations, and even code. Equally obviously, this resolution technique does
not help with bug reports or workarounds.

In this paper, we present an extended voting method to determine reasoner
correctness and narrow down potential causes of disagreement amongst a set of
dissenting reasoners in an efficient manner. It is semi-automated without too
heavy a dependence on human expertise.

Similarly to ORE, we first identify disagreements in class hierarchies between
reasoners. A disagreement is an entailment that some reasoners infer and others
not. For every disagreement, we generate a number of justifications which will
be used both to provide an extra check on the reasoners to their commitment
of their side of the disagreement and to provide material for debugging. We
then apply a series of automated, semi-automated, and manual inspections of
the justifications to determine whether they are correct. If the justification is
correct, then the disagreement is conclusively resolved in favour of the positive
subusmption.

A Multi-reasoner, Justification-Based Approach to Reasoner Correctness 395

We have evaluated our method using a corpus of BioPortal ontologies. We
first identify cases of potential bugs, classify them according to our method, and
analyse the result to identify causes of some of the bugs.

2 Preliminaries

We assume a basic familiarity with description logics, OWL, and reason-
ers. For those unfamiliar with the subject we suggest the Description Logic
handbook [2].

Throughout this paper, we use OWL as a short form of OWL 2 DL, |= for the
usual entailment relation, and O for an OWL ontology, i.e., a set of axioms. We
use ˜O for the signature of O, i.e., the set of class, property and individual names
in O. Classification is the process of determining, for every A,B ∈ ˜O ∪ {⊥,�}
whether O |= A � B. If A ∈ ˜O and O |= A � ⊥, then we call A unsatisfiable.
We use R for a description logic reasoner and E(O,R) for the set of atomic
subsumptions found by R during classification of O, i.e., E(O,R) is the inferred
class hierarchy of O. R is correct on O if, for any A,B ∈ ˜O ∪ {⊥,�}, we have
A � B ∈ E(O,R) if and only if O |= A � B.

Given O |= η, a justification for η is a (subset) minimal set of axioms in O
which entails η. That is, J is a justification for O |= η if J ⊆ O, J |= η and
there is no J ′ ⊂ J such that J ′ |= η.

We call a tuple 〈O, η,J ,Rjust,R, vO, vJ 〉 a case, where Rjust is a reasoner
that generated the justification J for the entailment η, R is the reasoner that
tested it and came to the following verdicts:

– vO = 1 if η ∈ E(O,R), and 0 otherwise.
– vJ = 1 if η ∈ E(J ,R), and 0 otherwise.

3 A Fine-Grained Justification Based Method
for Verifying Reasoner Correctness

We can identify reasoner disagreements in three ways:

– Ontology level : reasoners have produced different inferred class hierarchies
for the same ontology.

– Entailment level : reasoners have different verdicts whether O |= η, i.e., η ∈
E(J ,R) \ E(J ,R′). An ontology level disagreement requires at least one
entailment level disagreement (and vice versa). If we consider more than two
reasoners, then there are only two sides to an entailment level disagreement
(thus, there will always be two coalitions). This is not true at the ontology
level, where a set of n reasoners can produce n distinct class hierarchies.

– Entailment-justification level : reasoners have different verdicts whether J |=
η, for a given justifcation J for entailment η ∈ E(O,R).

396 M. Lee et al.

At each level, coalitions can occur where varying subsets of the reasoners are
in agreement. By looking at more granular decisions (e.g., not just the whole
hierarchy but individual entailments; not just entailments from the whole ontol-
ogy but also from purported justifications), we have more “voting opportunities”
which allow us to make more informed decisions about where the errors probably
lie as well as justifications which are much easier for humans to verify.

The proposed method has three parts: 1) Discover disagreements and record
them in the form of cases, 2) classify cases, and 3) resolve disagreements. Steps
1 and 2 are fully automated, whereas 3 involves some human intervention.

To discover disagreements, given an ontology O and reasoners R =
R1, ...,Rm (where m ≥ 2), we:

1. Determine ontology agreement: First, compute E(O,R) for each R ∈ R.
If there is a pair Rj ,Rk ∈ R such that E(O,Rj) �= E(O,Rk), then there is
a disagreement with respect to O and we continue with (2).

2. Extract entailment disagreements: compute all entailments H that are
found by some but not all reasoners, i.e., H =

⋃ E(O,Ri)\
⋂ E(O,Ri).

3. Extract justifications: For all η ∈ H and R ∈ R, we attempt to extract a
justification1 in O for η using R (we try all reasoners for this, including the
ones for which η �∈ E(O,R)). If successful, we record the pair 〈J ,R〉. Please
note that J may be the same or different for the same entailment across
different reasoners.

4. Justification testing: For each justification J for η and each reasoner
R ∈ R we check whether η ∈ E(J ,R) and record the resulting case (see
above) in C.

