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Abstract. Human pose estimation in the operating room (OR) can ben-
efit many applications, such as surgical activity recognition, radiation
exposure monitoring and performance assessment. However, the OR is a
very challenging environment for computer vision systems due to limited
camera positioning possibilities, severe illumination changes and simi-
lar colors of clothes and equipments. This paper tackles the problem of
human pose estimation in the OR using RGB-D images, hypothesizing
that the combination of depth and color information will improve the
pose estimation results in such a difficult environment. We propose an
approach based on pictorial structures that makes use of both channels
of the RGB-D camera and also introduce a new feature descriptor for
depth images, called histogram of depth differences (HDD), that cap-
tures local depth level changes. To quantitatively evaluate the proposed
approach, we generate a novel dataset by manually annotating images
recorded from different camera views during several days of live surg-
eries. Our experiments show that the pictorial structures (PS) approach
applied on depth images using HDD outperforms the state-of-the art PS
approach applied on the corresponding color images by over 11%. Fur-
thermore, the proposed HDD descriptor has superior performance when
compared to two other classical descriptors applied on depth images. Fi-
nally, the appearance models generated from the depth images perform
better than those generated from the color images, and the combina-
tion of both improves the overall results. We therefore conclude that it
is highly beneficial to use depth information in the pictorial structure
model and also for human pose estimation in operating rooms.

Keywords: Body pose estimation, Pictorial structures, RGB-D images,
Surgical workflow analysis.

1 Introduction

Recognizing and estimating the poses of clinical staff can provide invaluable
input for many applications in the operating room (OR), for example surgical

c© Springer International Publishing Switzerland 2015
N. Navab et al. (Eds.): MICCAI 2015, Part I, LNCS 9349, pp. 363–370, 2015.
DOI: 10.1007/978-3-319-24553-9_45



364 A. Kadkhodamohammadi et al.

Fig. 1. Sample images of the clinician pose dataset acquired during live surgeries. Each
image shows the OR from one of three different views used to capture the environment.

activity recognition [8,4], performance assessment [6], context-aware user inter-
faces [9,7] and radiation safety monitoring [5].

Human pose estimation (HPE) is also one of the fundamental problems of
computer vision and has produced a vast literature over the last few decades.
HPE is mainly addressed by part based approaches thanks to [2] that has
made exact inference tractable on pictorial structures (PS) with tree-structured
graphs by using the generalized distance transform algorithm. Recently, Yang
and Ramanan [13] proposed an approach based on structured support vector
machines (SVM) and PS that jointly learns mixtures of parts and a loosely cou-
pled pairwise dependency model to capture different part appearances and their
co-occurrences. Other works have tried to improve PS by enhancing its underly-
ing graphical model to capture higher order relationships between parts, such as
temporal consistency [3] and repulsive factors between left and right parts [1],
with the penalty of approximate inference. Toshev at al. [12] also proposed a
holistic method based on deep neural networks to regress for body joints, which
requires a very large training set. In contrast to previous works that are only
relying on color images to model body part appearances, [10] proposed to use
random forests on depth images alone and reported promising result for human
pose estimation in scenarios where a foreground mask can be obtained. How-
ever, obtaining foreground masks in the cluttered scenes of the OR, as shown in
figure 1, is not a trivial task.

Even though many HPE methods are proposed in the vision literature, they
cannot be directly applied to the OR due to the numerous difficulties implied
by such an environment. First of all, the safety requirements of the OR and
the multiple articulated arms mounted on the ceiling constrain camera position-
ing. Second, the illumination can change severely. Finally, most equipments and
clinical clothes have the same color. [3] proposes an approach for 3D human
pose estimation in the OR using discrete optimization over RGB-D sequences.
A generic body part detector was used, similar to [10], that had not been trained
for the OR environment. To cope with the misdetections of the detector and
to enforce temporal consistency, [3] proposes an optimization over a connected
graph modeling the whole sequence. Ground-truth initializations for the first
and last frame are needed. These requirements make the approach unsuitable
for real-time applications. Moreover, the dataset used for evaluation has been
recorded in real interventional rooms but not during real surgeries. Thus, it does
not include all the visual challenges occurring during live operations.
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In this work, we address the challenging problem of human pose estimation in
the OR. We base our approach upon [13] due to four main reasons: first, it is the
state-of-the-art method for human pose estimation; second, by using mixtures
of parts, the approach tolerates appearance changes and part foreshortening,
which are common in the OR; third, the method performs exact inference in
a tractable manner on tree-structured pairwise dependency models; and finally,
all parameters are learned using a structured SVM solver, thus eliminating the
need for further manual adjustments.

