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Abstract. Image-based diagnosis and population study on cardiac
problems require automatic segmentation on increasingly large amount
of data from different protocols, different views, and different patients.
However, current algorithms are often limited to regulated settings such
as fixed view and single image from one specific modality, where the
supervised learning methods can be easily employed but with restricted
usability. In this paper, we propose the unsupervised free-view groupwise
M3 segmentation: a simultaneous segmentation for a group of Multi-
modality, Multi-chamber, from Multi-subject images from an arbitrary
imaging view. To achieve the segmentation, we particularly develop the
Synchronized Spectral Network (SSN) model for the joint decomposing,
synchronizing, and clustering the spectral representations of free-view M3

cardiac images. The SSN model generates a set of synchronized superpix-
els where the corresponding chamber regions share the same superpixel
label, which naturally provides simultaneous cardiac segmentation. The
segmentation is quantitatively evaluated by more than 10000 images (MR
and CT) from 93 subjects and high dice metric (> 85%) is consistently
achieved in validation. Our method provides a powerful segmentation
tool for cardiac images under non-regulated imaging environment.

1 Introduction

The segmentation of large amount of M3 (Multi-modality, Multi-chamber,
Multi-subject) cardiac image data is a clinical routine and notoriously known as
tedious and time-consuming. However, most current cardiac segmentations are
single modality methods for limited cardiac image views (short-axis/long-axis).
These methods require a lot of manual efforts in pre-processing like ROI cropping
and view alignments, and need exhaustive conversions in cross-protocol/modality
comparison study. A unified segmentation for free-view M3 images is strongly
desired in quantitative and population study of cardiac problems which will play
an increasingly important role in the practical diagnoses of heart diseases.

The segmentation for M3 images under non-regulated settings, i.e., arbitrary
field of views, is a challenging problem. Main difficulties arise from different
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perspectives: 1) Image view: cardiac shapes can be completely different in var-
ious views, shape-based segmentation could fail easily as unified shape model
is difficult to define; 2) Modality: intensity features in cardiac MR and CT are
incompatible, segmentation method in one modality cannot be directly applied
to the other; 3) Joint chamber segmentation: some chamber regions (i.e., RV)
are difficult to extract in non-regulated image views due to the edge fuzziness.

The current cardiac segmentation are often performed under regulated set-
tings. As reviewed in [10], most algorithms focused on LV segmentation as RV has
more complex motion patterns. Among the LV segmentation, in recent studies,
Cousty et al [5] used watershed-cut algorithm and incorporated spatio-temporal
representation for cardiac segmentation. Pednekar et al [9] proposed a intensity-
based affinity estimation for LV region and perform segmentation by contour
fitting. Deformable models are intensively applied in LV segmentation too. Ben
Ayed et al [3] followed the level set approach and using overlap LV priors as
global constrains to obtain robust segmentation results. In addition, strong shape
priors are frequently used in LV-RV segmentation on single MR subject. Zhang et
al [11] used a combined active shape and active appearance model (ASM+AAM)
for segmentation of 4D MR images. Bai et al [1] used multi-atlas approach, ap-
plying local classifiers for segmentation LV segmentation. The popular methods
in MR segmentation are also frequently used in CT segmentation. Zheng et al
[12] applied marginal space learning techniques for warping prior control points
in CT volumes to perform the model-based segmentation. Isgum et al [7] took
the multi-atlas approach and perform cardiac and aortic CT segmentation using
local label fusion. However, in the above mentioned methods, unregulated M3

segmentation setting (views, modal) were rarely discussed.
To achieve segmentation for M3 images, we propose a free-view groupwise ap-

proach which has the following advantages: 1) Unregulated segmentation setting:
our method can be directly applied on standard cardiac views (short-axis, long-
axis) and unregulated cardiac views (coronal, axial). There are no shape limits
and pre-training steps. 2) Simultaneous segmentation: our method provides si-
multaneous segmentation for the set of images from the same arbitrary view. 3)
Multi-modality, Multi-subject, Multi-chamber (M3): our method is independent
of image modality, and provides implicit chamber matching between images from
the same/different subjects. All chamber regions (i.e., LV/RV, LA+LV/RA+RV)
from the input images are jointly extracted. 4) Automatic ROI localization: our
method can be directly apply on raw MR/CT scans without manual ROI crop-
ping. Our method provides a general tool for cardiac segmentation problems.

