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Abstract. Early detection, assessment and treatment of intracranial
aneurysms is important to prevent rupture, which may cause death. We
propose a framework for detection and quantification of morphology of
the aneurysms. A novel detector using decision forests, which employ
responses of blobness and vesselness filters encoded in rotation invariant
and scale normalized frequency components of spherical harmonics rep-
resentation is proposed. Aneurysm location is used to seed growcut seg-
mentation, followed by improved neck extraction based on intravascular
ray-casting and robust closed-curve fit to the segmentation. Aneurysm
segmentation and neck curve are used to compute three morphologic
metrics: neck width, dome height and aspect ratio. The proposed frame-
work was evaluated on ten cerebral 3D-DSA images containing saccular
aneurysms. Sensitivity of aneurysm detection was 100% at 0.4 false pos-
itives per image. Compared to measurements of two expert raters, the
values of metrics obtained by the proposed framework were accurate and,
thus, suitable for assessing the risk of rupture.

Keywords: intracranial aneurysm, rupture, detection, multiscale en-
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1 Introduction

The prevalence of intracranial aneurysms is between 2%-5% of the world pop-
ulation and, although aneurysm rupture is a rather rare event, the majority
of patients that experience the rupture die of subarachnoid hemorrhage [3]. To
prevent such fatal events, aneurysms should be detected, assessed and treated
as early as possible. After an aneurysm is detected, the risk of rupture is as-
sessed through quantitative studies of its morphology and hemodynamics so as
to prioritize the treatment of patients. Quantifying the morphology of aneu-
rysms can be performed manually using a 3D angiographic image like 3D digital
subtraction angiography (3D-DSA). However, tasks like manual detection, seg-
mentation, isolation and measurement of the aneurysm in a complex 3D vascular
tree, usually based on observing 2D cross-sections of the 3D image, are tedious
and time consuming to perform for a clinician. To assist the clinician, but also
to improve the accuracy, reliability and reproducibility of the outcome [1], there
is a need for computer-aided detection and quantification of the aneurysms.
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Fig. 1. Image analysis framework for aneurysm detection, segmentation and neck ex-
traction based on a 3D angiogram.

Although several methods for detecting intracranial aneurysms [6,4], segment-
ing vascular structures [7] and extracting the aneurysm’s neck curve [1], were
proposed in the past, to the best of our knowledge, these methods still need to
be further improved before being incorporated into a computer-aided detection
and quantification framework. Of the aneurysm detection, segmentation, and
quantification tasks, detection seems to be the most difficult. The specific hemo-
dynamics of each aneurysm causes large variations of image intensity between
different aneurysms, which, besides variations in aneurysm size and shape, ad-
versely impact the performance of detection methods [6,4]. The intensity, size and
shape variations typically result in lower sensitivity and specificity of computer-
aided detection of aneurysms.

To aid the detection and quantification of intracranial aneurysms, we propose
an image analysis framework that involves: a) enhancement of the 3D cerebral
angiogram, b) novel detection of aneurysms based on random forests and rotation
invariant and scale normalized visual features, ¢) a growcut segmentation of the
aneurysm and attached vasculature, followed by d) neck curve extraction based
on intravascular ray-casting to find points on the neck and a robust RANSAC-
type closed-curve fitting. The proposed framework was evaluated on ten cerebral
3D-DSA images containing aneurysms, which were quantified by three morpho-
logic metrics: neck width, dome height and aspect ratio. The achieved sensitivity
of aneurysm detection was 100% at 0.4 false positives per image, while, compared
to aneurysm measurements of two expert raters, the automatic measurements
were accurate and thus suitable for assessing the risk of aneurysm rupture.

2 Methods

Main steps of the image analysis framework for the detection and morphologic
quantification of cerebral aneurysms are illustrated in Fig. 1. The following sub-
sections detail the aneurysm detection, segmentation and neck curve extraction.
Based on aneurysm segmentation and neck curve, the morphologic metrics like
neck width, dome height and aspect ratio of the aneurysm can be quantified.
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2.1 Aneurysm Detection

Computer-aided detection of aneurysms in angiographic images should exhibit
high sensitivity, but at the same time, reduce the number of false detections
to a minimum. Since aneurysms are blob-like structures a simple approach to
their detection is to employ blob enhancement on the images, e.g. multiscale
filters based on analysis of Hessian eigenvalues [8]. Although the response of a
blob enhancement filter is high at aneurysms and thus promising for computer-
aided detection of aneurysms, the response may also be high at bifurcations and
vessel bents, which, on a certain scale, resemble a blob-like structure. Hence, a
blob enhancement filter will likely indicate many false positives (FPs). To better
discriminate between the aneurysm regions, i.e. true positives (TPs), and other
structures, and to further reduce FPs, we use random decision forests (RDFs) [2]
trained on visual features obtained from the responses of enhancement filters.

