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Abstract. The corpus callosum (CC) is a key brain structure and change in its
size and shape is a focal point in the study of neurodegenerative diseases like
multiple sclerosis (MS). A number of automatic methods have been proposed for
CC segmentation in magnetic resonance images (MRIs) that can be broadly clas-
sified as intensity-based and template-based. Imaging artifacts and signal changes
due to pathology often cause errors in intensity-based methods. Template-based
methods have been proposed to alleviate these problems. However, registration
inaccuracies (local mismatch) can occur when the template image has large in-
tensity and morphological differences from the scan to be segmented, such as
when using publicly available normal templates for a diseased population. Ac-
cordingly, we propose a novel hybrid segmentation framework that performs op-
timal, spatially variant fusion of multi-atlas-based and intensity-based priors. Our
novel coupled graph-labeling formulation effectively optimizes, on a per-voxel
basis, the weights that govern the choice of priors so that intensity priors derived
from the subject image are emphasized when spatial priors derived from the reg-
istered templates are deemed less trustworthy. This stands in contrast to existing
hybrid methods that either ignore local registration errors or alternate between
the optimization of fusion weights and segmentation results in an expectation-
maximization fashion. We evaluated our method using a public dataset and two
large in-house MS datasets and found that it gave more accurate results than those
achieved by existing methods for CC segmentation.

1 Introduction

The corpus callosum (CC) is the largest white matter structure in the brain and plays
the crucial role of relaying communication signals between the cerebral hemispheres. A
growing body of recent literature [1–3] has shown that the change in its size as measured
in structural MRIs1 is a sensitive measure of regional brain atrophy that is effective for
the monitoring of multiple sclerosis (MS) progression. However, in all of the aforemen-
tioned clinical studies [1–3], the CC structures were manually segmented by clinical
experts. While various methods [4–6] have been proposed to segment the CC, these

1 We focus on structural MRIs as it is a more common modality than the others.
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methods either perform segmentation in 2D [4–8], which is confounded by the selec-
tion of the appropriate plane of measurement [9] and hinders 3D shape analyses [9], or
require human intervention ( [4]), which makes large-scale analyses infeasible.

Existing automatic methods for 2D segmentation of the CC in structural MRIs may
generally be classified [4] into two categories. In intensity-based methods [4–6,8], seg-
mentation is mostly driven by intrinsic data from the subject image. Both [5, 6] require
a midsagittal plane extraction tool. Other methods [4, 8] require tissue segmentation,
which makes them susceptible to partial volume effects and errors in segmentation. For
example, it was noted in [4] that the method should not be used for MR images of pa-
tients with demyelinating diseases (e.g. MS) because significant alterations in image
intensities tend to occur in these images. In template-based methods (e.g. [4, 10] and
references therein), labels of pre-segmented template images are propagated and fused,
in the case of multiple templates, to obtain the final segmentation. This approach, more
generally known as multi-atlas segmentation (MAS) [11], is more robust than intensity-
based methods due to the spatial constraints implicitly imposed by registration. How-
ever, segmentation accuracy not only depends on registration, but also on the choice of
the template images ( [4]). When there exists large intensity and morphological vari-
ability between the template(s) and the subject image, registration accuracy suffers,
which in turn limits segmentation accuracy. Hence, one should use templates drawn
from the population of the target image, which is often not publicly available (e.g. in
case of pathology such as MS) nor easy to create without introducing biases (i.e. one
with templates that span the whole population without favoring any subset).

In addition to the above problems, two issues particular to MS datasets bring further
challenges: 1) retrospective studies can span over a decade, and older data tends to have
low resolution, poor image contrast, and low signal-to-noise ratio (SNR); and 2) the
possible use of gadolinium contrast in T1-weighted scans results in hyper-intensities in
the CC periphery. These factors render the publicly available algorithms [4, 6] largely
inapplicable in our two MS datasets.

To overcome the aforementioned problems, a hybrid approach may be adopted where
MAS results are incorporated into an intensity-based segmentation framework in the
form of spatial priors and the segmentation problem is then solved via energy minimiza-
tion, as done in [12]. This approach was applied to the cerebellum and other structures
but, to the best of our knowledge, has never been applied to the CC. More importantly,
most hybrid methods, e.g. [12], employ spatial priors without accounting for local mis-
matches between the registered images. Hence, registration errors can be large in some
regions, yielding spatial prior information that is misleading at these regions.