The body part appearance models in [13] are built using intensity images only.
The histogram of oriented gradient (HOG) descriptor, referred to as I-HOG in
this paper when applied on intensity images, is used to build the part models.
However, in a complex environment such as the OR, color images might not
always carry enough descriptive information due to severe illumination changes
and high color similarities. With the advent of affordable RGB-D sensors, it
is now possible to capture both color and depth images simultaneously. The
depth image is computed by decoding the deformation of a known pattern that
is projected onto a scene using infrared light. Thus, the depth accuracy is not
affected by brightness or contrast changes. We therefore propose to construct
robust and discriminative body part appearance models by combining both color
and depth features.

We also introduce a new descriptor for depth images, named histogram of
depth differences (HDD), that encodes surface level changes. We compare it
with two other descriptors for depth images: the aforementioned HOG descriptor
that we apply on depth images for comparison (D-HOG), and the histogram of
oriented normal vectors (HONV) [11] that has been reported to perform well for
object detection in depth images.

In summary, we propose an approach for human body pose estimation in
the OR that relies jointly on color and on depth images. To the best of our
knowledge, this is the first PS-based approach on RGB-D data and also the first
single frame human pose estimation approach that has been proposed for the OR.
We additionally introduce the HDD descriptor for depth images and compare
it with two other classical descriptors. Finally, we quantitatively evaluate our
approach on a novel dataset recorded during several days of live surgeries.

2 Method

In this section, we briefly describe the flexible mixtures of parts (FMP) ap-
proach [13] that serves as a basis for our human pose estimator. We also present
the HONV descriptor and introduce the HDD descriptor for depth images.

2.1 Flexible Mixtures of Parts

The flexible mixtures of parts approach [13] represents the human body as a set
of rigid body parts that are loosely coupled with each other using springs. The
state of each body part i is specified by the pixel position li of its joint and by its
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Fig. 2. Four different kernels that capture local level changes in depth images.

body part type ti. This type can be defined based on low level information, such
as part position, or high level information, such as the state of the part (e.g. open
versus closed hand). We write i ∈ {1, ...,K}, li ∈ {1, ..., L} and ti ∈ {1, ..., T }.
Let G = (V,E) be a relational graph whose K nodes represent body parts and
whose edges define connections between body parts to enforce body kinematics.

S(I,D, l, t) =
∑

i∈V

wti
i .φ(I,D, li) +

∑

ij∈E

w
ti,tj
ij .ψ(li − lj) +

∑

i∈V

btii +
∑

ij∈E

b
ti,tj
ij (1)

is a score function, where I denotes the input image and D is the aligned depth
image. The first term in eq. 1 is the part appearance model that computes the
score of placing a part i at location li based on the part appearance template wti

i

and the feature vector φ(I,D, li). The second term computes the deformation
score based on relative displacements between parts that are encoded by ψ(li −
lj) = [dx dx2 dy dy2]T , where (dx, dy) is the relative location of part i w.r.t. part
j. The last two terms are computing the part type compatibility score, where
bi is the score of choosing a particular mixture for part i and b

ti,tj
ij encodes the

co-occurrence compatibility of part types.

