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Abstract. Slipped Capital Femoral Epiphysis (SCFE) is a common pathologic 
hip condition in adolescents. In the standard treatment, a surgeon relies on mul-
tiple intra-operative fluoroscopic X-ray images to plan the screw placement and 
to guide a drill along the intended trajectory. More complex cases could require 
more images, and thereby, higher radiation dose to both patient and surgeon. 
We introduce a novel technique using an Inertial Measurement Unit (IMU) for 
recovering and visualizing the orthopedic tool trajectory in two orthogonal X-
ray images in real-time. The proposed technique improves screw placement ac-
curacy and reduces the number of required fluoroscopic X-ray images without 
changing the current workflow. We present results from a phantom study using 
20 bones to perform drilling and screw placement tasks. While dramatically re-
ducing the number of required fluoroscopic images from 20 to 4, the results al-
so show improvement in accuracy compared to the manual SCFE approach. 
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1 Introduction 

Computer-assisted surgery (CAS) has been used in various clinical procedures.  
Surgical planning methods for image guidance fall within two broad categories: vol-
umetric image-based navigation (primarily, CT and MRI) and intraoperative fluoro-
scopic navigation [1]. Both methods could be used in passive and active CAS systems 
[2]. CAS systems have found increased use particularly in orthopedic surgery, where 
surgeon interaction is largely with rigid anatomy that is immobilized with relative 
efficacy. In many orthopedic procedures, the surgeon relies heavily on intra-operative 
fluoroscopic images; from planning implant trajectory, to guiding intra-operative 
positioning, and finally, to confirming implant position at completion. Antirotator 
proximal femoral nailing and intramedullary nailing of femur fracture are examples of 
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both surgeon and patient. A typical work-flow involves the surgeon extrapolating a 
tool entry point based on target site and optimal tool orientation using fluoroscopic 
images. Once an optimal tool trajectory is evaluated, additional X-ray images are 
acquired to confirm that the tool is being inserted along this planned path. On aver-
age, about 20 x-ray images are acquired to deduce the best orientation and guide the 
tool during the procedure. The question we asked is: “What new information of clini-
cal utility are these additional x-ray images providing?” Once a surgeon has mapped 
out the procedural workflow using pre-operative planning images, these additional 
images serve no clinical utility beyond confirming tool orientation. Our approach was 
to use a relatively inexpensive hardware device to augment this information in lieu of 
x-ray image. We were able to register and super-impose the real-time tool trajectory 
on two pre-operative orthogonal x-ray images. This results in improving screw 
placement and greatly decreased radiation exposure.  

We chose an Inertial Measurement Unit (IMU) because of its compact size, low 
cost, and accurate orientation representation. The IMU used for this system is an  
X-IMU (x-io Technologies, Bristol, UK). The device consists of a 3-axis gyroscope, 
3-axis accelerometer, and a 3-axis magnetometer. It sends combined data from the 
various sensors encapsulated in each data packet. Data transfer is done over Bluetooth 
LowEnergy (BLE) wireless protocol to our application running on a laptop at a rate of 
512 packets per second. The laptop application uses a sensor fusion algorithm [13] to 
calculate the current orientation. We designed a 3D-printed fixture which mounts to 
the drill base and houses the IMU device. This provides a fixed, known relation be-
tween the drill bit and IMU. We used an Epiphan DVI2USB3.0 frame-grabber 
(Epiphany Systems Inc., Palo Alto, CA) to frame-grab the x-ray images from the 
Siemens Zeego system. To facilitate a more ergonomic surgeon experience, we 
streamed the laptop visualization to a Samsung tablet placed next to the surgeon.  

In this paper, we introduce two different methods to assist the surgeon. In method 
(A) we use one image, one pivot point placed on the bone to identify an entry point, 
and a calibrated IMU placed within the image plane. In method (B) we use two or-
thogonal x-ray images and four points (1 pivot point and three fiducials for coordinate 
registration). No additional calibration of the IMU is required in the latter approach. 
 
Pre-operative Set-up: In method (A), we used a 3D-printed calibration fixture to 
align the IMU to the patient table coordinate, shown in Fig 2a. During the procedure, 
we used a second 3D-printed fixture to affix the IMU to the drill, shown in Figure 2b. 
The IMU calibration fixture orients the IMU XY-plane with the A-P fluoroscopic 
image plane, and IMU YZ-plane with the lateral fluoroscopic plane. The patient table 
position and Zeego robot coordinates are inherently calibrated. Therefore, by orient-
ing the IMU coordinate frame with respect to the patient table, we have a calibration 
between fluoroscopic image plane and the IMU coordinates. For method (B), the 
registration between IMU and fluoroscopic image coordinates is done based on selec-
tion of four corresponding points in each pair of orthogonal x-ray images. The four 
points are comprised of the drill tip and three 8mm diameter metal sphere fiducials, 
shown in Fig 2c. 
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Fig. 5. Post x-ray evaluation
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