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Abstract. This paper presents a new and highly efficient approach for
finding correspondences across volumes with large motion. Most existing
registration approaches are set in the continuous optimisation domain,
which has severe limitations for estimating larger deformations. Feature-
based approaches that rely on finding corresponding keypoints have been
proposed, but they are prone to erroneous matching due to repetitive fea-
tures and low contrast areas. This can be overcome by using a discrete
optimisation approach. However, finding a constrained search space and
regularisation strategy is still an open problem. Our method calculates a
dissimilarity distribution over a densely sampled space of displacements
for a small number of distinctive keypoints (found in only one volume).
A parts-based model is used to infer smooth motion of connected key-
points and regularise the correspondence field. This effective and highly
accurate approach is further improved by enforcing the symmetry of un-
certainty estimates of displacements. Our method ranks first on one of
the most challenging medical registration benchmarks for breath-hold
CT scan-pairs of COPD patients, where accurate motion estimation is
important for diagnosis.

Keywords: Deformable registration, Parts-based model, Discrete
optimisation.

1 Introduction

Finding correspondences between scans is a fundamental process in medical
image analysis. In particular, in the diagnosis of COPD (Chronic Obstructive
Pulmonary Disease), the detection of air trapped in localised malfunctioning re-
gions of the lung can be assisted by registering an inhale and exhale CT scan
pair. Motion of small amplitude can be robustly estimated with widely studied
intensity-based continuous optimisation approaches, which often use coarse-to-
fine schemes. However, such approaches are severely limited when the expected
motion vectors are of larger scale than the image features (>40 mm for respi-
ration). The difficulty of registering inhale and exhale images is highlighted in
a comparison of many state-of-the-art methods for deformable registration of
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lung motion [19]. Discrete optimisation registration strategies have been demon-
strated to be helpful in the estimation of larger scale deformation in computer
vision [16] and recently also for medical image registration [15,11,13]. However,
choosing an appropriate search space of deformations and regularisation strategy
are still open problems for efficient, accurate and plausible registration.

In feature-based matching, the search space is restricted and correspondences
across images are only seeked for sparse keypoints. These discrete matches can
act as constraints in a continuous motion estimation [3]. However, it may be
difficult in many applications to find enough corresponding features that can be
reliably detected directly in both images. Feature matching has also been used
in [20], where additionally the mutual saliency of interest points was optimised.
In [14], 3D volumes were represented by supervoxels and used together with a
graphical model to match corresponding feature regions across images. Block-
matching is an alternative solution to find correspondence fields for medical
scans [4,8]. It has, however, two main disadvantages. First, no spatial regularity
between matches of neighbouring patches is enforced, so unrealistic deformations
from these point matches have to be compensated for. Second, usually only the
best match is retained (with the exception of e.g. [23] who use a small set of
possible correspondences), and a following smoothing step of the motion field
usually ignores any probabilistic information from the initial discrete search.

In this work, we present a novel framework that addresses these limitations
using the following three steps. First, we extract features from one image using
a keypoint operator. Second, a similarity measure is calculated over a densely
quantised space of displacements, which translate to potentially corresponding
locations in the other image (in contrast to previous work using only sparse
samples [3,14,23]). Third, we exploit contextual information by using a parts-
based model in order to regularise the differences of neighbouring displacements
vectors using a Markov Random Field (MRF). Inference of regularisation for
general MRFs is NP-hard, however, tree approximations have been shown to
produce accurate and fast solutions [24]. Parts-based models [10], which employ
interactions between different parts of an object to stabilise their localisation,
have so far only been employed for landmark localisation in medical images [22].
We evaluate our method in Sec. 3 on the challenging COPD dataset.

2 Method

We aim to find a dense correspondence field between a fixed volume F and a
moving volume M. Our method consists of three main steps, which are detailed
below. First, a set of distinctive keypoints kr € K with spatial coordinates
(kz,ky, k;) are extracted from F, the inhale scan (total lung capacity) and a
graph is built that uses edges e;; € £ to connect nodes 7 and j with similar coor-
dinates and intensities. Second, a similarity metric is calculated for voxels within
a small patch around the keypoint kr in the fixed volume and a corresponding
patch displaced by a 3D motion vector d = (ds,dy,d;). This is repeated for
every displacement in the set £ yielding a 3D distribution of similarity energies.
Third, spatial regularity is inferred over the full displacement distributions of all
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keypoints together using belief propagation with a squared penalty for deviations
of displacements, which yields an exact solution in linear time (c.f.[10]).

