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Abstract. Existing feature descriptor-based methods on retinal image registra-
tion are mainly based on scale-invariant feature transform (SIFT) or partial inten-
sity invariant feature descriptor (PIIFD). While these descriptors are many times
being exploited, they have not been applied to color fundus and optical coherence
tomography (OCT) fundus image pairs. OCT fundus images are challenging to
register as they are often degraded by speckle noise. The descriptors also demand
high dimensionality to adequately represent the features of interest. To this end,
this paper presents a registration algorithm coined low-dimensional step pattern
analysis (LoSPA), tailored to achieve low dimensionality while providing suffi-
cient distinctiveness to effectively register OCT fundus images with color fundus
photographs. The algorithm locates hypotheses of robust corner features based
on connecting edges from the edge maps, mainly formed by vascular junctions.
It continues with describing the corner features in a rotation invariant manner
using step patterns. These customized step patterns are insensitive to intensity
changes. We conduct comparative evaluation and LoSPA achieves a higher suc-
cess rate in registration when compared to the state-of-the-art algorithms.

Keywords: Registration, optical coherence tomography, feature descriptor,
LoSPA.

1 Introduction

Optical coherence tomography (OCT) is a micrometer-scale, cross-sectional imaging
modality for biological tissue. An OCT fundus image constructed by integration of the
3D tomogram along depth provides a view similar to traditional en-face imaging modal-
ities, such as color fundus photographs. Examples of color fundus and OCT fundus im-
age pairs are shown in Fig. 1. Registration of the color fundus and OCT fundus images
allows ophthalmologists to obtain a more complete detail of the subject by correlating
the cross-sectional scattering properties of the retina with the familiar information of
the color fundus photographs. The main challenges in this registration are the intensity
differences between the two modalities and the poor quality of the OCT fundus images
which are adversely affected by speckle noise or pathologies.

The literature on retinal image registration is extensive, with many existing work on
same modality [1,2,3,4,5] and few on multimodality [6,7,8,9,10]. Among multimodal-
ity, work on registration between color fundus and OCT fundus images is very limited
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Fig. 1. Two pairs of color fundus and OCT fundus images. (a) and (b) is one pair and (c) and (d)
is another pair. Color fundus is on the left and OCT fundus is on the right of each pair.

and is mainly based on vasculature [8,10]. For example, curvelet transform [10] is used
to extract vessels in both modalities. The extracted vessels from the two modalities are
registered together. There are several other work [1,2,4,8] that utilize vessels for image
registration. Although vessels are invariant to intensity variations, their localizations
are often inaccurate [11]. In addition, vessel-based approaches rely heavily on vascular
structures and usually involve extensive preprocessing such as segmentation and skele-
tonization. Extracting of vessels is difficult in poor quality images [7].

Recently, feature descriptor-based registration approaches that do not rely on vas-
culature are becoming more popular. SIFT algorithm [12] detects feature points as the
extrema in the difference of Gaussian (DoG) scale space. For each feature point, the
intensity gradient vectors within its neighbors are collected in histograms to form a
descriptor of 128 dimensions. However, the algorithm fails to identify stable and uni-
formly distributed feature points in multimodal retinal images [6,13,14], and it is more
suitable for monomodal image registration [6]. Therefore, enhancement methods are
proposed. A generalized dual-bootstrap iterative closest point (GDB-ICP) [5] uses SIFT
with the alignment process driven by two types of feature points: corner points and face
points. To better deal with the multimodal registration problem, an edge-driven DB-
ICP (ED-DB-ICP) [9] algorithm is developed by enriching SIFT with shape context
using edge points, summing up to a 188-dimensional vector descriptor. The result-
ing descriptor is not robust to scale changes and images affected by pathologies or
noise [6,7]. The partial intensity invariant feature descriptor (PIIFD) [15] is later in-
troduced. Similar to SIFT constituting of a 128-dimensional vector, PIIFD combines
constrained gradient orientations between 0 to π linearly, and performs a rotation to
address the multimodal problem of gradient orientations of corresponding points in op-
posite directions. A Harris-PIIFD [6] framework is later proposed where PIIFD is used
to describe surrounding fixed size regions of Harris corners [16]. However, the Harris
corners are not uniformly distributed [7,13] and the repeatability rate is poor when the
scale changes between images go beyond 1.5 or in the presence of pathologies or noise
in the retina [7]. To circumvent the problems, Harris method is replaced with an uniform
robust SIFT (UR-SIFT) [7] method. The improvement is the more stable UR-SIFT fea-
tures of higher contrast in the uniform distribution of both the scale and image spaces to
compute the PIIFD descriptor. However, the algorithm has not been applied to register
color fundus and OCT fundus image pairs.