Next, we classify each case c = 〈O, η,J ,Rjust,R, vO, vJ 〉 ∈ C in one of four
categories:

1. Consistent Yes, where vO and vJ are both 1. This means that R found η
by classification and verified the justification.

2. Consistent No, where vO and vJ are both 0. This means that R did not
find η by classification and rejected the justification.

3. Definite Bug, where v)O is 0 and vJ is 1. Here, R did not find η by
classification but accepted the justification. This is quite problematic since
montonicity dictates that if η follows from a subset of O it follows from O,
so this reasoner has an error.

4. Possible Bug where vO is 1 and vJ is 0. Here, R found η by classification
but rejected the justification. This is either due to an error in R or in Rjust

which caused it to generate a spurious J . Thus this case indicates a possible
bug with this reasoner.

1 Note that we attempt to extract only 1 justification (per reasoner) per entailment.
While there might well be multiple putative justifications that could be extracted
using a given reasoner, and the more justifications, the more cases, there is a high
computational cost to extracting all justifications and the cost to human verifiers is
potentially even higher. As we will see, attempting 1 has been highly successful.

A Multi-reasoner, Justification-Based Approach to Reasoner Correctness 397

Finally, we resolve disagreements: having computed and categorised cases,
we still do not know which side of a disagreement is correct. However, we can
do more granular comparisons. Consider the following pair of (abstract) cases:

c1 = 〈O, η,J ,R,R1, 1, 1〉
c2 = 〈O, η,J ,R,R2, 0, 1〉

R1 found O |= η during classification and verified that J |= η for a justi-
fication J ⊆ O extracted by R. Contrariwise, R2 did not find O |= η during
classification, but verified that J |= η. We know, from our case classification,
that R2 has a bug. Given that R1 answers consistently and that justifications
are less likely to cause errors (being smaller and simpler than their parent ontolo-
gies), it is reasonable to bet on R1 in this case. Unless we want to seek conclusive
human verification, this may be the best we can do.

To properly resolve disagreements, we need to determine whether a given
justification is correct or not. If a justification is, indeed, a justification (that
is, it is conclusively determined that J |= η) then any reasoner which finds
that O |= η is correct with respect to η. Unfortunately, the mere fact that
some proposed J is conclusively determined not to be a justification, does not
show that η is a nonsubsumption. It merely shows that J is not a justification
and that the reasoner that extracted it has a bug. Even if we extracted “all”
putative justifications for each reasoner and conclusively rejected them all, it
would still be possible that all the reasoners were similarly generating spurious
justifications. Of course, it seems rather unlikely that this would happen, but
this is just a yet more detailed voting scheme. Of course, analysis of the spurious
justifications might lead to a hypothesis about the reasoner’s buggy behaviour
which then leads to a resolution. If reasoners would present putative witness
countermodels, then we could get conclusive evidence for the nonsubsumption.
However, non-entailment explanation is currently a wide open problem.

There are some cases where verifying the justification is automatable. For
example, if the justification is a self-justification, that is, J = η then we can just
check whether η ∈ O. Of course, this would be a very odd case for a reasoner to
miss, but as we will see below, it does happen.

It is well know that sets of justifications exhibit various structures and com-
monalities that mean that principled comprehension of the entire set can be
achieved more efficiently than by individual examination of each justification in
turn. As the infrastructure for these techniques is not readily available, for the
purposes of this study we experiment with some ad hoc versions. It is part of
future work to provide proper support.

4 Experimental Design

Note that datasets and supporting materials (including a description of an earlier
version of the experiment) are available at http://bit.ly/1Gzi7PB.

http://bit.ly/1Gzi7PB

398 M. Lee et al.

4.1 Reasoners, and Machines, and Corpus

For the experiment the OWL API (v. 3.5.0) implementations [9] of four state
of the art reasoners were used: FaCT++ 1.6.4 [16], JFact 1.2.3, Pellet 2.3.1 [13]
and HermiT 1.3.8 [6].

We ran the experiment on 6 Amazon Web Service r3.large instances, 15.25
GB RAM, memory-optimised, Intel Xeon E5-2670 v2 CPU @ 2.5 GHz with a
timeout of 5 hours for the overall process (including 80 minutes for each individ-
ual classification). 22 ontologies were not successfully processed: 15 failed due
to timeout, 4 ran out of memory, 2 had a stack overflow (Java) and 1 caused a
segmentation fault.