Keypoint Detection: Following previous work in lung registration [21], we
employ the Foerstner operator to find keypoints in the 3D intensity volumes.
After smoothing the volume with a Gaussian kernel G, the spatial gradients VF
are calculated. A distinctiveness D(x) = 1/ trace ((Go * (VFVFT))™!) can then
be determined for each voxel x, where a high response indicates good candidates
(see Fig. 1). In order to obtain a good dispersion of points over the whole volume
of interest, we apply a grey-value dilation over a 3D cubic region G with side-
length ¢p to the Foerstner response and obtain D* = maxyeq,, D(y). Only
points with equal response in D and D* are added to K.

Similarity Evaluation over Search Space: The aim of image registration is
to find a correspondence (or displacement) field, which assigns a motion vector
to every control point: u(kr) < d. The new location 1 = (I3,1,,1;) = (ks +
dg, ky + dy, k. + d.) is chosen to maximise the similarity between images. We
define the space of potential displacements for every keypoint kr to be the
densely sampled 3D set d € £ = {0,4q,42q, ..., *lnaxq}>, where ¢ is a very
small quantisation step and lnaxq large enough to cover all potential motion
between both images. Note, that in contrast to previous work on medical image
registration [11] the motion is not decoupled into 1D displacements, as this may
lead to inferior matching. Since, medical volumes with large motion are often also
degraded by local intensity variations and influenced by strong noise, we use the
self-similarity descriptors (SSC) proposed in [12] for matching. The dissimilarity
metric D, the L norm between 64 bit binary descriptor representations SSCr
and SSC)s at locations k and 1, can be efficiently calculated in the Hamming
space: D(k,1) = 1/|P|3_ cp E{SSCr(k +p) ® SSCr(1+p)}, where & defines
an exclusive OR, = a bit-count, and P a local patch.

Parts-Based Model for Inference of Regularisation: In traditional block-
matching approaches [4,8] or hybrid approaches [3], the motion vector correspond-
ing to the minimum dissimilarity is selected and a heuristic or variational
regularisation is then applied to the correspondence field. It is, however, beneficial

Fig. 1. Left: Response of Foerstner operator with log scale. Keypoints found in the
respective coronal plane of the CT volume (and 3 neighbouring slices each) are marked
with red crosses. Right: Minimum-spanning-tree, which connects keypoints.
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to evaluate the spatial regularity of the correspondence field over the whole space
of displacements as done in MRF-based medical image registration [11,13]. While
the previous approaches use a regular grid of equally spaced control points, we
employ only a very sparse set of keypoints. Building a graph on this irregular set
of points is not straightforward. While a general k-nearest neighbour graph would
be possible, it is not necessarily spanning. Following parts-based models [10], we
opt to use a minimum-spanning-tree (MST) to define the set of edges £ in our
model. MSTs have been used for inference in many applications including stereo
estimation [24] and 3D registration [13] on regular grids. The regularisation cost
assigns a penalty R for every pair of keypoints, which is connected in the graph
by an edge e;; and has unequal displacements:

1di — dj[[”

R(d;, d;) =
( ) VI = x4l12 + [1(xi) = 1(x5)|/o1

(1)

This term encourages smoothly varying displacements in the estimated corre-
spondence field and makes our method robust against missing correspondences
or image artefacts. The denominator accounts for different lengths of edges,
which includes both their spatial Euclidean distance and the absolute difference
of their local intensity means. Combining the regularisation penalty with the
self-similarity based dissimilarity (weighted by «) yields the total energy of a
certain correspondence field u: E(u) = a ), ., D(k,dx) + Zeijeg R(d;, d;).

Belief propagation can be used to obtain exact marginal distributions after
two passes of messages. Starting from the leaf nodes, messages m are passed
along the edges e;; of the tree and updated with the following computation for
a node ¢ and its parent j [10]:

m,; (d;) = min (ma(di) +R(d;, dy) + ) mc(di)> , (2)
where ¢ are the children of i. The evaluation of Eq. 2 is particularly efficient
(linear in |£|), when using distance transforms.