Inference and Learning: Estimating the body pose in this model corresponds
to finding (l∗, t∗) = argmaxl,t S(I, l, t). For a tree-structured relational graph G,
this optimization can be solved efficiently and exactly with dynamic program-
ming. In a supervised learning setup, we assume that a set of labeled positive
and negative examples is available. The model parameters can then be learned
using structural SVM. For more details, we refer to the original paper [13].

2.2 Appearance Model

We now focus on the different feature descriptors that can be used to build the
body part appearance model. To construct φ, we uniformly divide images into
non overlapping windows, called cells, in which the descriptors are computed.
Following the same avenue as [13], I-HOG is used on color images and serves
as our baseline. The D-HOG descriptor applies HOG on depth images. The two
other depth-based descriptors used in this paper are described below.

Histogram of Oriented Normal Vectors (HONV): This descriptor repre-
sents object surfaces using a histogram of normal vectors. The gradient of the
depth image is first used to compute the normal vectors in spherical coordinates.
Each normal vector is then represented by a pair of azimuth and zenith angles
and quantized to vote into a 2D histogram; more details can be found in [11].
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Histogram of Depth Differences (HDD): A depth image encodes in each
pixel the distance between the depth sensor and the surfaces of the scene. In [10],
a simple depth operator is proposed that performs well for body part detection.
This operator is able to distinguish between different body parts by capturing
part depth differences and is learned during the training of a deep random forest.
Inspired by this operator, we introduce a simple yet efficient new descriptor that
captures local level changes in a depth image using the kernels shown in figure 2.
Let Kk be one of the HDD kernels with k ∈ {1, ..., 4}. We define the normalized
convolution response at position (x, y) as

Cks(x, y) = (Kk ∗ Ps(x, y))/Ds(x, y), (2)

where s ∈ {1, ..., n} is the scale of the depth image and Ps(x, y) is the depth image
patch at location (x, y) for scale s. The convolution is applied over a scale space
to capture the changes in different spatial neighborhoods. The responses are also
normalized by the depth value at the center of each patch for depth invariance.
For each cell, the descriptor is then built by quantizing all the responses and by
binning them into a 3D histogram of kernel, scale and quantization levels.

3 Experimental Results and Discussions

We evaluate our approach on a new RGB-D dataset recorded in an operating
room using an Asus Xtion Pro Live camera. To capture different views of the
room, the camera position is changed among three possible locations, as shown
in figure 1. All activities happening in the OR are recorded for seven half days at
20fps. Due to the large number of frames and the similarity of consecutive frames,
we manually annotate every 500th frame to provide ground truth positions for
the upper body parts. Ultimately, we obtain a dataset that includes 1451 frames
containing 1991 annotated persons and that is balanced across the half days.
We have also selected 173 frames that do not contain any human to serve as
negative examples. Since the distances of the annotated persons with respect
to camera vary in the range of [1.2 − 4.5] meters, body parts at multiple scales
are present in this dataset. Different individuals including surgeons, nurses and
anesthesiologists wearing various clothes, such as scrub suits, surgical gowns and
radiation protection aprons have been annotated. We have divided the dataset
into seven disjoint sets where all frames in a set belong to the same half day
recording. A leave-one-out scheme is applied so that one set is used as test set
and the rest as training set. We report the average results of seven-fold cross
validation during the evaluation.

Following current practice in the literature, we use the probability of correct
keypoint (PCK) as evaluation metric [13]. A tight bounding box is obtained
from the annotated upper body pose of each person. Given the bounding box,
the pose estimator returns a set of keypoints indicating the body joint locations.
A keypoint is correct if it falls within α .max(w, h) pixels of the ground truth,
where w and h are respectively the width and height of the bounding box, and α
specifies the relative threshold used to consider a keypoint as a correct detection.
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Table 1. PCK results for different appearance models on the clinician pose dataset.