Corpus From a corpus of 339 BioPortal ontologies, we filtered out those that
were not valid OWL DL (53), had TBoxes smaller then 50 axioms (+26), or were
merely RDFS (+47) or AL (+1). This left us with 212 ontologies. Out of the
212, 190 were successfully processed according to our method in Section 3. Every
process was run in a fresh Java 8 Virtual Machine, and involved generating, for 1
ontology, inferred hierarchies by four reasoners (Pellet 2.3.1, HermiT 1.3.8, JFact
1.2.3, FaCT++ 1.6.4 (snapshot)) and generating and verifying their justifications
for all not agreed-upon entailments. We explicitly allowed individual reasoners
to fail generating their hierarchies as long as at least two reasoners succeeded.

Identifying and Classifying Problem Cases. Of the 190 successfully pro-
cessed ontologies, 181 had complete agreeement at Class Hierarchy level. For
the remaining 9 ontologies, we generate and verify justifications using the OWL
Explanation Framework [8] to generate explanations.

Each explanation is stored in .owl format allowing us to reload them for
the purposes of checking them against the reasoner and so that if needed, we
can evaluate the file directly. We also generate a human readable version of the
justification in DL Syntax, split into the ABox, TBox and RBox.

5 Results

The ontology level agreements are summarised in Table 1. The first thing to note
is that the reasoners exhibit a great deal of agreement: they concur on 181 of
the ontologies while disagreeing on only 9. While significant, it is not evidence
that the current suite of reasoners are wildly buggy. While nearly half of the
ontologies occur in polynomial profiles, all of the bug witnesses are in OWL DL.
8 out of 9 also contain datatypes. This conforms to the expectation that the
more complex (i.e., OWL DL handling) or under tested (i.e., datatype handling)
parts of reasoners are more likely to be buggy. For the rest of the rows the key
thing to notice is that for most of them, the bug witnesses are smaller than
either the successful and agreed upon cases or the timeouts (the timeouts are
significantly larger in general).

Table 2 shows key statistics about the 9 problem ontologies. The first inter-
esting point is that FaCT++ and JFact do disagree in spite of sharing a common
code lineage — JFact was produced by a translation of FaCT++ from C++ to
Java and the implementation follows FaCT++ to some degree.

A Multi-reasoner, Justification-Based Approach to Reasoner Correctness 399

Table 1. Filtered corpus statistics.

Agreement Disagreement Processing failed

Ontologies 181 9 22
In a Polynomial Profile 89 0 4

Contain datatypes 53 8 5

TBox (mean) 8,833 1,287 266,674
TBox (max) 415,494 3,547 2,249,883

ABox (mean) 680 1,331 10,082
ABox (max) 89,292 11,575 220,948

Nr. Classes (mean) 3,643 651 92,369
Nr. Classes (max) 110,717 1,851 517,023

Nr. Object Prop. (mean) 36 64 134
Nr. Object Prop. (max) 463 189 950
Nr. Data Prop. (mean) 5 13 2
Nr. Data Prop. (max) 117 37 11

Nr. Individuals (mean) 237 204 35
Nr. Individuals (max) 40,069 1,605 634

Table 2. Description of the problematic cases. CLS, OP, DP, and IN stand for number
of classes, object properties, data properties and individuals, respectively. Coal. stands
for ontology level agreement coalitions. Dis. stands for the number of entailment level
disagreements. The last 4 columns list the number of axioms in the generated class
hierarchy by a specific reasoner, either FaCT++, HermiT, JFaCT, or Pellet. The
blank entires indicate that the specific reason either timed out for this case, or rejected
it due to not understanding a datatype (only FaCT++).

O TBox ABox Expressivity CLS OP DP IN Coal. Dis. F H J P

bco 599 25 SROIF(D) 136 189 16 24 2 8 571 571 571 563
cao 442 0 SHIQ(D) 204 35 2 0 3 160 1249 1379 1249 1355
dikb 648 12 ALCHOIN(D) 125 70 37 9 2 5 282 282 279 282
gro 955 7 ALCHIQ(D) 507 24 6 4 2 3 3269 3270 3269 3270
heio 295 11575 ALCHIF(D) 124 11 37 1605 2 14 172 172 193 172
nemo 2686 182 SHIQ(D) 1851 89 4 120 2 1574 14665 14665 16305 14665
obcs 1126 33 SROIQ(D) 629 36 6 22 3 75 4122 4055 4116

obi bcgo 3586 57 SROIN(D) 1673 71 1 38 2 22 16840 16818
stato 1678 85 SROIQ(D) 609 48 4 13 2 44 4102 4062

However for gro, JFact and FaCT++ form a coalition against HermiT and Pellet.
In the ORE majority voting scheme, this would go to a coin toss, although the
verdict should be weighted toward HermiT and Pellet, as they are completely
independent implementations of different underlying calculi. It is also worth
noting that the entailment level differences are quite small, esp. on a percentage
basis. These are not cases of large, easily detectable problems.