2 Methodology

2.1 Overview

Our free-view groupwise segmentation is fully unsupervised, whereas the result
is only driven by the input images. The segmentation can obtain multi-chamber
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Fig. 1. The overview of our free-view groupwise segmentation. The M3 images from
different views are decomposed and then synchronized using our spectral synchro-
nization network (SSN). The generated synchronized superpixels immediately provide
multi-chamber segmentation.

segmentation simultaneously for a group of M3 images from an unknown view.
The overall segmentation process is illustrated in Fig. 1.

1. Spectral Decomposition. As Fig. 1 step 1 shows, the input images are
decomposed into spectral bases representations. The spectral bases are a set
of maps that represent the pairwise pixel similarities in an image, such that
smooth regions are enhanced and separated by their in-region similarities. As
the similarities only depends on the image itself, spectral bases are modality
independent. The spectral bases model [2] is used in our method (see Sec 2.2.1).

2. Spectral Synchronization. As illustrated in Fig. 1 step 2, spectral synchro-
nization forces the spectral bases of different images to have similar appearances,
so that all spectral representations are jointly matched. Synchronized Spectral
Bases are obtained by shuffling and recombination of the spectral bases, in which
the corresponding regions of different images will have the same positive/negative
responses. This provides an implicit registration for the input images without
using any explicit alignments (see Sec 2.2.2).

3. Synchronized Superpixels. The synchronized spectral bases will serve as
image features for clustering the image pixels into superpixels. As shown in Fig. 1
step 3, the synchronized spectral bases expand each pixel to a high-dim feature
vector (3d vector in this case). These features are clustered by K-means, sorting
all image pixels into a set of synchronized superpixels. These superpixels provide
initial over-segmentation for the images, while corresponding image regions are
now correlated with same superpixel labels.

4. Segmentation. The chamber regions of the input images can be easily iden-
tified from the synchronized superpixels of step 3 by their region sizes and the
relative positions in images. They are then extracted as the final segmentation.
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Fig. 2. The spectral bases versus the proposed synchronized spectral bases. Left to
right: The MR-CT images, the unsynchronized spectral bases ([2]), and the synchro-
nized spectral bases (obtained by Eqn (3)).

2.2 Spectral Decomposition and Synchronization Using SSN

The key to provide the spectral synchronization and synchronized superpixels is
Synchronized Spectral Network (SSN), which is introduced as follows.

1. Spectral Graph Decomposition. For an image I, we construct a graph
G = (V,E) such that each edge e ∈ E that connecting two arbitrary pixels i, j
is weighted by W (i, j). The particular weight is determined by the intensities,
and the contour interventions (not image gradient) between the two pixels:

W (i, j) = exp

(
−||xi − xj ||2/σx − ||Ii − Ij ||2/σI − max

x∈line(i,j)
||Edge(x)||2/σE

)

(1)
where xi, xj are the location of the pixels i, j and the Ii, Ij are their intensities
respectively. Edge(x) represents an edge detector in location x along line (i, j).
σx, σI , σE are constants that will be assigned empirically. In practice, W (i, j)
will only be computed in the set of k-nearest neighbors. Suppose image I con-
tains N pixels, then W is a N × N sparse matrix. Let W = D−1/2WD−1/2

be the normalized W where D is the diagonal matrix whose elements are the
row summations of W . The eigen-decomposition of Laplacian L = Id −W will
generate the set of unsynchronized spectral bases {ξk(G)} (Step 1, Fig. 1).

2. Synchronization by Joint Diagonalization. After the spectral decompo-
sitions of the original images, spectral synchronization is achieved by applying
the joint Laplacian diagonalization [6] [8]. The goal of the diagonalization is to
obtain a set of qausi-eigenvectors Yi = [yi,1 . . . yi,K ] ∈ R

N×K for image Ii:

min
Y1,...,YM

∑
i∈I

||Y T
i LiYi − Λi||2F + μ

∑
i,j∈I

||F (Yi)− F (Yj)||2, (2)

where I is the image set and Λi = diag(λ1, . . . , λK) is the diagonal matrix for
K-largest eigenvalues of Li. F is an arbitrary feature mapping that maps a
spectral map to a fixed dimension feature vector. In other words, Yi diagonalize
the Laplacian Li as the ordinary spectral bases do, and its columns are matched
implicitly under the feature mapping F . Solving (2) can obtain the demanded
synchronized spectral basis (Step 2, Fig. 1).