Color Desc. Depth Desc. Head Shoulder Elbow Wrist Hip Total

I-HOG - 84.12 72.70 56.98 56.53 45.91 63.25
- D-HOG 90.87 83.30 65.15 66.21 57.12 72.53

I-HOG D-HOG 93.92 84.75 70.26 67.80 59.54 75.25

- HONV 84.80 80.20 58.64 56.81 47.52 65.60
I-HOG HONV 92.52 85.89 69.31 68.91 60.27 75.38

- HDD 91.18 82.89 67.35 69.93 62.12 74.69
I-HOG HDD 92.76 84.10 71.12 71.62 63.62 76.64
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Fig. 3. Examples of pose estimation using I-HOG and I-HOG+HDD.

We set α = 0.2 as proposed by [13]. In table 1, we present the evaluation results
for the different appearance models on the clinician pose dataset. To combine
different appearance models, we concatenate their descriptors. A cell size of 6×6
pixels has been set to stay consistent with the one commonly used with HOG.

HOG: We construct the body part appearance models using the HOG descrip-
tor in three different ways. We first evaluate HOG on color images (I-HOG) to
generate the baseline using the same parameters as in [13]. Second, we apply the
same descriptor on the depth images and follow the same pipeline (D-HOG).
Finally, both I-HOG and D-HOG are used to jointly learn body part models.
D-HOG improves the results over the baseline significantly (+9.28%), which indi-
cates the strength of depth-based appearance models as compared to the original
color-based one. Since the same descriptor is used for both I-HOG and D-HOG,
it highlights that the intensity gradient is not always reliable in such an envi-
ronment due to the high color similarity of the clothes and equipments as well
as the severe illumination changes, while depth gradients provide more robust
representations. The representation based on I-HOG+D-HOG boosts the perfor-
mance even more (+12%) by building a strong appearance model that combines
the complementary information provided by the color and depth sensors.

HONV: To evaluate the performance ofHONV, a normalization scheme is needed
for the descriptor. We have compared the L2-norm and L2-Hys normalization
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schemes, where L2-Hys is similar to L2-norm but limits the maximum value to 0.2.
Since both normalization methods show similar performance and L2-Hys is used
with HOG, only the results with the L2-Hys normalization scheme are reported.
HONV improves the results (+2.35%) over the baseline and its combination with
I-HOG enhances the performance (+12.13%).

HDD: We compute the HDD descriptor in three scales and coarsely quantize
the kernel responses into 10 levels to be robust to noise and spatial distortions.
Thus, we obtain a descriptor of size 4× 3× 10 per cell. Since L2-norm and L2-
Hys normalizations show similar performance, following the same reasoning as
before, we report the results with L2-Hys normalization. As shown in table 1, the
HDD descriptor significantly improves the results over the baseline (+11.44%).
Combining both HDD and I-HOG further boosts the performance (+13.39%).

In summary, the experiments show that the color descriptor I-HOG is not
always reliable due to the lack of texture on the surgical clothes and to the
color similarities of clothes and equipments, while the depth descriptors provide
more robust body part representations. Table 1 also shows the results per body
part. High improvements on shoulder detection are obtained using all depth
descriptors. This can be explained by the very distinctive depth changes on
shoulders that are often not captured by the color images due to color similarities
or illumination changes. However, noisy depth maps can heavily distort edges
and surface normals, especially when body parts are close to each other. The
consistent performance improvement of HDD over the other depth descriptors
on the most challenging parts, namely elbow and wrist, shows the benefits of its
coarse representation in such cases. Finally, the combination of color and depth
descriptors improves the body part models and the best performance is obtained
using I-HOG+HDD. Figure 3 shows the overlaid skeletons for several frames
using I-HOG and I-HOG+HDD. The first two columns illustrate cases where
the color-based body part detector is confused by intensity changes while the
HDD-based detector correctly localizes the body parts. The last column shows
failure cases for both descriptors that indicate the need for better occlusion
handling and 3D inference.

