
Optimizing the Computation of Overriding

Piero A. Bonatti, Iliana M. Petrova, and Luigi Sauro(B)

Dip. Ing. Elet. e Tecnologie dell’Informazione,
Università di Napoli Federico II, Naples, Italy

luigi.sauro74@gmail.com

Abstract. We introduce optimization techniques for reasoning in DLN–
a recently introduced family of nonmonotonic description logics whose
characterizing features appear well-suited to model the examples nat-
urally arising in biomedical domains and semantic web access control
policies. Such optimizations are validated experimentally on large KBs
with more than 30K axioms. Speedups exceed 1 order of magnitude. For
the first time, response times compatible with real-time reasoning are
obtained with nonmonotonic KBs of this size.

1 Introduction

Recently, a new family of nonmonotonic Description Logics (DLs), called DLN,
has been introduced [8]. It supports normality concepts NC to denote the nor-
mal/standard/ prototypical instances of a concept C, and prioritized defea-
sible inclusions (DIs) C �n D with the following meaning: “by default, the
instances of C satisfy D, unless stated otherwise”, that is, unless some higher
priority axioms entail C � ¬D; in that case, C �n D is overridden. The nor-
mal/standard/prototypical instances of C are required to satisfy all the DIs that
are not overridden in C.

Given the negligible number of applications based on nonmonotonic logics
deployed so far, DLN has been designed to address real-world problems and con-
crete knowledge engineering needs. In this regard, the literature provides clear and
articulated discussions of how nonmonotonic reasoning can be of help in impor-
tant contexts related to the semantic web, such as biomedical ontologies [25,28]
(with several applications, such as literature search) and (semantic web) policy
formulation [29]. These and other applications are extensively discussed in [8].

The distinguishing features in DLN’s design are: (i) DLN adopts the sim-
plest possible criterion for overriding, that is, inconsistency with higher priority
axioms; (ii) all the normal instances of a concept C conform to the same set
of default properties, also called prototype in the following; (iii) the conflicts
between DIs that cannot be resolved with priorities are regarded as knowledge
representation errors and are to be fixed by the knowledge engineer (typically,
by adding specific DIs). No traditional nonmonotonic logic satisfies (i), and very
few satisfy (ii) or (iii). DLN behaves very well on application examples due to
the following consequences of (i)–(iii) (a comparison with other nonmonotonic
DLs with respect to these features is summarized in Table 1):
c© Springer International Publishing Switzerland 2015
M. Arenas et al. (Eds.): ISWC 2015, Part I, LNCS 9366, pp. 356–372, 2015.
DOI: 10.1007/978-3-319-25007-6 21

Optimizing the Computation of Overriding 357

No inheritance blocking : In several nonmonotonic logics a concept with excep-
tional properties inherits none of the default properties of its superclasses. This
undesirable phenomenon is known as inheritance blocking.

No undesired closed-world assumption (CWA) effects: In some nonmonotonic
DLs, an exceptional concept is shrinked to the individuals that explicitly belong
to it, if any; hence, it may become inconsistent.

Control on role ranges: Unlike most nonmonotonic DLs, DLN axioms can
specify whether a role should range only over normal individuals or not.

Detect inconsistent prototypes: DLN facilitates the identification of all con-
flicts that cannot be resolved with priorities (via consistency checks over nor-
mality concepts), because their correct resolution is application dependent and
should require human intervention (cf. [8, Sec. 1] and Example 1 below).

Tractability : DLN is currently the only nonmonotonic DL known to preserve
the tractability of all low-complexity DLs, including EL++ and DL-lite (that
underly the OWL2-EL and OWL2-QL profiles). This opens the way to processing
very large nonmonotonic KBs within these fragments.

Table 1. Partial comparison with other nonmonotonic DLs, cf.[8], where CIRC,
DEF, AEL, TYP, RAT, PR stand, respectively, for Circumscribed DLs, Default DLs,
Autoepistemic DLs, DLs with Typicality, DLs with Rational Closure, and Probabilistic
DLs.

CIRC DEF AEL TYP RAT PR
Features [5,6] [1,2] [13] [17,18] [10,11] [12] [22] DLN

no inheritance blocking � � � � � �
no CWA effects � � � � �
fine-grained control on role ranges sometimes �
detects inconsistent prototypes sometimes � �
preserves tractability �(∗)

(*) It holds for subsumption, assertion checking, concept consistency,KBconsistency.

The performance of DLN inference has been experimentally analyzed on large
KBs (with more than 20K concept names and over 30K inclusions). The results
are promising; still, as defeasible inclusions approach 25% of the KB, query
response time slows down enough to call for improvements. In this paper, we
study two optimization techniques to improve DLN query response time:

1. Many of the axioms in a large KB are expected to be irrelevant to the given
query. We investigate the use of module extractors [24,27] to focus reasoning
on relevant axioms only. The approach is not trivial (module extractors are
unsound for most nonmonotonic logics, including circumscription, default
and autoepistemic logics) and requires an articulated correctness proof.

2. We introduce a new algorithm for query answering, that is expected to
exploit incremental reasoners at their best. Incremental reasoning is cru-
cial as DLN’s reasoning method iterates consistency tests on a set of KBs
with large intersections. While the assertion of new axioms is processed very

358 P.A. Bonatti et al.

efficiently, the computational cost of axiom deletion is generally not negligi-
ble. We introduce an optimistic reasoning method that is expected to reduce
the number of deletions.

Both optimizations are validated experimentally. Speedups exceed 1 order of
magnitude. To the best of our knowledge, this is the first time that response
times compatible with real-time reasoning are obtained with nonmonotonic KBs
of this size.