3. Fast Computation. In practice, each yi,k can be approximated by the linear
combination ofK unsynchronized bases {ξk(Gi)}Kk=1, which significantly resolves
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Fig. 3. The hierarchical SSN decomposition. The synchronized superpixels (scale 1)
can be sub-decomposed into finer synchronized superpixels (scale 2), and even finer
scales (scale 3, 4,...).

the ambiguity of Yi. We let Yi = UiAi where Ai is a K ×K ′ matrix variable for
K ′ ≤ K and Ui = [ξ1(Gi), . . . , ξK(Gi)], and let F be the matrix of Fourier bases
for a Fourier coupling [6]. The optimization (2) is modified as:

min
A1,...,AM

∑
i∈I

||AT
i ΛiAi−Λi||2F + μ

∑
i,j∈I

||FUiAi − FUjAj ||2

subject to : AT
i Ai = Id for all i ∈ I

(3)

Fig. 2 shows an example of spectral bases for a pair of MR-CT images versus
their original spectral basis obtained by using [4].

2.3 Heart Localization Using Hierarchical SSN Decomposition

The SSN decomposition naturally provides the joint extraction of cardiac ROI
sub-images from the raw scans (i.e., MR/CT upper body axial scans). This
allows us to directly process the raw scans without any manual ROI cropping.

Hierarchical Decomposition. To achieve the ROI extraction, the spectral
decomposition and synchronization are applied in multiple scales to perform
the hierarchical decomposition as shown in Fig. 3. The subset of particularly
identified synchronized superpixels in the Scale 1 decomposition can be extracted
for another round of spectral decomposition and synchronization. The results are
a new set of finer synchronized superpixels, which provide sub-segmentations of
the local image regions and recover more finer details in the images.

Free-View Heart Localization. Fig. 4 shows an representative example of
our heart localization. In this example, the two raw images from MR and CT
respectively are first taken the SSN decomposition, generating 9 synchronized
superpixels. Through the superpixels positions and the imaging protocol, the
heart regions are simultaneously identified as the largest superpixels at the cen-
ters. The Scale 2 SSN decomposition can then be taken in the heart sub-images,
generating a new set of synchronized superpixels for the cardiac segmentation.
In practice, the actual number of superpixels of both scales will be determined
experimentally. The number will be fixed for the same testing dataset.

3 Experiment

Our segmentation is tested on three M3 datasets that contain more than 10000
MR+CT images in total from 93 subjects under various views. High dice metric
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Fig. 4. The simultaneous heart localization in raw axial MR-CT images using hierar-
chical SSN decomposition. Left to right: the raw axial images; the synchronized super-
pixels of the raw images; the heart ROI identified from the synchronized superpixels;
the scale 2 synchronized superpixels for the heart images.

(DM> 85%) is constantly achieved on both the tests for non-regulated cardiac
view images (i.e., 3-chamber coronal view, axial view) and regulated cardiac view
images (2/4-chamber view). The tests are arranged in two phases as follows.

Phase 1: Non-Regulated Free-View Evaluation. To evaluate our perfor-
mance in free-view images, we test our method on a MR+CT dataset which
contains 10 MR and 10 CT subjects with non-regulated cardiac views. The rep-
resentative result of our segmentation on a MR+CT, multi-subject, two-chamber
(M3) image set is shown in Fig. 5 and Fig. 6, while the numerical results are
summarized in Table 1. During the test, raw images from three views (axial,
sagittal, coronal) of each subject are used. Particularly, 3 slices are sampled for
each view around the volume center, generating 60 raw images in total for the
subject. As the sampled slices are not accurately regulated along the short/long-
axis of heart, their views are in fact arbitrary. Images from the same view are
then randomly packed up in batches with 4 or 8 images per batch, generating
100 4-image and 100 8-image non-identical batches for testing.