Table 3 shows the breakdown of cases into our four categories for each rea-
soner. Even this high level view is informative. Consider cao where there are
three coalitions (FaCT++ and JFact vs. HermiT vs. Pellet), so majority vote
picks FaCT++ and JFact. However, FaCT++, JFact, and Pellet all have sig-
nificant numbers of Definite Bugs (270, 270, and 72 resp.) while HermiT has

400 M. Lee et al.

none. Clearly, just because FaCT++ and JFact have (or seem to have) the same
underlying bug is not a good reason to let them win! Similarly, for gro, we have
two coalitions (FaCT++ and JFact vs. HermiT and Pellet). Thus, majority vot-
ing would flip a coin, but FaCT++ and JFact are known buggy here, while the
other coalition is not. We clearly should prefer the HermiT and Pellet coalition.
JFact has 12 Definite Bugs for dikb while the rest of the reasoners have none.
This suggests that our efforts are best spent understanding why JFact fails to
find those entailments during classification. Care must be taken with the last
three rows as FaCT++ did not provide a class hierarchy for them and Pellet did
not for the last two. Thus, all of their cases for those ontologies will have 0 for
finding that O |= η. Hence their verifying the corresponding justification might
not indicate a bug, but that they would have reasoned correctly on that case
if they had not failed to complete the classification. This suggests that either
our procedure should be slightly modified or (better) that our case categories
be. In any case, with only a bit more information, we are able to make more
informed judgements about how to resolve disagreements as well as steer the
manual investigation.

Table 3. Classification of all cases where the reasoner extracting the justification is
different from the reasoner testing the justification, grouped by reasoner. DB = Definite
bug, CY= Consistent Yes, PB = Possible Bug, and CN = Consistent No. Note that
HermiT has no cases in DB so that column was omitted.

FaCT++ HermiT JFact Pellet

O DB CY PB CN CY PB CN DB CY PB CN DB CY PB CN

bco 0 16 0 0 16 0 0 0 16 0 0 0 0 0 24
cao 278 72 0 0 220 0 0 278 72 0 0 72 148 0 0
dikb 0 10 2 1 10 2 1 12 0 0 0 0 10 2 1
gro 6 1 0 0 5 1 2 6 1 0 0 0 5 1 2
heio 0 0 0 14 0 0 14 0 14 0 0 0 0 0 14
nemo 0 38 0 1273 38 0 1273 0 0 15 39 0 38 0 1273
obcs 167 0 0 5 111 4 1 150 12 4 1 16 99 0 0
obi bcgo 52 0 0 0 38 0 0 52 0 0 0 38 0 0 0
stato 109 0 0 4 84 2 2 101 0 0 0 84 0 0 4

SUM 612 137 2 1297 522 9 1293 599 101 19 40 210 300 3 1318

5.1 Justification Analysis

A total of 1,622 distinct purported justifications were extracted from these 9
ontologies, which is a daunting number, but not inherently infeasible to survey.
Furthermore, Table 2 showed that 7 of the problem ontologies had less than 100
suspect entailments (5 less than 50 with several having very few). Thus, resolving
the disagreement w.r.t. most ontologies is a much easier task.

In addition to the total number, the verification effort is determined by their
difficulty which is often proportionate to their size (Table 4). 99% of all justi-
fications have less than 9 axioms in them, which is typically quite manageable.
The min being 1 is not inherently surprising, but the fact that 13% (204) of
justifications are of size 1 is a bit surprising. (We do further analysis of those

A Multi-reasoner, Justification-Based Approach to Reasoner Correctness 401

cases below.) These results suggest that crowdsourcing justifications verification
(or, at least, sufficient elbow grease) is quite feasible (though perhaps not for
real time applications like live competitions). Due to time constraints we do not
attempt to verify all the justifications, but we did attempt some in order to see
how feasible it is.

Table 4. Justification size distribution

Min. 1st Qu. Median Mean 3rd Qu. 99% Max.

1.00 3.00 3.00 3.33 4.00 9 100.00

A-Self Justifications. In principle, such justifications can require at least a bit
of reasoning (e.g., A � (BC)), but all 204 such justifications in this experiment
are self justifications, that is where J = {η}. This is quite surprising since this
means that the missing η is asserted in O and if a reasoner should get any
entailments right it should find all the asserted axioms. Indeed, we can (and do!)
verify self justifications simply by checking whether η ∈ O. Thus, all 204 are
verified automatically.

For 378 cases in Definite Bug, the justification in question was a self jus-
tification which resolves the issue of where the reasoner error is (i.e., in the
classification or in testing the justification). These cases occur for FaCT++ and
JFact. We reported such problems discovered in an earlier round of experimen-
tation (see http://bit.ly/1Gzi7PB) to the developer of FaCT++, who accepted
the reports and attempted a fix. The current experiment used this version, but
still found FaCT++ Definite Bug cases with self-justification. In personal com-
munication with the developer, we found that the problem seems to be in the
interaction between the OWL API and FaCT++ (notably, the command line
version of FaCT++ does not exhibit these problems).