Accordingly, we propose a novel graph-based formulation that explicitly accounts
for registration errors and spatially adapts fusion of priors accordingly by coupling the
tasks of optimal locally adaptive label fusion and segmentation. This stands in contrast
with existing MAS methods [11–13] in that we optimize the fusion of all data priors
based on available information (as opposed to criteria derived from additional learning
with training data [13] or “labeling unanimity” [11]) so that we can handle local mis-
matches that may occur in all templates due to inherent incompatibility between the
diseased and normal images. In summary, unlike existing CC segmentation algorithms,
our method 1) performs the segmentation in 3D; 2) requires no tissue segmentation nor
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training data from diseased-subjects; 3) is more robust to registration errors than exist-
ing methods, as we show in our results involving two large MS datasets; and 4) is robust
even when a small template set is used, unlike existing methods.

2 Methods

Preliminaries. Let there be a set of N template images with corresponding expert seg-
mentations of the CC. For a given subject image I : Ω ⊂ R

d �→ R which we aim to find
the segmentation label field S of the CC, we register each template image to I and ap-
ply the resolved spatial transformation to its corresponding label field, resulting in pairs
of template images and corresponding labels, denoted as T ={T }Nn=1 and S={S}Nn=1

respectively, all approximately2 aligned to I via spatial transforms τ={τ}Nn=1. These
can then be used to generate a rough fuzzy segmentation Ŝ for I in the form of majority
voting (MV) [14]; i.e. Ŝ(x) = 1

N

∑N
n=1 Sn(x), followed by thresholding.

In weighted majority voting (WMV), labels of the aligned templates are fused in a
locally adaptive manner, where the normalized weight of template Tn at voxel x may
be determined based on a patch-based image similarity measure Θ, i.e.

w(x, n) =
1

η
Θ(x; I, Tn), (1)

where η=
∑N

n=1 Θ(x; I, Tn). Spatial regularization on w (e.g. via smoothing as done in
[15]) may further be imposed to encourage smoothness of Ŝ, leading to a more general
approach that we denote here as optimized label fusion (OLF). A fuzzy label assignment
is then computed as Φ(x)=

∑N
n=1 w(x, n)Sn(x), which is then binarized so that the

final segmentation is computed as Ŝ(x)=1, if Φ(x) > 0.5 or Ŝ(x) = 0 otherwise.
Rather than calculating w as a post-processing step that is independent of calculating

S, or as part of an expectation-maximization framework [11] that alternates between
calculations of the two, we herein propose to optimize w jointly with S so that the
segmentation process explicitly accounts for registration errors and performs spatially
variant prior-selection accordingly. In doing so, we formulate CC segmentation as a
graph-labeling task with a coupled label setL, consisting of a segmentation label field for
I and labels indexing elements ofT , i.e.L={0, 1}

⋃
Lcorr, whereLcorr={1, 2, . . . , N}

defines a set of labels indexing the n-th template that best corresponds to I at x. As we
explain in the next section, by employing the random walker (RW) formulation [16] that
generates fuzzy label assignments, we perform segmentation and optimal label fusion
simultaneously, with a byproduct of an optimized spatially variant fusion of priors.

Joint Optimal Label Fusion and Segmentation via RW. Coupling the two problems
allows us to take the new perspective of viewing all available images simply as an aug-
mented set of information sources I:={T1, · · ·TN , I}= {I}Kk=1, where K=N+1, such
that intrinsic information from I and extrinsic information from T together guide the
labeling of I . Furthermore, each source shall be accompanied by a function fk that
outputs an estimate of the class-likelihood given the observations made on that source.

2 We will examine the impact of registration accuracy on segmentation results in Sec. 3.
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In this paper, for the intrinsic source, its corresponding function, fK , is a naive Bayes
classifier [17] while those of the extrinsic sources fk are given by Sk (k < K). With
this perspective, our task thus becomes optimizing the fusion of the outputs of fk that
have high confidence in casting label predictions correctly so that we can tune weights
on the priors accordingly.

In this work, we propose to quantify the confidence of each source fk in a spatially
adaptive manner via the use of a function C : Ω �→ ΔK , where ΔK refers to a K-
dimensional unit simplex. In absence of training data that would allow us to estimate
the confidence of each fk based on some performance criteria (e.g. [13]), we infer
confidence by quantifying its strength of belief on the CC class label. As similarly done
in [17], for the intrinsic source, we infer confidence of its predictive function fK by
estimating the data-likelihood at x as:

CK(x) = Pr(S(x) = 1|I(x)) = 1

a
exp

(−||I(x)− μ||2
σ2

)
, (2)

where μ and σ respectively represent the mean and standard deviation of the intensity
values of the CC estimated using Ŝ, and a rescales the data-likelihood to [0,1]. For
k < K , the confidence of fk that uses extrinsic source Tk depends on how well Tk

and I are registered at x and thus is estimated from information available from the
registration results (e.g. quality of alignment as estimated by the regularity of τn and/or
Θ measured between the registered image pair). Based on preliminary experiments, we
found that examining only Θ was sufficient (i.e. required least computation without
compromising accuracy). Hence, we estimated the confidence of each fk (k < K) as:

Ck(x) =
1

b
Θ(I(x), Tk(x)), (3)

where b=
∑N

k=1 Θ(I(x), Tk(x)) is a normalization constant and Θ is based on the
Modality-Independent Neighbourhood Descriptor (MIND) [18] (with its default pa-
rameters) to ensure robustness to variations in image contrast.