Visual Features. For each location x; € R? in a 3D angiographic image I(x)
an ensemble of rotation invariant and scale normalized features that describe
the local neighborhood of x; are computed. First, the aneurysms and vessels of
various sizes are enhanced by a multiscale Hessian-based filtering of I(x) using
blobness and vesselness [8] filters, with normalized responses denoted by B(x)
and V(x), respectively. These two responses are locally resampled about x; over
concentric spheres (Fig. 2.b,c) parameterized by (6, ¢) and radii rg, k=1,..., K
and then projected onto spherical harmonics basis Y;*(6, ¢) [5] to represent, e.g.,
the blobness response over a sphere as:

L m=l
B(0, ¢lxi, i) = Z Z aim Y, (0, 9), (1)
=0 m=—1
where L is the maximal bandwidth of spherical basis functions m, and coefficients
ayn, are computed from B(6, ¢|x;, 7). Analoguously, we get ]}(9,¢|xi,rk). A
rotation invariant representation (Fig. 2.d) is obtained by computing the Lo-
norm of spherical functions with respect to frequency I as [5]:
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where a simpler notation was used to indicate the dependence on x; and 7.
Analoguously, we get ]); * To normalize the scale we first compute the rotation
invariant features for K concentric spheres with rx = R, where R is some fixed
radius larger than the structures of interest, and estimate the cutoff radius r¢:

rCHC:sup{k:L...,K:Bé’k/Bi’k20.75}, (3)

ik 5i L .
where B = [ZZL:O Bf’k]l/Z. Scale and rotation invariant features are then
computed for K concentric spheres with the outer sphere of radius rx =2 - r¢.
Finally, the ensemble of visual features for point x; is obtained as:

b(xi) = {B*, ... BYF VIR VR k=1, K}, (4)
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Fig. 2. (a) Reference segmentation Sy (yellow) of an aneurysm. (b) Blobness B(x;)
and vesselness V(x;) sampled on a sphere with radius r; around x; are (c) projected
onto a spherical harmonics basis, from which (d) rotation invariant features Bl * and

)% ** are computed and used in a RDF based detector.

RDF Based Detector. RDF is trained on N angiographic images I, (x);n =
1,..., N, in which the aneurysms were manually segmented by a neuroradiologist
(Fig. 2). RDF requires visual features of two sets of points, one of TPs (Spp) and
one of FPs (Spp). The set Srp contains points with a high blobness response
B(x) > 7 that lie within the manual segmentation Sy (Fig. 2.a), i.e. Spp =
{x:x € Sy ANB(x) > 7} Threshold 75 is manually determined. The set of
FPs is obtained as Spp = {x : x ¢ Sprp A B(x) > 73}. Since B(x) usually
indicates many FPs, the cardinality of the two point sets may be unbalanced,
ie. |Srp| < |Srp|, thus points in Syp are multiplied such that |Srp| = |Spp|.

Visual features are computed using (4) as {¢(x) : x € Spp Vx € Spp}, while
for each ¢(x;) a class indicator variable ¢(x;) € {TP, FP} is set accordingly. The
features are used to train a RDF of T" independent trees W;; t = 1,...,T of depth
D, in which information gain is maximized to determine optimal node splits [2].
The number of points in the training sets Srp, Spp that reach a certain leaf is
used to compute the posterior probabilities p;(c|¢(x)) at each leaf in ¢-th tree.

Aneurysm detection on a test image I(x) proceeds by extracting a set of
candidate points Scp = {x : B(x) > 78}. For each x; € Scp, i =1,...,|Scp|
we compute the ensemble of visual features ¢(x;) and then evaluate and average
the posterior probabilities over all trees as:

ple=TPlp(x;)) = L(x;) TZPtC—TP|¢(XJ>> ()

t=1

where £(x;) is the aneurysm likelihood map. For a fixed threshold 0 < 74 < 1,
the set of points within aneurysms is detected as Sq = {x : L(x) > 7a}.