Note that fixing these missing entailments has a cascade effect as other jus-
tifications which depended on those lost axioms now are verified by the buggy
reasoners (and, indeed, all those dependent entailments are found during classi-
fication).

This case is interesting because 1) testing for the correctness of checking the
entailment of asserted axioms is not an obvious testing move 2) it highlights that
problems with reasoners may stem from outside the reasoner proper, and 3) it
highlights the need for analysis of the justificatory structure.

B-Manual Inspection: Pellet and BCO. We selected the 24 Consistent No
cases for Pellet against the bcp ontology because Pellet was in conflict with all
the other reasoners. There were 8 distinct justifications in the 24 cases, thus
each non-Pellet reasoner extracted and verified each of the 8. All 8 were rather
similar structurally. For example, one purported justification for A � B was:

http://bit.ly/1Gzi7PB

402 M. Lee et al.

A � ∃S.D
D � ∃U.(B ∃R.C)
U � P
S ◦ P � Q
∃Q.� � B

All 8 of the justifications were verified independently by all the authors as correct
explanations for their entailment. Thus, we verified that Pellet was incorrect.

C-Manual Inspection: FaCT++, JFact and Unsatisfiable Classes. We
found two justifications produced by FaCT and JFact that asserted a particular
class in the gro ontology was unsatisfiable. Since debugging unsatisfiable classes
are a classic explanation target, we decided to verify them. Examination of the
justifications directly showed that the class Decrease was being classified as
unsatisfiable, because of the specifications of the data type.

Decrease had for its data property polarity a specified datatype of
rdf:PlainLiteral. This was opposed to the specified range of the polarity datatype,
which were all xs:string. The actual possible value was correct, but the types
differed. If the types are, in fact, different, the purported justifications are cor-
rect. However, according to the W3C specifications on plain literals, such a sub-
stitution was allowed: rdf plain literals should be interpreted as xs:strings [1].
Consequently, “negative” cast as plainLiteral should be accepted as a xs:string.
“negative”ˆˆxsd:string denotes the same as the plain literal “negative”. This
showed that JFact and FaCT++ had problems with particular data types.

To test this, we created a minimal type casting test to run the reasoners on.
We created a simple ABox and RBox:

a:R value “x”
a:R value “x”ˆˆstring
Functional(R)

Since no individual can have more than one R successor in this ontology, it is
consistent just in case the plain literal “x” can be cast to a string. This was
inconsistent for FaCT++ and JFact, but not Pellet or HermiT. This test case
clearly shows that FaCT++ and JFact are incorrect. This example suggested
other similar examples, such as:

a:R value “x”ˆˆrdfs:Literal
a:R value “x”ˆˆstring
Functional(R)

This was found to be inconsistent by Pellet while it crashed FaCT++.
This provides specific evidence to diagnose a data type error within FaCT

and JFact (and incidentally, Pellet).

A Multi-reasoner, Justification-Based Approach to Reasoner Correctness 403

D-Manual Inspection: Heio and JFact. To accumulate evidence for or
against a contested assumption, Consistent Yes and Consistent No cases tend
to cancel each other out. If we have only a single case (in either category) we
don’t have any reason to contradict the case. However, if we have a balanced set
of Consistent Yeses and Nos (i.e., half of each), then we have no information to
choose between them. Contrariwise, an unbalanced set of Consistent Yeses and
Nos tends to verify the cases in the majority. In the case of heio, there were 14
Consistent Yeses for JFact, and 14 Nos for each of the other reasoners, and JFact
was the only reasoner to produce a justification. In this case, the smart money
is against JFact. Given that there were only 14 justifications to verify and they
were all of size 2, we decided to completely verify this set.

The justifications were all structurally similar:

A ≡ C ∃P.integer[>3]
B ≡ C ∃P.integer[≤3]

In each case, two classes (e.g., A and B) are modelled as non-equivalent by hav-
ing incompatible ranges as the value of some datatype property. Clearly, these
are not real justifications for A � B. Moreover, JFact will infer from such jus-
tifications (and thus from heio) that A ≡ B. Clearly, JFact is not appropriately
coping with the data range facets.

A Modest Generalisation. While we exhausted all the self justifications (A),
the remaining case studies are suggestive: B involves role chains, while C and D
involve datatypes. Both these features are comparatively new (in their current
form) as of OWL 2 and thus comparatively little used or tested. Of all our
justifications, 1363 involve a datatype, of those 1347 use facets, while only 24
use role chains. (Those 24 were fully verified.) As FaCT++ and Pellet both
rejected ontologies on the basis of datatypes, we have further confirmation that
datatypes need special attention. Modellers using elaborate datatype modelling
would be well advised to test their ontologies against a set of reasoners, not just
one, and compare the results.