The paper is organized as follows: Sec. 2 provides the basics of DLN and
illustrates its inferences with examples. Sections 3 and 4 introduce the two opti-
mization methods, respectively, and prove their correctness. Their experimental
assessment is in Sec. 5. Proofs have been omitted due to space limitations. They
can be found in [7], together with further explanations and examples. We assume
the reader to be familiar with description logics, see [15] for all details. The code
and test suites are available at: http://goo.gl/KnMO9l.

2 Preliminaries

Let DL be any classical description logic language (see [15] for definitions), and
let DLN be the extension of DL with a new concept name NC for each DL
concept C. The new concepts are called normality concepts.

A DLN knowledge base is a disjoint union KB = S ∪ D where S is a finite
set of DLN inclusions and assertions (called strong or classical axioms) and D is
a finite set of defeasible inclusions (DIs, for short) that are expressions C �n D
where C is a DL concept and D a DLN concept. If δ = (C �n D), then pre(δ)
and con(δ) denote C and D, respectively. Informally speaking, the set of DIs
satisfied by all the instances of a normality concept NC constitute the prototype
associated to C.

DIs are prioritized by a strict partial order ≺. If δ1 ≺ δ2, then δ1 has higher
priority than δ2. DLN solves automatically only the conflicts that can be settled
using ≺; any other conflict shall be resolved by the knowledge engineer (typically
by adding suitable DIs). Two priority relations have been investigated so far.
Both are based on specificity : the specific default properties of a concept C have
higher priority than the more generic properties of its superconcepts (i.e. those
that subsume C). The priority relation used in most of [8]’s examples identifies
those superconcepts with strong axioms only:

δ1 ≺ δ2 iff pre(δ1) �S pre(δ2) and pre(δ2) ��S pre(δ1) .1 (1)

The second priority relation investigated in [8] is

δ1 ≺ δ2 iff rank(δ1) > rank(δ2), (2)

where rank(·) is shown in Algorithm 1 and corresponds to the ranking function of
rational closure [11,12]. This relation uses also DIs to determine superconcepts,
1 As usual, C �S D means that S |= C � D.

http://goo.gl/KnMO9l

Optimizing the Computation of Overriding 359

Algorithm 1. Ranking function
Input: Ontology KB = S ∪ D
Output: the function rank(·)
i := −1; E0 := {C � D | C �n D ∈ D}1

repeat2

i := i + 13

Ei+1 := {C � D ∈ Ei | S ∪ Ei |= C �⊥}4

forall C �n D s.t. C � D ∈ Ei \ Ei+1 do5

assign rank(C �n D) := i6

until Ei+1 = Ei7

forall C �n D ∈ Ei+1 do assign rank(C �n D) := ∞8

return rank(·)9

so (roughly speaking) a DI C �n D—besides defining a default property for
C—gives the specific default properties of C higher priority than those of D.
The advantage of this priority relation is that it resolves more conflicts than
(1); the main advantage of (1) is predictability; e.g. the effects of adding default
properties to an existing, classical KB are more predictable, as the hierarchy
used for determining specificity and resolving conflicts is the original, validated
one, and is not affected by the new DIs (see also the related discussion in [3,4],
that adopt (1)).

The expression KB |≈ α means that α is a DLN consequence of KB. Due
to space limitations, we do not report the model-theoretic definition of |≈ and
present only its reduction to classical reasoning [8]. For all subsumptions and
assertions α, KB |≈ α holds iff KBΣ |= α, where Σ is the set of normality
concepts that explicitly occur in KB ∪ {α}, and KBΣ is a classical knowledge
base obtained as follows (recall that KB = S ∪ D):

First, for all DIs δ ∈ D and all NC ∈ Σ, let:

δNC =
(
NC � pre(δ) � con(δ)

)
. (3)

The informal meaning of δNC is: “NC’s instances satisfy δ”.
Second, let S ′ ↓≺δ denote the result of removing from the axiom set S ′ all

the δNC
0 such that δ0 �≺ δ:

S ′ ↓≺δ= S ′ \ {δNC
0 | NC ∈ Σ ∧ δ0 �≺ δ} .

Third, let δ1, . . . , δ|D| be any linearization of (D,≺).2

Finally, let KBΣ = KBΣ
|D|, where the sequence KBΣ

i (i = 1, 2, . . . , |D|) is
inductively defined as follows:

KBΣ
0 = S ∪ {

NC � C | NC ∈ Σ
}

(4)

KBΣ
i = KBΣ

i−1 ∪ {
δNC
i | δi ∈ KB,NC ∈ Σ, and

KBΣ
i−1 ↓≺δi ∪ {δNC

i } �|= NC � ⊥}
. (5)

2 That is, {δ1, . . . , δ|D|} = D and for all i, j = 1, . . . , |D|, if δi ≺ δj then i < j.

360 P.A. Bonatti et al.

In other words, the above sequence starts with KB’s strong axioms extended
with the inclusions NC � C, then processes the DIs δi in non-increasing priority
order. If δi can be consistently added to C’s prototype, given all higher priority
DIs selected so far (which is verified by checking that NC �� ⊥ in line (5)), then
its translation δNC

i is included in KBΣ (i.e. δi enters C’s prototype), otherwise
δi is discarded, and we say that δi is overridden in NC.