2.2 Aneurysm Segmentation and Neck Extraction

Based on a local segmentation of the aneurysm, intravascular ray-casting from
the center of aneurysm to the vessel wall is used to find points on the aneurysm
neck as the points with a high gradient in ray distance map. These points are
fitted with a closed-curve to obtain the neck curve and isolate the aneurysm’s
dome, which is used to quantify the aneurysm.
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Fig. 3. (a) Intravascular ray-casting from the centerlines to segmentation surface M
yields (b) distance maps d; (¢, ). (c) The edges in (b) are tentative points on the neck,
which are used in a RANSAC-type fitting of closed-curve to obtain the final neck curve.

Segmentation of each aneurysm and neighboring vessels is performed by grow-
cut [9], which requires seed points within the vascular structures and on back-
ground. First, the center x¢ of each aneurysm is set as the center of the corre-
sponding connected component in S4. Each x§ € Sa is merged to corresponding
connected component in {x : B(x) > 73} to obtain a volume of interest (VOI)
Sj.vor, set twice the size of bounding box of the connected component. Seeds
within the vascular structures S; 4 are the 6-connected neighboors of x§, while
seeds S;,— on background are points within the VOI with low blobness and low
vesselness response, i.e. {x : ero(V(x) < 7y AB(x) < 718) Ax € S; vor}, where
ero denotes binary erosion. Using the segmentation of vascular structure we ex-
tract its centerlines [7] and choose the aneurysm’s centerline S; as the centerline
closest to xj and then find a bifurcation point x? connecting the aneurysm’s
centerline to the feeding vessel.

Extraction of aneurysm’s neck curve is based on casting rays from xj [10] in
directions defined by ¢ € [—m, 7|, ¢ € [0, 7] towards the surface mesh M of the
segmented vascular structures, measuring the ray distance to intersection and
thresholding a corresponding distance map d(1J, ¢). The idea is that between rays
intersecting the neck (Fig. 3.a red) and those passing through the neck aperture
(Fig. 3.a green), the distance increases noticeably. While the original method [10]
is not robust to initial source point and thus requires user interaction, we perform
ray casting from several points x; € & with respect to x% and then map the
corresponding d; (¢, ) into a common coordinate frame (Fig. 3.b). A tentative
neck curve is computed for each d; (1, ¢) by initial Otsu thresholding and level set
based segmentation determining the edge between the vessel and the aneurysm.
All edges are mapped into common distance map and a 1D median filter is
applied along ¢ (Fig. 3.c). The obtained points are projected onto M, yielding
possible neck curve points C (Fig. 3.d). The points in C are binned according
to ¥, with the bin size AdY. Using a RANSAC-type method, in which multiple
subsets of points x € C’ C C are randomly selected by drawing at least one point
from each bin, and then connected by shortest path across M, the final neck
curve is determined by subset C’ that yields the shortest neck curve (Fig. 3.d).



8 T. Jerman et al.

—

Sensitivity
31

Fig. 4. (a) Free-response ROC curve of the RDF-based aneurysm detector showing
sensitivity versus false positives per dataset (FP/DS) and (b,c) a maximum intensity
projection of 3D-DSA with superimposed aneurysm likelihood map £(x;).

3 Experiments and Results

The proposed framework for the detection, segmentation, and neck curve extrac-
tion of cerebral aneurysms was trained on cerebral 3D-DSAs of N = 15 patients
containing at least one intracranial saccular aneurysm. Another ten 3D-DSA
images containing 15 intracranial saccular aneurysms were used for evaluation
of the aneurysm detection, segmentation and neck curve extraction methods.

The RDFs were constructed with 7" = 10 trees of depth D = 10. For training
and testing the RDFs we used points x with blobness B(x) above 73 = 0.15.
The visual features for RDFs were computed on K = 10 spheres with radii
rr increasing in equidistant steps. The maximum radius was R = 10, while
the spherical harmonics bandwidth was set to L = 15. These parameters were
determined by maximizing the overall detection performance on the test images.

The neck curve extraction was evaluated on 15 aneurysms from the test
dataset. For evaluation, the neck curve was manually delineated by two experts
on the surface of segmented aneurysm. Intravascular ray-casting was performed
from 10 skeleton points x; € S; to obtain distance maps d; (¢, ¢).

Sampling of the tentative neck points used bin size of AY¥ = 30°. To quantita-
tively compare the neck curves extracted manually and automatically, we com-
puted three morphologic metrics of the aneurysms: average neck width (NW),
dome height (DH), and aspect ratio: AR = DH/NW. AR has been studied widely
and has consistently been found to correlate with risk of aneurysm rupture [3].