6 Discussion

One important consequence of our justification based method is its implications
for crude methods such as majority voting. Recall that majority voting considers
if there is total, partial or no consensus in the inferred class hierarchies. In the
case of partial consensus, any given reasoner is correct if it agrees with the
majority. In the case of no consensus, some tie-breaking method is applied (this
can be as simple as flipping a coin).

In two of the cases we found reasons to suspect that the majority (or lack of)
might lead to wrong reasoners being classified as “correct”. Moreover, we could
produce information to justify the choices picked through our method and those
cases where our method agreed with MV. The evidence shows a clear difference
between the method stipulated and MV.

404 M. Lee et al.

With respect to the reliability of MV, we have produced evidence to suggest
that it’s reliability is questionable. Given that we can find a clear instance of a
tie-breaking method picking from a set of reasoners that are suspected to exhibit
problems, this undermines MV’s effectiveness. We believe that a more granular
voting system paralleling some of our analyses above would produce a more
satisfactory mechanisms. If a contestant wanted to dispute the voting results,
they would have the comparatively easy task of verifying some justifications.

It is clear that the system is informative with respect to how the errors are
produced by the reasoners. Although we were unable to diagnose the source
of each error in every evaluation, we were fairly successful for comparatively
minor effort. In particular, we were able to generate minimal test cases with
detailed explanation of the erroneous behaviour very suitable for bug reports.
Our initial bug reports have been well received. Providing this information and a
strict methodology to narrow down these minimal patches should provide basis
for future work. It can also be seen that for Ontology Engineers, we are either
able to provide effective minimal patches to the Ontology, to allow one to work
around the problem with respect to reasoning, or provide an indication that no
such work around is available such as in the case of FaCT++ and JFact handling
of some self-justifications.

A general shortcoming of this system is that it does not catch all errors
generated by the reasoners. We will not catch errors where the reasoners are all
in agreement. Either they all infer an entailment that is not correct or they all
fail to infer an entailment that should follow from the ontology. Against this, we
argue that as this test can be performed with multiple reasoners, it is unlikely
that this will occur. The more reasoners that are in accord with each other, the
more confidence we may have that such inferred entailments are correct.

Another potential source of problems might be our restriction to a single
justification per reasoner entailment pair. There are only two cases where this
could be a problem: (1) The reasoner generates some justifications and some non-
justifications for a given entailment and (2) a reasoner is able to verify some,
but not all justifications. Without formally verifying this conjecture, we have
not encountered any cases like this in some preliminary experiments. It might
be necessary to rule this problem out in the future with more experiments.
However, the restriction does not seem to hurt us with any of the examples we
have pursued.

7 Related Work

Our initial motivation was the problem of reasoner disagreement in the con-
text of ORE. We found Majority Voting to be a very unsatisfying disagreement
resolution especially when it degrades to random choice. In prior ORE com-
petitions known approximate reasoners, such as TrOWL, have been deployed
over logic levels for which their incompleteness is a known fact (so for instance
TrOWL approximates OWL DL by converting statements into a level of expres-
sivity lower then OWL DL). The balance between approximation and speed is

A Multi-reasoner, Justification-Based Approach to Reasoner Correctness 405

an understandable one and it is unlikely that incomplete reasoners will ever form
a majority for MV, as most reasoners within these competitions are complete.
However, a method to adjudicate against this possibility is very useful. More-
over, within the competition, it would be useful to know the degree to which an
automated reasoner is incomplete with respect to the majority (of presumably
complete reasoners), because this can allow us to discern the degree of penali-
sation to those incomplete reasoners. Finally, a key goal of ORE is to improve
reasoners. While it has proved helpful in pushing the performance bound, cor-
rectness is similarly important.

Justifications have been used in benchmarking, where there analysability
was held up as a virtue. In order to verify that the justifications being used
as benchmarks were reliable [4, p.38], every justification generated was checked
against every reasoner. Additionally for completeness purposes, the authors use
a number of reasoners to generate all entailments and their justifications. They
note that this “...is very time consuming and infeasible for some ontologies”.
This problem with generating justifications means it is necessary to have some
form of hard limit on generation in order to ensure the process is not overly time
consuming.

Similar work for automated reasoners has been performed with respect to
queries [14]. The authors create test units (A-Boxes representations of the query)
to form a test base. For certain benchmark ontologies that are used to assess
reasoners, this provides a metric that evaluates the completeness of the reason-
ers. Importantly they also stress the need for such methods to be invariant or
independent of the ontology being tested against. Our work is complementary
to this. [14] is evaluating an expected feature of the reasoners, in so much as the
implementations of them are incomplete in order to have a satisfactory level of
efficiency. By comparison, our method is concerned with error, with unexpected
levels of incompleteness. It is also important to note that our method fulfils the
invariant condition that [14] stipulate. This method can be used with any corpus
of ontologies.