As Fig. 5 shows, our method achieves simultaneous segmentation for the eight
MR/CT images (different subjects) in the image batch. LV+LA/RV+RA regions
are successfully extracted in the segmentation. Another two successful examples
for the segmentation of 4-image batches under non-regulated sagittal and coronal
cardiac views are shown in Fig. 6. As the complete evaluation presented in
Table 1, the average dice metric on both modalities (MR+CT) for both chambers
are 89.2% (4-image batch) and 85.2% (8-image batch) respectively.
Phase 2: Regulated Standard-View Evaluation. To evaluate our robust-
ness performance on larger batches under regulated cardiac image views, we test
two MR testsets: the York Cardiac MRI dataset1 is denoted as testset 1 which
contains 33 MR subjects (aligned in two-chamber view); our own collected MR

1 http://www.cse.yorku.ca/mridataset/

http://www.cse.yorku.ca/mridataset/
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Fig. 5. Example of the unsupervised groupwise segmentation on a 8-image batch
(4 MR subjects + 4 CT subjects) under a non-regulated axial view. Row 1: original
images; Row 2: synchronized superpixels; Row 3: the LV+LA (yellow) and RV+RA
(red) segmentation.

Fig. 6. Examples of the groupwise segmentation on non-regulated image views. Left:
CT segmentation for two subjects (2 images/subject) in sagittal view with LV region
extracted; Right: MR segmentation for one subject (4 frames) in coronal view with
LV/RV (yellow/red, bottom) region extracted.

dataset is denoted as testset 2 which contains 10300 MR images (2740 four-
chamber, 7560 two-chamber) from 40 MR subjects. Representative example is
shown in Fig. 7 with numerical results are presented in Table 2. Particularly
the images are sampled from complete cardiac cycles in order to quantitatively
evaluate the robustness of groupwise segmentation. All images from the same
cardiac cycles are already well-regulated in short/long-axis views.

As illustrated in Fig. 7, our method has successful simultaneous segmentation
on the 20 MR images sampled from a cardiac cycle of one subject. As reported
in Table 2, for testset 1, our method achieved average DM 89.1% for the LV
segmentation in cardiac cycles under 2-chamber views, and at the same time
obtained 85.2% in RV segmentation. For testset2, our segmentation obtain aver-
age DM 88.0% (LV) and 84.8% under 2-chamber views, and has 87.6% (LV+LA)
and 87.0% (RV+RA) under 4-chamber views. The overall performance in testset
1 and 2 are close and insensitive to view changes.
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Table 1. Dice metric (%) and standard derivation on the Free-view M3 data.

4-image batch 8-image batch
LV(+LA) RV(+RA) All Chambers LV(+LA) RV(+RA) All Chambers

MR 91.8 ±3.2 90.2 ±3.1 90.4 ±3.3 88.2 ±4.2 87.8 ±4.5 86.8 ±4.2
CT 89.7 ±2.9 88.7 ±3.6 88.6 ±3.5 86.2 ±4.6 84.9 ±4.7 83.8 ±5.1

MR+CT 90.8 ±3.3 89.8 ±3.5 89.2 ±4.1 85.9 ±5.1 84.0 ±5.0 85.2 ±5.2

Fig. 7. Example of the unsupervised groupwise segmentation on 20 images under reg-
ulated 2-chamber view. Left to right: MR images from a cardiac cycle; synchronized
superpixels; final LV-RV segmentation extracted from superpixels.

Table 2. Dice metric (%) evaluations of the regulated-view testset 1 and 2.

testset 1 testset 2
LV(+LA) RV(+RA) All Chambers LV(+LA) RV(+RA) All Chambers

2-Chamb. View 89.1 ±4.1 85.2 ±5.6 87.1 ±5.4 88.0 ±4.0 84.8 ±6.0 86.7 ±5.1
4-Chamb. View / / / 87.6 ±4.6 87.0 ±6.2 87.4 ±3.6

4 Conclusions

In this paper, we proposed an unsupervised segmentation approach for M3

cardiac images (Multi-modality/chamber/subject) under unregulated settings.
We developed a synchronized spectral network (SSN) model to conduct hierar-
chical groupwise segmentation for the input images. The SSN model utilized the
robust and modal-independent spectral features to achieve the M3 segmentation.
The dice metric of our method constantly larger than 85% in all test datasets.
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