In this paper, we propose a registration algorithm which comes with a low-dimensional
feature descriptor that is insensitive to intensity changes, and provides sufficient distinc-
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tiveness to register color fundus and OCT fundus images. In addition, to the best of our
knowledge, this is the first work to conduct comparative evaluation between existing
feature descriptor-based registration methods on color and OCT fundus image pairs.

The rest of the paper is organized as follows. Section 2 presents our methodology.
Experimental results follow in section 3 and section 4 concludes the paper.

2 Methodology

2.1 Geometric Corner Extraction

We exploit the geometric corner extraction method [13] to locate hypotheses of robust
corner features. Extracted edges from the edge maps may be fractured due to missing
edge pixels. To circumvent this problem, a post-processing step [13] is applied to iden-
tify and fix broken edges with end-points and angles of close proximity. The purpose
is to eventually remove edges that are isolated or insignificant, e.g. edges < 5 pixels
which are mainly noise. The subsequent step is to locate intersecting points from con-
necting edges which are called geometric corners [13]. Geometric corners are always
true corners where each geometric corner gi comes from an intersecting point of two
edges �gi1 and �gi2 . For robustness, we exclude two edges of similar angles as a candidate
for gi. The smaller internal angle between �gi1 and �gi2 must be between 25◦ and 155◦.

2.2 LoSPA Description

Due to non-linear intensity changes, corresponding images of different modalities often
do not correlate well. Therefore, we have to focus on the intensity change patterns
instead of the intensity change values. We first rotate the input image relative to a mutual
orientation derived from �gi1 and �gi2 to achieve rotation invariance. The center of rotation
is at gi, and the angle-to-rotate θgirot is derived as follows:

θgirot = θgimin + [δ] (θgimax − θgimin), (1)

where θgimax and θgimin denote the maximum and minimum angles from �gij to the posi-
tive x-axis respectively, with ∀j ∈ {1, 2}. [.] is a binary indicator function, and δ is the
inequality formalized as:

θgimax − θgimin > 180◦. (2)

After rotation, we extract a local window Wgi
rot (e.g. 15×15) centered at gi from the

rotated image. In this paper, we propose to divide Wgi
rot into equal-sized subregions

using two straight lines and a set of rules. For example, the first step pattern in Fig. 2(a)
is formed by two parallel lines dividing a square into three equal-sized subregions. By
rotating the two parallel lines by 45◦, 90◦ and 135◦, we form three other step patterns
as shown in Fig. (2(b)-2(d)). Fig. 2(e) is formed by drawing two lines starting from the
center of one edge of the square to separate the square into three equal-sized subre-
gions. Fig. (2(f)-2(h)) are also formed similarly with the two lines starting at different
edges. The rest of the step patterns are formulated by similar rules. We then compare
the average intensities between the subregions, which will be computed as a feature rep-
resentation for Wgi

rot. 28 different patterns are empirically proposed, which represent
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Fig. 2. Two-level step patterns.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)

Fig. 3. Three- and four-level step patterns.

most of the possible patterns with equal-sized subregions as shown in Fig. 2 and 3. The
patterns are called step patterns. As the name implies, these patterns come in step forms
of two to four height levels where the higher level steps indicate subregions of higher
average intensity values. Taking Fig. 2(b) as an exemplar to be depicted in Fig. 4(a),
the number of pixels in the subregions R1, R2 and R3 are equal. For average intensity
value IRk

avg in Rk where ∀k ∈ {1, 2, 3}, we formulate as follows:

IRk
avg =

1

N

∑

(x,y)∈Rk

Wgi
rot(x, y), (3)

where N is the number of pixels in Rk. Each Wgi
rot, in relation with its respective gi,

can be described using the equation:

d1 =
[
IR1
avg − IR2

avg > τ
] · [IR3

avg − IR2
avg > τ

]
, (4)

where d1 is a binary result to indicate the existence of the step pattern in Fig. 4(a),
and τ denotes a position integer value. In this paper, we set τ = 1 to avoid noise.
To deal with contrast reversal problem such as the change in intensities between the
local neighborhood of two image modalities (for instance, the optic discs become dark
in the OCT fundus images), the step pattern is reversible as illustrated in Fig. 4(b).
Hence, the equation for the reversed step pattern in Fig. 4(b) can be rearranged as:

d2 =
[
IR2
avg − IR1

avg > τ
] · [IR2

avg − IR3
avg > τ

]
. (5)