In general in Automated Reasoning there are a variety of techniques deployed
for debugging. We note however, that a good deal of the techniques used as
detailed in the literature refer to debugging of SAT or SMT solvers, rather then
any reasoner that underlies semantic web technology. For instance, fuzzing is
used by Brummayer to debug SAT and SMT solvers [5]. Briefly stated fuzzing
is the use of deliberate random input for bug generation and is typically used in
software engineering. Moreover, there exist libraries of test cases such as “The
Thousands of Problems for Theorem Provers” (TTFP) for First Order Logic and
typed higher order formed logic [15]. TTFP helpfully contains solutions to these
problems, allowing reasoner developers to verify the output of their solvers. The
library of problems forms a benchmark for solver developers as well as a nexus
for the community as a whole.

406 M. Lee et al.

8 Conclusions and Future Work

In this paper, we have presented a justification based method to identify bugs
in OWL reasoners. Furthermore, our method allows us to narrow down possible
sources of bugs, providing a starting point for reasoner debugging. Ideally, we
would like to ensure that reasoners are as correct as possible for key reasoning
services such as classification to avoid confusions caused by wrongly missing or
spurious entailments.

A limitation of the work is that it is blind in terms of exhaustiveness of error.
That is, we have produced evidence to show that there is something wrong with
particular reasoners on particular ontologies, axioms and entailments. However,
we do not know the extent to which this is exhaustive of erroneous behaviour.
While this is not within the scope of the work, it means that we must apply a
conservative mindset to the results of the method. It is not that the method has
shown that reasoning software is in fact sound and complete. It has only shown
that it has certain errors and certain agreements.

Its known that there is a good deal of diversity between reasoner implementa-
tion, in terms of code base, calculus and use of modularity and that this does not
even take into account differences in degrees of completeness. We may naively
assume that such a diversity influences the effectiveness of our method, in the
sense that multiple pieces of complex software that agree should grant a certain
confidence in that result. However, we note that a certain degree of care needs
to be made when making claims regarding the diversity of software acting as a
guarantee of reasoner soundness and being a principle factor in the effectiveness
of the method. This is largely because of prior research on N Version Software
Development. N Version Software Development, is the concept that a way of
developing reliable software is to have multiple parallel developments attempt
to produce the same piece of software. Certain communication restrictions are
placed on the programmers developing the software in parallel, with the inten-
tion of enforcing a diversity of methods in its creation and hence a reliability in
the overall product, when they are evaluated against each other.

There are parallels with our method - we are using multiple reasoners against
each other, each from separate developers. This means that certain criticisms
that were made of N Version Software Development need to be kept in mind.
These principally come from [10]. They test the idea that the failures that occur
within strictly separated programmers (in their case, students) can be considered
as independent events, that is that failure does not occur in correlation (note
that they do not specify how the failure occurs). The authors conclude that such
a thing is statistically unlikely to be independent. They are keen to stress that
this conclusion only applies to the application they used in their experiment.
While there is no straightforward application of their results in this scenario,
what can be learnt is a measure of caution about how diverse we may assume
the reasoners are and whether diversity of implementation itself is playing a key
role in our method. This is a possible avenue for further research. Our situation
is even less restricted then the one that took place in their experiment, given
the vitality of the semantic web community as a whole.

A Multi-reasoner, Justification-Based Approach to Reasoner Correctness 407

Our process involves a great deal of duplication of human evaluation work,
in situations where justifications are duplicated, either for the same entailment
or in the cases involving unsatisfiable classes, offered elsewhere as justifications
for an aspect of the class hierarchy. Compounding this problem are situations
where malign justifications are generated for correct entailments. Moreover, it
can be seen that with axiom swallowing, justifications for one entailment can be
subsets for another justification for a different entailment (if a reasoner misses an
explanation for entailments, it may miss it for situations where the entailment
is used as a step elsewhere). Hence, knowing how justifications interact either
as subsets or in duplication and being able to collapse these cases down into a
single human readable case would make the process of analysis far more efficient.

This provides an intention for future work. We could use tools for diffing,
isomorphism detection, detecting root and derived justifications and pattern
detection. Deployment of anyone of these tools could greatly speed up the anal-
ysis: focusing on root justifications, for example, reduces both the number of
justifications one needs to inspect and their average size. Isomorphism could
easily show that a similarity of pattern has occurred across justifications. At the
moment these tools are not integrated together into a suite of tools. An ideal
end goal would be to produce such a suite alongside an implementation of our
method to allow end users to test reasoners and ontologies for bugs and then
analyse such results.