2.1 Examples

We start with a brief discussion of DLN’s conflict handling. Most other logics
silently neutralize the conflicts between nonmonotonic axioms with the same (or
incomparable) priorities by computing the inferences that are invariant across
all possible ways of resolving the conflict. A knowledge engineer might solve it
in favor of some of its possible resolutions, instead; however, if the logic silently
neutralizes the conflict, then missing knowledge may remain undetected and
unfixed. This approach may cause serious problems in the policy domain:

Example 1. Suppose that project coordinators are both administrative staff and
research staff. By default, administrative staff are allowed to sign payments,
while research staff are not. A conflict arises since both of these default policies
apply to project coordinators. Formally, KB can be formalized with:

Admin �n ∃has right.Sign (6)
Research �n ¬∃has right.Sign (7)

PrjCrd � Admin 	 Research (8)

Leaving the conflict unresolved may cause a variety of security problems. If
project coordinators should not sign payments, and the default policy is open
(authorizations are granted by default), then failing to infer ¬∃has right.Sign
would improperly authorize the signing operation. Conversely, if the authoriza-
tion is to be granted, then failing to prove ∃has right.Sign causes a denial of
service (the user is unable to complete a legal operation). To prevent these prob-
lems, DLN makes the conflict visible by inferring KB |≈ N PrjCrd � ⊥ (showing
that PrjCrd’s prototype is inconsistent). This can be proved by checking that
KBΣ |= N PrjCrd � ⊥, where Σ = {N PrjCrd}. Then KBΣ consists of (8),
N PrjCrd � PrjCrd, and the translation of (6) and (7) (none overrides the other
because none is more specific under any of the two priorities):

N PrjCrd 	 Admin � ∃has right.Sign,
N PrjCrd 	 Research � ¬∃has right.Sign. �

Here is another application example from the semantic policy domain, showing
DLN’s behavior on multiple exception levels.

Example 2. We are going to axiomatize the following natural language policy: “In
general, users cannot access confidential files; Staffcan read confidential files;Black-
listed users are not granted any access. This directive cannot be overridden.” Note

Optimizing the Computation of Overriding 361

that each of the above directives contradicts (and is supposed to override) its pre-
decessor in some particular case. Authorizations can be reified as objects with
attributes subject (the access requestor), target (the file to be accessed), and priv-
ilege (such as read and write). Then the above policy can be encoded as follows:

Staff � User (9)
Blklst � Staff (10)

UserReqst �n ¬∃privilege (11)
StaffReqst �n ∃privilege.Read (12)

BlkReq � ¬∃privilege (13)

where BlkReq
.= ∃subj.Blklst, StaffReqst .= ∃subj.Staff, and UserReqst

.=
∃subj.User. By (9), both the specifity relations (1) and (2) yield (12) ≺ (11),
that is, (12) has higher priority than (11). Let Σ = {NStaffReqst}; (12) over-
rides (11) in NStaffReqst (under (1) as well as (2)), so KBΣ consists of: (9),
(10), (13), plus

NStaffReqst � StaffReqst

NStaffReqst 	 StaffReqst � ∃privilege.Read

Consequently, KB |≈ NStaffReqst � ∃privilege.Read. Similarly, it can be
verified that:

1. Normally, access requests involving confidential files are rejected, if they
come from generic users: KB |≈ NUserReqst � ¬∃privilege;

2. Blacklisted users cannot do anything by (13), so, in particular:
KB |≈ NBlkReq � ¬∃privilege. �

Some application examples from the biomedical domain can be found in [8]
(see Examples 3, 4, 10, 12, and the drug contraindication example in Appendix
C). Like the above examples, they are all correctly solved by DLN with both
priority notions. Applicative examples hardly exhibit the complicated networks
of dependencies between conflicting defaults that occur in artificial examples.
Nonetheless, we briefly discuss the artificial examples, too, as a means of com-
paring DLN with other logics such as [5,12,26].

In several cases, e.g. examples B.4 and B.5 in [26], DLN agrees with [5,12,26]
under both priority relations. Due to space limitations, we illustrate only B.4.

Example 3 (Juvenile offender). Let KB consist of axioms (14)–(18) where J, G, M,
P abbreviate JuvenileOffender, GuiltyOfCrime, IsMinor and ToBePunished,
respectively.

J � G (14)
J � M (15)

M 	 G �n ¬P (16)
M �n ¬P (17)
G �n P (18)

J � G (19)
J � M (20)

NJ � J (21)
NJ 	 M 	 G � ¬P (22)

NJ 	 M � ¬P (23)

362 P.A. Bonatti et al.

On one hand, criminals have to be punished and, on the other hand, minors
cannot be punished. So, what about juvenile offenders? The defeasible inclusion
(16) breaks the tie in favor of their being underage, hence not punishable. By
setting Σ = {NJ}, priorities (1) and (2) both return axioms (19)–(23) as KBΣ .
Then, clearly, KBΣ |= NJ � ¬P which is DLN’s analogue of the inferences of
[5,12,26].

In other cases (e.g. example B.1 in [26]) DLN finds the same conflicts as
[5,12,26]. However, DLN’s semantics signals these conflicts to the knowledge
engineer whereas in [5,12,26] they are silently neutralized.

Example 4 (Double Diamond). Let KB be the following set of axioms:

A �n T (24)
A �n P (25)
T �n S (26)
P �n ¬S (27)

S �n R (28)
P �n Q (29)
Q �n ¬R (30)

DIs (26) and (27) have incomparable priority under (1) and (2). Consequently,
it is easy to see that NA � S and NA � ¬S are both implied by KBΣ and hence
the knowledge engineer is warned that NA is inconsistent. The same conflict is
silently neutralized in [5,12,26] (A’s instances are subsumed by neither S nor ¬S
and no inconsistency arises). Similarly for the incomparable DIs (28) and (30)
and the related conflict.