The final equation to describe Wgi
rot is given by:

d3 = d1 + d2, (6)

and d3 is still a binary result. For the rest of the patterns in Fig. 2 and 3, IRk
avg can

be computed similarly by applying Eq. (3). d1 to d3 in Eq. (4-6) are also computed
similarly for the two-level step patterns in Fig. 2. For the three- and four-level step
patterns in Fig. 3, d1 and d2 are expressed in an increasing or decreasing step manner
instead. Hence, the equations can be mathematically revised as:

d1 =

p−1∏

i=1

[
IRi+1
avg − IRi

avg > τ
]

and d2 =

p−1∏

i=1

[
IRi
avg − IRi+1

avg > τ
]
, (7)
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(a) (b)

Fig. 4. A two-level step pattern is shown in (a), and its reversed step pattern for invariant to
contrast reversal is shown in (b).

where p ∈ {3, 4} is the number of steps in the pattern. d3 remains the same as in Eq. (6).
In order to describe the inner and outer regions of the local neighborhood surround-

ing gi, two Wgi
rot of different scales are deployed. We also include the angle between

�gi1 and �gi2 , and the angle-to-rotate θgirot, which are two important attributes for robust
matching and verification. We set the window scales of Wgi

rot to fixed 15 × 15 and
21× 21 pixels for the reason that the scale difference in retinal images is usually slight.
For improved robustness to scale changes, we include an additional window scale of
27× 27, resulting in a 86-dimensional (28× 3 + 2) LoSPA feature vector.

2.3 Feature Matching, Outlier Rejection and Transformation Function

We find matches by Euclidean distance, using the k-dimensional data structure and
search algorithm [17] with k = 3. Each match comprises two window scales, thus
we have four match combinations resulting from an additional window scale to switch
with. Among the four, the one which returns the highest number of matches is consid-
ered as the best fit. Each match takes only 29.4 milliseconds (in MATLAB) so we can
afford to perform matching more than once. θgirot is not included in for matching, it is
used for rejecting incorrect matches instead. It is obvious that the differences between
θgirot for all matched feature pairs are similar. Suppose that the sets of matched gi be-
tween two images are G1m = {g1mi} and G2m = {(g′

2mi, g
′′
2mi, g

′′′
2mi)} where i is the

corresponding number index, and (g
′
2mi, g

′′
2mi, g

′′′
2mi) correspond to g1mi’s three closest

neighbors respectively, we compute the difference between θgirot of every single pair as:

(‖θg1mi

rot − θ
gj
2mi

rot ‖) mod 180◦, (8)

and put them into their respective bins of 12, each of 30◦ range with half overlapping in
between each pair. The bin with the highest number of votes is denoted as bin

′
hi. bin

′′
hi

only exists if it is the closest neighbor (direct left or right) of bin
′
hi and its number of

votes is above 60% of bin
′
hi. The matched feature pairs in G1m and G2m that do not

fall within bin
′
hi and bin

′′
hi are rejected. Most incorrect matches are actually rejected

according to this criterion. Next, we validate the remaining pairs in a global transfor-
mation function between the two images. Random sample consensus (RANSAC) [18]
with affine transformation setting is applied to all remaining matched pairs. We can
exclude the remaining incorrect matches with this method.

We exploit affine model [19] as the transformation function in our framework. When
it has been applied on the floating retinal image, we simply superpose the transformed



Registration of Color and OCT Fundus Images Using LoSPA 219

(a) (b)

Fig. 5. Mosaic results of the proposed algorithm (LoSPA) for the color fundus and OCT fundus
image pairs shown in Fig. 1(a) and 1(b), and Fig. 1(c) and 1(d).

retinal image on the fixed retinal image to produce a retinal mosaic. Some mosaic results
of image pairs in Fig. 1 are shown in Fig. 5.