Symmetry of Marginal Distribution: After globally optimising the regu-
larised cost function, there may still be spurious errors. To reduce their influ-
ence we make use of the estimated marginal energies. An additional estimation
of the marginal distribution is performed in opposite direction (from moving to
fixed volume) using the translated keypoints of the first optimisation as control
points. Ideally, the forward estimate was correct and so the energies of the back-
wards displacement space are symmetrical to the forward ones and averaging
re-enforces them. If the correspondence from fixed to moving image pointed to
a close neighbour of the correct displacement and the motion in a small neigh-
bourhood is smooth the backward search can improve the match. Forward and
backward marginal energies are averaged as follows. Let lep by a vector of
marginal energies of length |£| using the forward search for a certain point kg
and MﬁM the marginals from the backward search of the translated control point
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Fig. 2. Visual results of dense correspondence fields using our proposed method for case
#4. Colour overlay of inhale (green) and exhale (magenta) sagittal slices. 3D motion
vectors (magnitude from blue to red) are shown for the most challenging case #2.

in the moving volume kjs. The symmetric marginal energies M are then defined
as Mig(i) = 3 (M, (i) + M, (€] = 1))

Dense Field from Sparse Matches: In the previous steps, we have described
how an accurate, sparse correspondence field can be established by minimising
the registration cost function. We estimate the marginal distributions for every
displacements and node, so a first refinement of the integer motion vectors to
sub-voxel precision can be obtained by a parabolic fit around the minimum. We
employ thin-plate splines (TPS) [2] to interpolate motion vectors between known
keypoints. This approach yields a smooth dense displacement field.

Refinement of Correspondences: A further improvement in accuracy can be
obtained by refinement of the correspondence field. Using the dense displacement
field, the moving volume is warped towards the fixed volume. A new displacement
space Liefine with a smaller search range and quantisation ¢ is then defined. We
increase the number of keypoints, since this second optimisation will be of much
lower complexity due to the reduced label space. In order to correctly regularise
the combined motion, the concept of offsets in the message computation [13] is
employed. As before, first forward and then backward correspondence fields are
estimated for improved accuracy and robustness.

3 Experiments and Results

To evaluate our method for very large 3D motion, we use the recently published
dataset of [6]. It consists of ten inhale and exhale scan pairs of patients from
the COPDgene study, with severe breathing disorders. One difficulty is the poor
SNR of the exhale scan due to an ultra-low dose CT protocol. The lung volume
change between full exhalation and inhalation can be more than 100 % and the
motion magnitude of individual features within the lungs is much larger than in
other medical image registration benchmarks (4DCT motion [5] or inter-subject
brain mapping), where the performance of new algorithms has nearly converged.
The challenges of the COPD dataset have been highlighted by a comparison of
three of the most widely used medical registration tools in [18]. The quantitative
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Table 1. Results for 3D registration of 10 inhale and exhale CT scan pairs of COPD
data set. The average TRE in mm is evaluated for 300 expert selected landmark pairs
per case as defined by [6]. The p-values show the statistical significance of the difference
in landmark error from the proposed method (calculated with Wilcoxon rank-sum test).

case initial gsyn LMP MILO SGM without Laplacian uniform asym- proposed

# 1] [21] [6] [15] inference [7] points metric

1 263 121 126 0.93 1.22 5.86 2.90 1.13 1.10 1.00£0.93
2 218 3.01 202 177 248 8.39 6.70 2.27 2.10 1.62+£1.78
3 126 124 114 0.99 1.01 4.18 1.41 122  1.08 1.00£1.06
4 296 138 162 114 242 7.85 2.24 1.39 1.20 1.08+1.05
5 301 131 147 102 193 6.36 2.61 1.21 1.15 0.96+1.13
6 285 149 139 0.99 145 4.49 2.30 1.03 1.20 1.01+£1.25
7 216 124 122 1.03 1.05 5.13 2.11 1.09 1.07 1.05£1.07
8 265 209 163 131 1.16 5.29 1.74 1.35 1.15 1.08+1.24
9 149 118 112 0.86 0.81 5.29 1.37 1.16 0.84 0.79+0.80