The third category of examples (e.g. B.2 and B.3 in [26]) presents a more var-
iegated behavior. In particular, [12] and DLN with priority (2) solve all conflicts
and infer the same consequences; [26] solves only some conflicts; [5] is not able
to solve any conflict and yet it does not raise any inconsistency warning; DLN

with priority (1) cannot solve the conflicts but raises an inconsistency warning.
Here, for the sake of simplicity, we discuss in detail a shorter example which has
all relevant ingredients.

Example 5. Let KB be the following defeasible knowledge base:

A �n B (31) A �n C (32) B �n ¬C (33)

According to priority (1) all DIs are incomparable. Therefore, DLN warns (by
inferring NA � ⊥) that the conflict between NA � C and NA � ¬C cannot be
solved. Note that [5] adopts priority (1), too, however according to circumscrip-
tion, any interpretation where A’s instances are either in ¬C � B or in C is a
model, so A is satisfiable (the conflict is silently neutralized). Under priority (2),
instead, axiom (31) gives (31) and (32) higher priority than (33). Consequently,
NA � C prevails over NA � ¬C. In this case, DLN and rational closure infer the
same consequences.

Optimizing the Computation of Overriding 363

3 Relevance and Modularity

The naive construction of KBΣ must process all the axioms in KBΣ
all = KBΣ

0 ∪
{δNC | δ ∈ D, NC ∈ Σ}. Here we optimize DLN inference by quickly discarding
some of the irrelevant axioms in KBΣ

all using modularization techniques.
Roughly speaking, the problem of module extraction can be expressed as

follows: given a reference vocabulary Sig , a module is a (possibly minimal) subset
M ⊆ KB that is relevant for Sig in the sense that it preserves the consequences
of KB that contain only terms in Sig .

The interest in module extraction techniques is motivated by several ontol-
ogy engineering needs. We are interested in modularization as an optimization
technique for querying large ontologies: the query is evaluated on a (hopefully
much smaller) module of the ontology that preserves the query result (as well
as any inference whose signature is contained in the query’s signature).

However, the problem of deciding whether two knowledge bases entail the same
axioms over a given signature is usually harder than standard reasoning tasks.
Consequently deciding whether KB′ is a module of KB (for Sig) is computationally
expensive in general. For example, DL–Litehorn complexity grows from PTIME
to coNP-TIME-complete [21]; for ALC, complexity is one exponential harder [16],
while for ALCQIO the problem becomes even undecidable [23].

In order to achieve a practical solution, a syntactic approximation has been
adopted in [19,27]. The corrisponding algorithm
⊥∗-Mod(Sig ,KB) is defined
in [27, Def. 4] and reported in Algorithm 2 below. It is based on the property of
⊥-locality and �-locality of single axioms (line 15). An axiom is local w.r.t. Sig
if the substitution of all non-Sig terms with ⊥ (resp. �) turns it into a tautology.

The module extractor identifies a subset M ⊆ KB of the knowledge base
and a signature Sig (containing all symbols of interest) such that all axioms in
KB \ M are local w.r.t. Sig . This guarantees that every model of M can be
extended to a model of KB by setting each non-Sig term to either ⊥ or �. In
turn, this property guarantees that any query whose signature is contained in
Sig has the same answer in M and KB.

The function x-Mod(Sig ,KB) (lines 9-19), where x stands for � or ⊥,
describes the procedure for constructing modules of a knowledge base KB for
each notion of locality. Starting with an empty set of axioms (line 11), iteratively,
the axioms α that are non-local are added to the module (line 16) and, in order
to preserve soundness, the signature against which locality is checked is extended
with the terms in α (line 15). Iteration stops when a fixpoint is reached.

Modules based on a single syntactic locality can be further shrinked by itera-
tively nesting �-extraction into ⊥-extraction, thus obtaining
⊥∗-Mod(Sig ,KB)
modules (lines 1-8).

The notions of module and locality must be extended to handle DIs, before
we can apply them to DLN. Definition 1 generalizes the substitutions operated
by the module extraction algorithm, abstracting away procedural details. As in
[27], both X̃ and sig(X) denote the signature of X.

2 For efficiency, this test is approximated by a matching with a small set of templates.

364 P.A. Bonatti et al.

Algorithm 2.
⊥∗-Mod(Sig ,KB)
Input: Ontology KB, signature Sig
Output:
⊥∗-module M of KB w.r.t. Sig

// main

begin1

M := KB2

repeat3

M′ := M4

M :=
-Mod(⊥-Mod(M,Sig),Sig)5

until M �= M′
6

return M7

end8

function x-Mod(KB,Sig) // x ∈ {⊥,
}9

begin10

M := ∅, T := KB11

repeat12

changed = false13

forall α ∈ T do14

if α is not x-local w.r.t. Sig ∪ ˜M then15

M := M ∪ {α}16

T := T \ {α}17

changed = true18

until changed = false19

return M20

end21

Definition 1. (Module, locality) A
⊥∗-substitution for KB and a signature
Sig is a substitution σ over K̃B \ Sig that maps each concept name on � or ⊥,
and every role name on the universal role or the empty role. A strong axiom α
is σ-local iff σ(α) is a tautology. A DI C �n D is σ-local iff C � D is σ-local.
A set of axioms is σ-local if all of its members are. We say that an axiom α is
�-local (resp. ⊥-local) if α is σ-local where the substitution σ uniformly maps
concept names to � (resp. ⊥).

A (syntactic) module of KB with respect to Sig is a set M ⊆ KB such that
KB \ M is σ-local for some
⊥∗-substitution σ for KB and M̃ ∪ Sig.