3 Experimental Results

We conduct robustness and comparative experiments on a dataset comprising 52 pairs
of color fundus and corresponding OCT fundus images. The color fundus photographs
were acquired with a TRC-NW8 non-mydriatic fundus camera and the 3D OCT data
were obtained from a Topcon DRI OCT-1 machine with a size of 992 × 512 × 256
voxels. The OCT fundus images were formed by intensity averaging along A-scans. The
resized color fundus and OCT fundus images are 1016×675 and 513×385 respectively.
We select 8 pairs of corresponding points in each image pair manually to generate
ground truth. The points have to be distributed uniformly with an accurate localization.
The main advantage of this method is that it can handle poor quality OCT fundus images
which are degraded by speckle noise or pathologies. We compute the root-mean-square-
error (RMSE) between the corresponding points in each registered image pair [7,14,20].
For successful registration, we consider the RMSE < 5 pixels in proportion to the image
resolution in [7]. In addition, a significant error such as the maximal error (MAE) > 10
pixels [6] also results in a registration failure.

3.1 Robustness Test Results

This part evaluates the robustness of LoSPA to rotation invariance and scale insensitiv-
ity. We select 10 image pairs from the dataset to perform rotation and rescaling.

Rotation Invariance Test. We rotate the floating images in the selected image pairs
from 0◦ to 180◦ with a 20◦ step. It should be noted that the reference images are held
fixed. We apply the LoSPA algorithm on the reference images and the rotated floating
images. The result of this test shows that LoSPA successfully registered all image pairs
regardless of the rotation angle, demonstrating that LoSPA is rotation invariant.

Scale Change Test. We rescale the floating images with a scaling factor from 1 to
2.8, and apply the LoSPA algorithm on all the images. The registration rates across a
range of scale changes are shown in Table 1. The experiment indicates that LoSPA can
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provide robust registration when the scale factor is 1.8 and below. However, LoSPA
usually fails when the scale factor is above 1.8. This is still acceptable as most of these
clinical images are of very small scale differences and are usually less than 1.5 [6].

Table 1. Successful registration relative to scale factor.

Scale factor 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
Success rate (%) 100 100 100 100 80 40 10 0 0 0

3.2 Comparative Evaluation Results

We run comparative evaluation between the 7 algorithms discussed earlier: SIFT [12],
UR-SIFT-PIIFD [7], Harris-PIIFD [6], Curvelet transform (CT) [10], GDB-ICP [5],
ED-DB-ICP [9], and LoSPA. It should be noted that CT is a vessel-based approach,
however we include it for comparison purpose. Table 2 shows the comparison results.
For SIFT, it registers only 3 image pairs. UR-SIFT-PIIFD, Harris-PIIFD, and CT per-
form better but still do not make it beyond the 50% success rate. For CT, many of
the vessels are not being extracted and therefore induced failure during registration.
The rest of the algorithms pass the 50% success rate mark, with LoSPA dominating in
the scores. Some registration image results of LoSPA are shown in Fig. 5. The com-
parison shows that the deployment of LoSPA to color fundus and OCT fundus image
registration translates into lower dimensionality and higher registration success rate.

Running LoSPA in MATLAB on a 3.5GHz Intel Core i7 desktop with 32GB mem-
ory, the average execution time is 4.48 seconds (s) for feature extraction, 3.31s for
LoSPA feature description, 29.4ms for feature matching, and 0.2s for outlier rejection.

Table 2. Registration results of 7 algorithms on a dataset of 52 color fundus and OCT fundus
image pairs. Number of successfully registered pairs and success rate of registration are shown.

SIFT UR-SIFT-PIIFD Harris-PIIFD CT GDB-ICP ED-DB-ICP LoSPA
Registered pairs 3 11 12 15 26 26 41
Success rate (%) 5.77 21.15 23.08 28.85 50 50 78.85

4 Conclusion

We have presented a low-dimensional feature descriptor-based algorithm LoSPA, which
shows high potential in multimodal image registration application. The algorithm is not
only low in dimensionality, but more crucially without compromising on its distinctive-
ness and effectiveness, it is able to robustly register color and OCT fundus image pairs.
LoSPA is invariant to non-linear intensity changes which is an important requisite for
multimodal registration. We have conducted a comparative evaluation of algorithms on
a color and OCT fundus image dataset. Results indicated that LoSPA achieves signifi-
cantly higher registration success rate which easily frustrates the other algorithms.
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