4 Conclusions

In this paper, we propose an approach based on pictorial structures for human
pose estimation in the operating room. We first extend the appearance represen-
tations used in PS to RGB-D images by constructing strong and discriminative
body part detectors using both color and depth images to deal with the visual
challenges present in the room. We also propose a new descriptor for depth im-
ages that encodes the local level changes in a 3D histogram. Since this descriptor
is computed over a scale space and coarsely discretized, it is robust to local ge-
ometric distortions. Furthermore, to quantitatively evaluate our approach, we
generate a novel RGB-D dataset in which upper body poses of clinicians are
manually annotated. We then conduct a series of experiments that compare the
different appearance representation approaches. We show that depth descriptors
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are performing better than the color descriptor. Furthermore, the combination
of the color and depth descriptors always improves the body part detections.
Finally, the proposed HDD descriptor improves the performance by 13.39% over
the baseline and significantly enhances the elbow, wrist and hip detections.

Acknowledgements. This work was supported by French state funds man-
aged by the ANR within the Investissements d’Avenir program under refer-
ences ANR-11-LABX-0004 (Labex CAMI), ANR-10-IDEX-0002-02 (IdEx Unis-
tra) and ANR-10-IAHU-02 (IHU Strasbourg).

References

1. Andriluka, M., Roth, S., Schiele, B.: Discriminative appearance models for pictorial
structures. Int. J. Comput. Vision 99(3) (2012)

2. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition.
Int. J. Comput. Vision 61(1), 55–79 (2005)

3. Kadkhodamohammadi, A., Gangi, A., de Mathelin, M., Padoy, N.: Temporally
consistent 3D pose estimation in the interventional room using discrete MRF opti-
mization over RGBD sequences. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abol-
maesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 168–177. Springer,
Heidelberg (2014)

4. Lea, C., Facker, J.C., Hager, G.D., Taylor, R.H., Saria, S.: 3D sensing algorithms
towards building an intelligent intensive care unit. In: AMIA CRI (2013)

5. Loy Rodas, N., Padoy, N.: Seeing is believing: increasing intraoperative aware-
ness to scattered radiation in interventional procedures by combining augmented
reality, monte carlo simulations and wireless dosimeters. International Journal of
Computer Assisted Radiology and Surgery, 1–11 (2015)

6. Mason, J., Ansell, J., Warren, N., Torkington, J.: Is motion analysis a valid tool
for assessing laparoscopic skill? Surgical Endoscopy 27(5), 1468–1477 (2013)

7. Noonan, D.P., Mylonas, G.P., Darzi, A., Yang, G.Z.: Gaze contingent articulated
robot control for robot assisted min. invasive surgery. In: IROS (2008)

8. Padoy, N., Mateus, D., Weinland, D., Berger, M.O., Navab, N.: Workflow Moni-
toring based on 3D Motion Features. In: VOEC-ICCV, pp. 585–592 (2009)

9. Schwarz, L., Bigdelou, A., Navab, N.: Learning gestures for customizable human-
computer interaction in the operating room. In: Fichtinger, G., Martel, A., Peters,
T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 129–136. Springer, Heidelberg
(2011)

10. Shotton, J., Fitzgibbon, A.W., Cook, M., Sharp, T., Finocchio, M., Moore, R.,
Kipman, A., Blake, A.: Real-time human pose recognition in parts from single
depth images. In: CVPR, pp. 1297–1304 (2011)

11. Tang, S., Wang, X., Lv, X., Han, T., Keller, J., He, Z., Skubic, M., Lao, S.: His-
togram of oriented normal vectors for object recognition with a depth sensor. In:
Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS,
vol. 7725, pp. 525–538. Springer, Heidelberg (2013)

12. Toshev, A., Szegedy, C.: DeepPose: Human pose estimation via deep neural net-
works. In: CVPR (2014)

13. Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of
parts. PAMI 35(12), 2878–2890 (2013)


	Pictorial Structures on RGB-D Images for Human Pose Estimation in the Operating Room
	1 Introduction
	2 Method
	2.1 Flexible Mixtures of Parts
	2.2 Appearance Model

	3 Experimental Results and Discussions
	4 Conclusions