Let ModDI(Sig ,KB) be the variant of
⊥∗-Mod(Sig ,KB) where the test in
line 2 is replaced with (the complement of) the � or ⊥-locality condition of
Def. 1 (that covers DIs, too). Using the original correctness argument for
⊥∗-
Mod(Sig ,KB) cf. [19, Prop.42], it is easy to see that ModDI(Sig ,KB) returns a
syntactic module of KB w.r.t. Sig according to Def. 1. If KB contains no DIs
(i.e. it is classical), then Def. 1 is essentially a rephrasing of standard syntactic
notions of modules and locality,3 so
3 Informally,
⊥∗-Mod’s greedy strategy tends to find small Def. 1’s modules.

Optimizing the Computation of Overriding 365

for all queries α such that α̃ ⊆ Sig , M |= α iff KB |= α. (34)

However, proving that
⊥∗-ModDI(Sig ,KB) is correct for full DLN is far
from obvious: removing axioms from KB using module extractors is incorrect
under most nonmonotonic semantics (including circumscription, default logic
and autoepistemic logic). The reason is that nonmonotonic inferences are more
powerful than classical inferences, and the syntactic locality criterions illustrated
above fail to capture some of the dependencies between different symbols.

Example 6. Given the knowledge base {� � AB} and Sig = {A}, the module
extractor returns an empty module (because by setting B = � the only axiom
in the KB becomes a tautology). The circumscription of this KB, assuming that
both A and B are minimized, does not entail A � ⊥, while the circumscription
of the empty module entails it.

Now we illustrate the correct way of applying
⊥∗-ModDI to a DLN KB =
S ∪ D and a query α (subsumption or assertion). Let Σ be the union of α̃ and
the set of normality concepts occurring in KB. Let

M0 = ModDI(Σ,KB ∪ NΣ) ,

where NΣ abbreviates {NC � C | NC ∈ Σ}.

Example 7. Let KB be the knowledge base:

A � B (35)
A �n D 	 E (36)

B 	 C � A (37)
F �n A (38)

and α the query NA � D. M0 is calculated as follows: first, since no normality
concept occurs in KB, Σ is equal to the signature α̃ = {NA,D}.

Algorithm 2 calls first the function ⊥-Mod(KB ∪ NΣ,Σ). Notice that by
replacing C and F with ⊥, axioms (37) and (38) become tautologies. Con-
sequently, it is easy to see that the returned knowledge base is KB′ =
{(35), (36),NA � A}.

Then, �-Mod is called on KB′ and Σ. Now, replacing B with � makes A � B
a tautology, so the resulting knowledge base is KB′′ = {(36),NA � A}. It is easy
to see that a fix point is reached and hence KB′′ is returned.

We shall prove that (KB ∩ M0)Σ can be used in place of KBΣ to answer
query α. This saves the cost of processing KBΣ

all \ M, where

M = (KBΣ
0 ∩ M0) ∪ {δNC | δ ∈ D ∩ M0, NC ∈ Σ}.

Note that KBΣ
all \ M is usually even larger than KB \ M0 because for each DI

δ �∈ M0, all its translations δNC (NC ∈ Σ) are removed from M.

Lemma 1. M is a module of KBΣ
all w.r.t. Σ.

Lemma 2. If M is a module of KB w.r.t. a signature Sig and KB′ ⊆ KB, then
KB′ ∩ M is a module of KB′ w.r.t. Sig.

366 P.A. Bonatti et al.

The relationship between (KB ∩ M0)Σ and KBΣ is:

Lemma 3. KBΣ ∩ M ⊆ (KB ∩ M0)Σ ⊆ KBΣ .

As a consequence, the modularized construction is correct:

Theorem 1. (KB ∩ M0)Σ |= α iff KBΣ |= α.

Proof. By Lemmas 1 and 2, and (34), KBΣ |= α iff KBΣ ∩M |= α. The Theorem
then follows by Lemma 3. �

4 Optimistic Computation

The construction of KBΣ repeats the concept consistency check (5) over a
sequence of knowledge bases (KBΣ

i−1 ↓≺δi ∪ {δNC
i }) that share a (possibly large)

common part KBΣ
0 , so incremental reasoning mechanisms help by avoiding mul-

tiple computations of the consequences of KBΣ
0 . On the contrary, the set of δNC

j

may change significantly at each step due to the filtering ↓≺δi . This operation
requires many axiom deletions, which as already highlighted in [20], are less effi-
cient than monotonically increasing changes. The optimistic algorithm introduced
here (Algorithm 3) computes a knowledge base KB∗ equivalent to KBΣ in a way
that tends to reduce the number of deletions, as it will be assessed in Sec. 5.

Phase 1 optimistically assumes that the DIs with the same priority as δNC
i

do not contribute to entailing NC � ⊥ in (5), so they are not filtered with ↓δi

in line 3. Phase 2 checks whether the DIs discarded during Phase 1 are actually
overridden by applying ↓δi (lines 14 and 21). DIs are processed in non-increasing
priority order as much as possible (cf. line 19) so as to exploit monotonic incre-
mental classifications.

The following theorem shows the correctness of Alghorithm 3 in case the
normality concepts do not occur in KB, but only in the queries. We call such
knowledge bases N-free. It is worth noting that the optimistic method is not
generally correct when KB is not N-free and |Σ| > 1, yet it may still be applicable
after the module extractor if the latter removes all normality concepts from KB.

Theorem 2. If KB is N-free, then Algorithm 3’s output is equivalent to KBΣ.