In the future, we would like to provide a web service supporting our meth-
ods. Developers would be able to test their reasoners against a set of standard
reasoners and then obtain cases that pinpoint potential bugs consisting of jus-
tifications, missing entailments and ontology patches (that make the problem
disappear). Ontology engineers would be able to verify that their ontologies are
treated consistently by all reasoners. In both cases, we would attempt to facili-
tate crowdsourcing of the justification verification task.

Furthermore, standard testing methodologies such as test case minimisation
and mutation seem worth exploring in this context. While independently useful,
they might also complement the other comprehension tools.

Perhaps the most important extension is the generation of a potentially
conclusive witness for non-entailment. The classic technique for non-entailment
explanation is the generation and display of counter models. Current implemen-
tations, being mostly of a model construction flavour, seem well suited for this.
However, the structures that reasoners use internally are not directly a model,
nor, in complex logics, are they particular close to sharable structures like aBoxes
(which can completely capture certain sorts of model and then be tested by other
reasoners). Furthermore, the models (and internal structures) can be quite large
and complex potentially defying human inspection.

However, our reasoner correctness task provides a good test scenario for non-
entailment explanation. One of the great barriers to such research is the difficulty
of finding “interesting” non-entailments to experiment with. Our technique gen-
erates interesting non-entailments with no need for domain or ontology familiar-
ity and with a strong motivation for understanding them.

408 M. Lee et al.

References

1. W3C Recommendations RDF Semantics (2004). [Online; accessed April 15, 2015]
2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.

(eds.): The Description Logic Handbook, 2nd edn. Cambridge University Press
(2007)

3. Bagosi, T., Calvanese, D., Hardi, J., Komla-Ebri, S., Lanti, D., Rezk, M.,
Rodŕıguez-Muro, M., Slusnys, M., Xiao, G.: The ontop framework for ontology
based data access. In: Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., Pan, J.Z.
(eds.) CSWS 2014. CCIS, vol. 480, pp. 67–77. Springer, Heidelberg (2014)

4. Bail, S., Parsia, B., Sattler, U.: JustBench: a framework for OWL benchmarking.
In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 32–47.
Springer, Heidelberg (2010)

5. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Proceed-
ings of the 7th International Workshop on Satisfiability Modulo Theories, SMT
2009, New York, NY, USA, pp. 1–5. ACM (2009)

6. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2
Reasoner. J. Autom. Reasoning 53(3), 245–269 (2014)

7. Hedeler, C., Parsia, B., Brandt, S.: Estimating and analysing coordination in med-
ical terminologies. In: 2014 IEEE 27th International Symposium on Computer-
Based Medical Systems, New York, NY, USA, May 27–29, 2014, pp. 357–362 (2014)

8. Horridge, M.: Justification Based Explaination in Ontologies. PhD thesis, Univer-
sity of Manchester (2011)

9. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies.
Semantic Web 2(1), 11–21 (2011)

10. Knight, J.C., Leveson, N.G.: An Experimental Evaluation of the Assumption of
Independence in Multiversion Programming. IEEE Trans. Software Eng. 12(1),
96–109 (1986)

11. Rector, A.L., Iannone, L.: Lexically suggest, logically define: Quality assurance of
the use of qualifiers and expected results of post-coordination in SNOMED CT.
Journal of Biomedical Informatics 45(2), 199–209 (2012)

12. Rogers, J.E.: Development of a methodology and an ontological schema for medical
terminology. PhD thesis, University of Manchester (2004)

13. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Sem. 5(2), 51–53 (2007)

14. Stoilos, G., Grau, B.C., Horrocks, I.: How incomplete is your semantic web rea-
soner? In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intel-
ligence, AAAI 2010, Atlanta, Georgia, USA, July 11–15, 2010 (2010)

15. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

16. Tsarkov, Dmitry, Horrocks, Ian: FaCT++ description logic reasoner: system
description. In: Furbach, Ulrich, Shankar, Natarajan (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)

17. Wolstencroft, K., Brass, A., Horrocks, I., Lord, P., Sattler, U., Turi, D., Stevens, R.:
A little semantic web goes a long way in biology. In: Gil, Y., Motta, E., Benjamins,
V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 786–800. Springer,
Heidelberg (2005)

	A Multi-reasoner, Justification-Based Approach to Reasoner Correctness
	1 Introduction
	2 Preliminaries
	3 A Fine-Grained Justification Based Method for Verifying Reasoner Correctness
	4 Experimental Design
	4.1 Reasoners, and Machines, and Corpus

	5 Results
	5.1 Justification Analysis
	A-Self Justifications.
	B-Manual Inspection: Pellet and BCO.
	C-Manual Inspection: FaCT++, JFact and Unsatisfiable Classes.
	D-Manual Inspection: Heio and JFact.
	A Modest Generalisation.

	6 Discussion
	7 Related Work
	8 Conclusions and Future Work
	References