Without other a priori knowledge,C may be used directly for fuzzy label assignment
(as in WMV noted above), i.e.:

Φ(x) = αCK(x)Sinit(x) + (1− α)

N∑
k=1

Ck(x)Sk(x) (4)

where α is a constant governing global preference for intensity-based priors and
Sinit(x)=1 if Ŝ(x) > 0.5, or Sinit(x)=0 otherwise. However, as shown in the liter-
ature [11], the desired spatial smoothness of the segmentation is directly influenced by
smoothness of the weights. We thus search for a function W surrogate of C that is
spatially smooth but remains similar to C, thus leading to this energy minimization:

W∗ = argmin
W

∫
Ω

||W(x) −C(x)||dx+ β
K∑

k=1

∫
Ω

(∇Wk(x))
T∇Wk(x)dx, (5)

where β is a constant governing the strength of diffusion-based regularization [16]; Wk

and Ck denote the k-th components of W and C, respectively.
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As presented in [16], we can obtain a unique, globally optimal solution to (5) by
adopting a graph-based approach. Specifically, if we let G(V , E) be a graph representing
the subject image I , where each graph node p ∈ V represents a spatial coordinate
xp ∈ Ω, and let L be the Laplacian matrix encoding E , then (5) is equivalent [16] to:

W∗ = argmin
W

K∑
j=1,j �=k

WT
k ΛjWk + (1−Wk)

TΛk(1−Wk) + β(Wk)
TLWk, (6)

where Λk is a diagonal matrix with entries [C1k, · · · ,CV k] where Cpk denotes the
normalized3 confidence value of source k as estimated at xp. In this work, we set the
edge weights in same manner as we have done in [19]. The minimum of the energy (6)
is obtained when Wk is the solution to a combinatorial Laplace equation, which can be
solved in closed-form as shown in [16]. Once (6) is solved, we compute S by using (4),
with C now replaced by W∗.

3 Evaluation Results

Materials. Our template set (T ) is derived from the publicly available MRI dataset of
normal subjects from [20]; this set is hereafter denoted as HAMMERS. Various reg-
istration settings were explored for finding the registration solutions (τ ); these include
affine and deformable registration using free-form-deformation (FFD) and SyN [21], all
of which used cross-correlation (CrCo) as the image similarity measure, as well as the
method of [22] that computed the image similarity measure based on MIND [18]. Ex-
cept when varying N to determine its effect, we set N=6 based on experiments in [10],
which showed that N=6 using STAPLE yielded high accuracy. Note that minimizing
N is advantageous by requiring fewer registrations and thus reducing computations. As
our experiments below show, our method is relatively insensitive to the choice of N
when compared to other MAS-based methods.

To assess the performance of our method on images acquired from subjects with MS,
we further collected T1-weighted brain MRIs originally acquired using different imag-
ing protocols for two independent MS clinical trials. We denote these as MS Dataset1
and MS Dataset2 (sizes of 85 and 187, respectively). Automatic CC segmentation of
these MS images is much more challenging due to the reasons highlighted in Sec. 1. In
addition, these images were acquired from multiple imaging centers, leading to large
intensity and anatomical variations within and across these image sets. The latter is
the most challenging of all datasets examined in this paper due to the additional use
of contrast agent during image acquisition. In both MS datasets, only 2D segmenta-
tions are available. These were manually prepared by a clinical expert using the ITK-
SNAP R© software, subsequent to 2D midsagittal plane extraction (see [2] for further
details).

Experiment I: Effect of combined intensity and spatial priors on accuracy. As con-
ventional baselines, we compared our proposed method with MV and WMV, which
do not employ intrinsic information from I , i.e. intensity-based priors. To specifically

3 C is normalized to rows with unity sum.
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Fig. 1. Accuracy as measured with DSC of various methods compared (bolded numbers indicate
the medians of DSC). Note that even for the case when N=2, our method achieved results better
than (weighted) majority voting (MV/WMV), optimal label fusion (OLF), and hybrid random
walker (RW) with/without optimized spatial priors (OSP).

determine the effect of spatially adaptive, optimized fusion of priors that our proposed
method uses, we also tested random walker segmentation [16] using constant weight
(α) between the intensity and spatial priors constructed from T which we denote as
RW. For reference, we also examined the case of constructing spatial priors optimized
for I where results from OLF were used in RW. We denote this approach as RW with
optimized spatial priors (RW+OSP).