5 Experimental Assessment

Currently there are no “real” KBs encoded in a nonmonotonic DL, because
standard DL technology does not support nonmonotonic reasoning. The non-
monotonic KBs encoded in the hybrid rule+DL system DLV-Hex [14] are not
suited to our purposes because they do not feature default inheritance due to a
restriction of the language: DL predicates cannot occur in rule heads, so rules
cannot be used for encoding default inheritance. Consequently, synthetic test
cases are the only choice for evaluating our algorithms. We start with the two

Optimizing the Computation of Overriding 367

Algorithm 3. Optimistic-Method
Input: KB = S ∪ D, Σ
Output: a knowledge base KB∗ such that KB∗ ≡ KBΣ

// Phase 1

compute a linearization δ1, . . . , δ|D| of D1

Π := ∅ // Π collects the prototypes2

Δ := ∅ // ordered list of all discarded δNC
i3

for i = 1, 2, . . . , |D| do4

for NC ∈ Σ do5

Π ′ := Π ∪ {δNC
i }6

if KBΣ
0 ∪ Π ′ �|= NC � ⊥ then7

Π := Π ′
8

else9

append δNC
i to Δ10

// Phase 2

KB∗ = KBΣ
0 ∪ Π11

while Δ �= ∅ do12

extract from Δ its first element δNC
i13

if (KBΣ
0 ∪ Π) ↓≺δi ∪{δNC

i } �|= NC � ⊥ then14

KB∗ := KB∗ ∪ {NC � ⊥}15

extract all δNE
k with E = C from Δ16

else17

// δNC
i is actually overridden

δ := δi18

while Δ contains some δND
j such that δ ≺ δj do19

extract from Δ the first such δND
j20

if (KBΣ
0 ∪ Π) ↓≺δj ∪{δND

j } �|= ND � ⊥ then21

KB∗ := KB∗ ∪ {ND � ⊥}22

extract all δNE
k with E = D from Δ23

δ := δj24

test suites introduced in [8] as they have been proved to be nontrivial w.r.t. a
number of structural parameters, including nonclassical features like exception
levels and the amount of overriding. The two test suites are obtained by modi-
fying the popular Gene Ontology (GO)4, which contains 20465 atomic concepts
and 28896 concept inclusions. In one test suite, randomly selected axioms of GO
are turned into DIs, while in the second suite random synthetic DIs are injected
in GO. The amount of strong axioms transformed into DIs is controlled by CI-
to-DI-rate, expressed as the percentage of transformed axioms w.r.t. |GO| while
the amount of additional synthetic DIs is controlled by Synthetic-DI-rate, i.e. the
ratio |D|/|GO|. The number of conflicts between DIs can be increased by adding

4 http://www.geneontology.org

http://www.geneontology.org

368 P.A. Bonatti et al.

an amount of random disjointness axioms specified by parameter DA-rate (see
[8] for further details).

The experiments were performed on an Intel Core i7 2,5GHz laptop with 16
GB RAM and OS X 10.10.1, using Java 1.7 configured with 8 GB RAM and
3 GB stack space. Each reported value is the average execution time over ten
nonmonotonic ontologies and fifty queries on each ontology. For each parameter
setting, we report the execution time of: (i) the naive DLN reasoner of [8]; (ii)
the optimistic method introduced in Sec. 4 (Opt); (iii) the module extraction
method of Sec. 3 (Mod) using the module extraction facility of the OWLAPI;
(iv) the sequential execution of Mod and Opt, i.e. Algorithm 3 is applied to
KB ∩ M0. This combined method is correct by Theorem 2 and Theorem 1.

Table 2. Impact of |D| on performance (sec) – DA rate = 15% – priority (1)

CI-to-DI naive opt mod mod+opt

05% 12.91 05.93 00.30 00.25
10% 22.37 11.13 00.32 00.27
15% 31.50 15.90 00.37 00.32
20% 42.97 20.67 00.40 00.33
25% 55.22 25.17 00.44 00.36

Synth DIs naive opt mod mod+opt

05% 11.64 06.94 0.41 0.42
10% 21.66 11.21 0.62 0.67
15% 32.80 14.90 1.11 1.64
20% 41.51 18.82 2.01 1.42
25% 51.85 22.33 3.05 2.09

Table 2 shows the impact of the number of DIs on response time for the two
test suites, as DI rate ranges from 5% to 25%. The methods Mod and Mod+Opt

are slightly less effective in the second suite probably because random defaults
connect unrelated parts of the ontology, thereby hindering module extraction. In
both suites, Opt’s speedup factor (w.r.t. the naive method) is about two, while
on average Mod is approximately 87 times faster in the first test suite (max.
speedup 125), and 28 times faster in the second (max. speedup 35). On average,
the combined method yields a further 13% improvement over Mod alone; the
maximum reduction is 31% (2nd suite, Synthetic-DI-rate=25%, DA-rate=15%).
The additional conflicts induced by injected disjointness axioms have moderate
effects on response time (cf. Table 3). Mod+Opt’s average response time across
both test suites is 0.7 sec., and the longest Mod+Opt response time has been
2.09 sec. As a term of comparison, a single classification of the original GO takes
approximately 0.4 seconds.

Table 4 is the analogue of Table 2 given priority (2). With respect to pri-
ority (1), the computation time for KBΣ and query answering in the first test
suite grows faster for the naive algorithm, while there are smaller differences
for the optimized approaches (the reponse times of the combined approach are
almost identical). In the second test suite, the performance of the naive algo-
rithms decreases less dramatically, while the optimized methods seem slightly
less effective than in the first test suite. In all cases, the speedups of Mod and
Mod-Opt remain well above one order of magnitude. The performance as DAs
grow has similar features (see Table 5).