10 21.8 1.63 145 1.23 128 7.98 4.40 1.47 147 1.18+1.31
avg 234 158 143 1.13 148  6.08 2.78 133 1.24 1.08
std 101 1.93 145 1.29 219  7.00 457 1.67  1.60 1.21

time >30 m - >10m15m 1.5 m 3.5 m 3m 1.8m 3 m

p-val 6-107* 1-10™® 0.45 0.03 9-107° 2.107* 6107 0.03 -

evaluation revealed errors of 1.7942.1 mm, 2.19+2.0 mm and 4.68+4.1 mm for
the ANTS gsyn [1], NiftyReg [17] and DROP [11] methods, respectively (results
are after applying the boosting method of [18]).

Implementation Details: The original size of a voxel is between 0.586 and
0.742 mm in-plane and 2.5 mm in z-direction. The fixed volume was manually
cropped to include the full lung and resampled to an isotropic voxel-size of 1 mm.
The moving volume is also cropped and then resampled to match the dimensions
of the fixed volume. A lung segmentation of the fixed volume is automatically
obtained using thresholding and morphological filters. This mask is only used to
restrict keypoint detection to the inner lung volume. The following parameters
were used for the initial correspondence search: G, = 1.4, ¢cp = 6, o7=150,
Imaxq=32, ¢ = 2, which yielded ~3000 keypoints and |£| = 35’937 displacement
labels. The regularisation weight was manually tuned for one case (#4) to a =1
and left unaltered for all other cases. For the refinement stage we reduce cp = 3,
lmax=8, ¢ = 1. Computation times for the dissimilarity calculation are 60 sec.
and 32 sec. for inference (per direction using one CPU core). Our source code is
made publicly available at http://mpheinrich.de/software.html.

Discussion of Results: Table 1 (right) lists the obtained target registration
error (TRE) of 1.08 mm for our proposed method over 300 manual selected land-
mark pairs per case [6]. Visualisations of the outcome for two cases are shown
in Fig. 2. The obtained deformations have a small amount, 0.14% on average, of
voxels with negative Jacobians, and the average deformation Jacobian std. dev. is
0.26. We also evaluated the TRE for the following four variants of our algorithm
to show the usefulness of our algorithmic choices. No inference or regularisa-
tion (classical block-matching) leads to 6.08 mm; random-walk regularisation
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with the graph Laplacian as used in [7] to 2.78 mm; belief propagation without
symmetric constraint to 1.24 mm; and uniform keypoint sampling without Fo-
erstner operator to a TRE of 1.33 mm.

The task of aligning COPD breath-hold scans has been addressed by the follow-
ing methods. In [21] a block-matching approach is used for keypoints, but without
MRF regularisation, and a TPS transform to initialise a variational optimisation
method (LMP). The TPS has an accuracy of 3.20 mm, the refinement reduces
this to 1.43 mm. Hermann [15] used a discrete optimisation (semi-global match-
ing, SGM), with a coarse-to-fine multi resolution scheme, and Census cost func-
tion and reached a TRE of 1.48 mm. Finally, Castillo et al. [4] used a very large
number of control points (every 2nd voxel in each dimension) for block-matching
followed by an optimisation based filtering of outliers (MILO). They obtained a
TRE of 1.13 mm, which is slightly inferior to our results of 1.08 mm, and they re-
port relatively high computation times of 10 to 20 minutes per case. For the more
commonly used 4DCT data of [5], we achieve an average TRE of 0.97 mm, which
compares well with [15]: 0.95mm, [13]: 1.43mm and [21]: 1.10mm.

4 Conclusion

We have presented a new MRF-based approach to estimate accurate correspon-
dence fields for images with large motion. Our main contribution is a sparse, but
informative, sampling of keypoints locations for which motion vectors are de-
termined from a large set of displacements. The regularity of the displacements
is enforced by inference over all pair-wise combinations of close locations using
a parts-based model. Devoting much effort only to interesting positions in the
image, yields both accurate and fast results. Our method currently achieves the
lowest registration error of 1.08 mm on the public COPD dataset of [6]. Future
work, will include the application to whole-body registration using organ-surface
keypoints and comparisons to graph matching [9)].
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