Fig. 1 compares the results of segmentation accuracy of each method on a subset
of the MS Dataset2 (60 randomly selected images) when evaluated in a leave-one-out
cross validation experiment, where we optimized the hyper-parameters for each method
by performing a grid-search over α = {.1, .3, .4, .5, .6, .7, .9} and β = {0.01, 0.1, 1}.
Firstly, from the figure, where accuracy was measured with the Dice coefficient (DSC),
we see that optimal label fusion (OLF) achieved better results than both MV and WMV,
which supports the use of spatially regularized fusion weights as suggested in the lit-
erature [11]. Secondly, we see the advantage of jointly examining both spatial and
intensity-based priors in RW, which performed better than MV, WMV, and OLF, which
disregard intrinsic information. However, due to registration errors, the constructed spa-
tial priors are not trustworthy everywhere in the image. With our proposed spatially
variant prior-selection, our method was able to outperform RW with non-adaptive pri-
ors. Note also that because RW+OSP does not perform prior-selection in a spatially
adaptive manner, it did not produce an improvement similar to ours.

Experiment II: 3D Validation Using the HAMMERS Dataset [20]. We next vali-
dated our method using 14 images in the HAMMERS dataset (exclusive of the afore-
mentionedN = 6 randomly chosen template images). Table 1a reports the performance
(median of DSC) of our proposed method with respect to MV, WMV, RW+OSP, and
STAPLE [10]. We also examined the effects of registration accuracy (and thus the qual-
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Table 1. Evaluation on (a) HAMMERS and (b) two MS datasets using N=6 templates aligned
by different registration algorithms. MS Dataset2 contains images with contrast agent and thus
presents more challenging cases.

(a) HAMMERS
Spatial priors MV WMV STAPLE [10] RW+OSP Ours

Affine+CrCo [21] .586 .699 .499 .824 .825
Affine/FFD+CrCo [21] .662 .712 .513 .832 .837
Affine/FFD [22]+MIND .831 .831 .822 .842 .865
Affine/SyN+CrCo [21] .740 .733 .556 .833 .852

(b) MS Dataset1 MS Dataset2
MV WMV STAPLE [10] Ours MV WMV STAPLE [10] Ours

.708 .719 .710 .812 .617 .630 .617 .658

.871 .878 .824 .901 .689 .690 .614 .713

.838 .838 .796 .860 .729 .729 .702 .763

.898 .898 .863 .926 .718 .724 .666 .751

Fig. 2. An example segmentation for an image from the MS Dataset2. As noted by the red arrow
in the zoomed-up view (right subfigure), due to local misregistration between the subject and
template images (as contrast enhanced vessels in the subject are not visible in any of the templates
used), non-adaptive methods cannot segment the noted region accurately. Our hybrid method with
optimized spatially adaptive fusion of priors placed greater weights on intensity-based priors in
this region, and thus could segment this region properly.

ity of the spatial priors) on segmentation accuracy. As shown in the table, our method
achieved the best accuracy regardless of how the templates were registered.

Experiment III: Accuracy Evaluated on two MS-specific Datasets. We also compared
our method with several published methods examined in [10] (MW/WMV/STAPLE),
using all of the MS images not used in Experiment I. Table 1b summarizes the results.
Dataset2 consists of MRIs with contrast agent, so that segmentation of these images was
especially challenging (mismatch between the templates and I around the CC periphery
occurred more often. As illustrated in Fig. 2, our proposed use of spatially adaptive opti-
mized fusion of priors enables our method to handle these problem regions better than the
other methods. Overall, our method achieved the best accuracy in all cases tested. Lastly,
performing a comparison to the state-of-art algorithm STEPS [23] using MS Dataset2
showed that our proposed method remains highly competitive: using N=20 atlases ran-
domly selected from the HAMMERS dataset, our method achieved a mean Dice of 0.798,
while that of STEPS [23] is 0.775. When N=15, our method still maintained a mean Dice
of 0.798, while that of STEPS [23] dropped to 0.751.

4 Conclusions

We introduced a novel framework that performs automatic volumetric CC segmentation
in MRIs without the use of disease-specific brain templates. Experiments on 3 datasets
show that our method can perform robustly, even in presence of large intensity and
morphological variability, thanks to our coupled framework that explicitly accounts for
local registration errors and weighs down untrusted spatial priors in a spatially varying
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manner. For N≤6, our method took ≈5 minutes to solve (6) (as executed on a dual-core
2.4 GHz CPU) in addition to the time needed to register the templates. Future work will
involve evaluating the proposed method on other brain structures, including thalamus
and putamen, which also have relevance to MS as shown in recent clinical studies.
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