Optimizing the Computation of Overriding 369

Table 3. Impact of DAs on performance (sec) – DI rate = 15% – priority (1)

Test suite 1 (CI-to-DI)

DA naive opt mod mod+opt

05% 29.88 13.21 0.36 0.31
10% 32.96 14.08 0.37 0.32
15% 31.50 15.90 0.37 0.32
20% 34.23 16.23 0.39 0.33
25% 36.47 17.80 0.40 0.34
30% 37.71 18.09 0.40 0.34

Test suite 2 (Synth. DIs)

DA naive opt mod mod+opt

05% 28.20 12.63 0.99 0.84
10% 30.18 13.68 1.04 0.97
15% 32.80 14.90 1.11 1.06
20% 35.68 16.29 1.18 1.10
25% 37.46 17.02 1.25 1.15
30% 38.37 18.79 1.36 1.23

Table 4. Impact of |D| on performance (sec) – DA rate = 15% – priority (2)

CI-to-DI naive opt mod mod+opt

05% 22.01 05.74 00.30 00.25
10% 52.82 11.48 00.32 00.28
15% 81.84 16.56 00.34 00.31
20% 133.62 20.51 00.38 00.33
25% 193.27 26.42 00.41 00.36

Synth DIs naive opt mod mod+opt

05% 12.76 07.21 0.45 0.46
10% 23.72 14.44 0.81 0.86
15% 34.53 17.05 1.57 1.21
20% 44.92 21.77 2.67 1.96
25% 55.92 25.77 3.87 2.46

Table 5. Impact of DAs on performance (sec) – DI rate = 15% – priority (2)

Test suite 1 (CI-to-DI)

DA naive opt mod mod+opt

05% 84.53 15.02 0.34 0.29
10% 90.38 16.12 0.35 0.30
15% 91.84 16.56 0.35 0.31
20% 92.93 16.67 0.36 0.31
25% 93.54 17.76 0.37 0.32
30% 96.37 19.49 0.38 0.33

Test suite 2 (Synth. DIs)

DA naive opt mod mod+opt

05% 29.55 14.93 1.28 1.07
10% 30.81 15.82 1.41 1.15
15% 34.54 17.05 1.57 1.21
20% 36.79 16.93 1.62 1.27
25% 40.86 17.90 1.78 1.36
30% 43.35 18.74 1.79 1.34

The above test sets are N-free. We carried out a new set of experiments by
randomly introducing normality concepts in DIs, within the scope of quanti-
fiers.5 Specifically, ∃R.C is transformed into ∃R.NC. The response times of the
naive algorithm and Mod6 under priority (1) are listed in Table 6 for increas-
ing values of |Σ| (that is directly related to the amount of normality concepts
occurring in KB). We estimate that the values of |Σ| considered here are larger
than what should be expected in practice, given the specific role of explicit nor-
mality concepts, cf. footnote 5. Such values are also much larger than in N-free

5 So far, all the application examples that are not N-free satisfy this restriction, as
apparently the only purpose of explicit normality concepts is restricting default role
ranges to normal individuals, cf. Ex. 12 and the nomonotonic design pattern in [8,
Sec. 3.3].

6 In this setting Opt and Mod+Opt are not applicable, in general.

370 P.A. Bonatti et al.

Table 6. Impact of normal roles values (sec) – DI rate = 25% DA rate = 15%

|Σ| 50 100 150 200 250

Test suite 1

naive 1794.37 >30 min. >30 min. >30 min. >30 min.
mod 2.31 7.26 14.77 25.32 39.22

Test suite 2

naive >30 min. >30 min. >30 min. >30 min. >30 min.
mod 103.4 211.5 327.4 459.2 586.7

experiments, where |Σ| is bounded by the query size. Response times increase
accordingly. In most cases, the naive algorithm exceeded the timeout. In the
first test suite, Mod remains well below 1 minute; in the second suite it ranges
between 100 seconds and 10 minutes. The reason of the higher computation
times in the second suite is that the extracted modules are significantly larger,
probably due to the random dependencies between concept names introduced
by fully synthetic DIs.

6 Conclusions

The module-based and optimistic optimizations introduced here are sound and
complete, where the later applies only if the knowledge base is N-free. In our
experiments, the combined method (when applicable) and the module-based
method make DLN reasoning at least one order of magnitude faster (and up to
∼780 times faster in some case). In most cases, optimized reasoning is compatible
with real time DLN reasoning. This is the first time such performance is reached
over nonmonotonic KBs of this size: more than 20K concept names and over 30K
inclusions.7 Our approach brings technology closer to practical nonmonotonic
reasoning with very large KBs. Only the random dependencies introduced by
synthetic DIs, combined with numerous restrictions of role ranges to normal
individuals, can raise response time over 40 seconds; in most of the other cases,
computation time remains below 2 seconds.

We are currently exploring a more aggressive module extraction approach,
capable of eliminating some of the normality concepts in Σ and related axioms.
Besides improving performance over non-N-free KBs, a more powerful module
extractor might enable the application of the combined Mod+Opt method to
non-N-free DLN knowledge bases, by removing all normality concepts from KB
before Opt is applied.

We are also planning to adopt a different module extractor [24] that is promis-
ing to be faster than the OWLAPI implementation.

Last but not least, we are progressively extending the set of experiments
by covering the missing cases and by widening the benchmark set, using real
ontologies different from GO as well as thoroughly synthetic ontologies.
7 Good results have been obtained also for KBs with ∼5200 inclusions under rational

closure semantics [9,10].

Optimizing the Computation of Overriding 371

Acknowledgments. The authors would like to thank the reviewers for their valuable
comments and suggestions. This work has been partially supported by the PRIN project
Security Horizons.