Results. For each of the 10 test images, the aneurysm likelihood map £(x) was
computed and thresholded with 74 to obtain points S4 on aneurysms, whereas
connected components smaller than 15 voxels were eliminated. The sensitivity
and the amount of false positives per dataset (FP/DS) were determined at var-
ious threshold values 0 < 74 < 1 so as to obtain the free-response receiver
operating characteristic (FROC) curve shown in Fig. 4.a. The proposed detec-
tion method achieved a 100% sensitivity at 0.4 FP/DS. A maximum intensity
projection (MIP) of a test image is shown in Fig. 4.b, in which the yellow com-
ponent represents the superimposed aneurysm likelihood map with values above
74 = 0.5. The aneurysm location is clearly visible as a cluster of points (Fig. 4.c).

Fig. 5 shows Bland-Altman diagrams with the bias and standard deviation
(SD) of error of NW, DH and AR measures between the two expert raters and
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Fig. 5. Bland-Altman diagrams of quantitative aneurysm measures: average neck width
(NW), dome height (DH) and aspect ratio (AR=H/NW), computed from two expert
(M) and one automatic (A) neck curve delineations. Aneurysms with AR>1.18 (vertical
dashed line) have a high risk of rupture [3].

between averaged values of the two raters and values obtained by the proposed
neck extraction method. The agreement between the two raters was high as the
bias and the SD were low, while in the comparison between the raters and the
proposed method bias was low, but SD was slightly higher. The SD was higher
because of one small aneurysm that had a low curvature on the neck, thus,
the neck curves of both the expert raters and the automatic method differed
substantially. Ignoring this outlier reduced the bias and SD of AR to 0.02 and
0.11, which is similar to the values obtained between the raters.

4 Discussion

To assist the clinician, we proposed a framework for computer-aided detection
and morphologic quantification of cerebral aneurysms that involves a novel de-
tection approach, local aneurysm segmentation, and improved neck curve ex-
traction of intracranial aneurysms. The segmentation and neck curve are used
for aneurysm isolation and quantification of its morphology, which is important
for assessing the risk of rupture and planning the treatment.

The proposed aneurysm detection is based on random decision forests, which
employ novel visual features based on responses of blob and vessel enhance-
ment filters [8], Locations with high blobness are considered in feature extrac-
tion that proceeds by sampling the two response maps over concentric spheres,
which are encoded by rotation invariant and scale normalized spherical harmon-
ics. Thereby, characteristic aneurysm shape is encoded, while the variability,
non-informative for the detection, is minimized. On ten 3D-DSAs containing 15
aneurysms, the proposed method achieved a 100% sensitivity at 0.4 FP/DS.

Although the results of other methods were obtained on other datasets, and
are thus not directly comparable, their performance is slightly worse with 95% at
2.6 FP/DS [4] and 100% at 0.66 FP/DS [6]. Moreover, Lauric et al. [6] require
a highly accurate segmentation of the entire vasculature, which is difficult to
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obtain because of intensity variations of the 3D-DSA [7]. Herein the proposed
framework executes a VOI-based aneurysm segmentation [9] after the detection.

To robustly isolate and quantify the aneurysm, we improved neck curve ex-
traction by repeated intravascular ray-casting [10] to sample neck edge points,
to which a closed-curve was fit by a RANSAC-type approach. Validation was
performed by observing the bias and standard deviation of three morphologic
measures of the aneurysms, i.e. NW, DH, AR, with respect to manual delin-
eations of two expert raters (Fig. 5). Except for one small aneurysm, in which
the extracted neck curve substantially differed from manual delineations, the
computed measures were consistent over all aneurysms.

Aspect ratio (AR) is widely used as a measure of risk rupture [1], thus the
methods for its assessment need to be accurate and reproducible. For aneurysms
with AR>1.18 (dashed vertical line in Fig. 5) the risk of rupture is considered
high, thus an immediate treatment is required [3]. Compared to four methods
analyzed on a different database of aneurysms in [1] that had a mean relative
error of 9.1, 7.5, 6.9, and 6.8% of AR versus a manual reference, the proposed
method had the lowest mean relative error of 5.2%. Hence, the obtained low mean
relative error renders the proposed method highly suited for assessing the risk
of aneurysm rupture. Evaluation of the proposed framework shows encouraging
results on 3D-DSA images. Since aneurysm detection and isolation rely on highly
sensitive blob and vessel enhancement filters the approach also seems promising
for other angiographic modalities like CTA and MRA.
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