References

1. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

2. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their appli-
cation in treating specificity in terminological default logic. J. Autom. Reasoning
15(1), 41–68 (1995)

3. Bonatti, P.A., Faella, M., Sauro, L.: EL with default attributes and overriding.
In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 64–79.
Springer, Heidelberg (2010)

4. Bonatti, P.A., Faella, M., Sauro, L.: Adding default attributes to EL++. In:
Burgard, W., Roth, D. (eds.) AAAI. AAAI Press (2011)

5. Bonatti, P.A., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs.
J. Artif. Intell. Res. (JAIR) 42, 719–764 (2011)

6. Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs. J.
Artif. Intell. Res. (JAIR) 35, 717–773 (2009)

7. Bonatti, P.A., Petrova, I.M., Sauro, L.: Optimizing the computation of overriding.
ArXiv e-prints, July 2015

8. Bonatti, P.A., Petrova, I.M., Sauro, L.: A new semantics for overriding in descrip-
tion logics. Artif. Intell. 222, 1–48 (2015). http://www.sciencedirect.com/science/
article/pii/S0004370215000028

9. Casini, G., Meyer, T., Moodley, K., Nortjé, R.: Relevant closure: a new form of
defeasible reasoning for description logics. In: Fermé, E., Leite, J. (eds.) JELIA
2014. LNCS, vol. 8761, pp. 92–106. Springer, Heidelberg (2014)

10. Casini, G., Meyer, T., Moodley, K., Varzinczak, I.J.: Towards practical defeasible
reasoning for description logics. In: Eiter, T., Glimm, B., Kazakov, Y., Krötzsch, M.
(eds.) Description Logics. CEUR Workshop Proceedings, vol. 1014, pp. 587–599.
CEUR-WS.org (2013)

11. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In:
Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 77–90. Springer,
Heidelberg (2010)

12. Casini, G., Straccia, U.: Defeasible inheritance-based description logics. J. Artif.
Intell. Res. (JAIR) 48, 415–473 (2013)

13. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)

14. Drabent,W., Eiter, T., Ianni,G.,Krennwallner, T., Lukasiewicz, T.,Ma�luszyński, J.:
Hybrid reasoningwith rules and ontologies. In: Bry, F., Ma�luszyński, J. (eds.) Seman-
tic Techniques for the Web. LNCS, vol. 5500, pp. 1–49. Springer, Heidelberg (2009)

15. Baader, F., Calvanese, D., Mcguinness D., Nardi, D., Patel Schneider, P.: The
description logic handbook, theory, implementation, and applications (2nd edi-
tion). In: The Description Logic Handbook, pp. 555–555. Cambridge University
Press, Cambridge (2010)

http://www.sciencedirect.com/science/article/pii/S0004370215000028
http://www.sciencedirect.com/science/article/pii/S0004370215000028

372 P.A. Bonatti et al.

16. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? a case for conser-
vative extensions in description logics. In: Doherty, P., Mylopoulos, J., Welty, C.
(eds.) Proceedings of the Tenth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2006), pp. 187–197. AAAI Press (2006)

17. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A non-monotonic description
logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

18. Giordano, L., Olivetti, N., Gliozzi, V., Pozzato, G.L.: ALC + T: a preferential
extension of description logics. Fundam. Inform. 96(3), 341–372 (2009)

19. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
Theory and practice. J. Artif. Intell. Res. (JAIR) 31, 273–318 (2008)

20. Kazakov, Y., Klinov, P.: Incremental reasoning in EL+ without bookkeeping. In:
Description Logics, pp. 294–315 (2013)

21. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between
dl-lite ontologies? In Brewka, G., Lang, J. (eds.) Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Eleventh International Conference, KR
2008, Sydney, Australia, 16–19 September 2008, pp. 285–295. AAAI Press (2008)

22. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6–7),
852–883 (2008)

23. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, IJCAI 2007, Hyderabad, India, 6–12 January 2007,
pp. 453–458 (2007)

24. Martin-Recuerda, F., Walther, D.: Axiom dependency hypergraphs for fast mod-
ularisation and atomic decomposition. In: Bienvenu, M., Ortiz, M., Rosati, R.,
Simkus, M. (eds.) Proceedings of the 27th International Workshop on Description
Logics (DL 2014). CEUR Workshop Proceedings, vol. 1193, pp. 299–310 (2014)

25. Rector, A.L.: Defaults, context, and knowledge: Alternatives for OWL-indexed
knowledge bases. In: Pacific Symposium on Biocomputing, pp. 226–237. World
Scientific (2004)

26. Sandewall, E.: Defeasible inheritance with doubt index and its axiomatic charac-
terization. Artif. Intell. 174(18), 1431–1459 (2010)

27. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of
the 22nd International Workshop on Description Logics (DL 2009), Oxford, UK,
27–30 July 2009, vol. 477. CEUR Workshop Proceedings. CEUR-WS.org (2009)

28. Stevens, R., Aranguren, M.E., Wolstencroft, K., Sattler, U., Drummond, N.,
Horridge, M., Rector, A.L.: Using OWL to model biological knowledge. Int. J.
Man Mach. Stud. 65(7), 583–594 (2007)

29. Woo, T.Y.C., Lam, S.S.: Authorizations in distributed systems: A new approach.
J. Comput. Secur. 2(2–3), 107–136 (1993)

	Optimizing the Computation of Overriding
	1 Introduction
	2 Preliminaries
	2.1 Examples

	3 Relevance and Modularity
	4 Optimistic Computation
	5 Experimental Assessment
	6 Conclusions
	References

