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Abstract. Image based detection, tracking and pose estimation of sur-
gical instruments in minimally invasive surgery has a number of potential
applications for computer assisted interventions. Recent developments in
the field have resulted in advanced techniques for 2D instrument detec-
tion in laparoscopic images, however, full 3D pose estimation remains
a challenging and unsolved problem. In this paper, we present a novel
method for estimating the 3D pose of robotic instruments, including ax-
ial rotation, by fusing information from large homogeneous regions and
local optical flow features. We demonstrate the accuracy and robustness
of this approach on ex vivo data with calibrated ground truth given
by surgical robot kinematics which we will also make available to the
community. Qualitative validation on in vivo data from robotic assisted
prostatectomy further demonstrates that the technique can function in
clinical scenarios.

1 Introduction

Robotic minimally invasive surgery can facilitate procedures in confined and
difficult to access anatomical regions. However, accessing the anatomy with
robotic instruments reduces the surgeon’s ability to sense force feedback from
instrument-tissue interactions and the limited field of view of the surgical camera
makes localization with respect to preoperative patient data challenging. Com-
puter assisted interventions (CAI) can integrate additional information during
the operation to help the surgeon and knowing the 3D position and orienta-
tion of the surgical instruments during surgery is a critical CAI element. The
instrument pose can additionally be used in robotic surgery to provide control
enhancements with dynamic motion constraints or to detect tool-tissue interac-
tions and provide force feedback [13].

Image-based methods can potentially estimate instrument pose in the ref-
erence frame of the laparoscope without requiring electromagnetic or optical
sensors [6,12]. This usually involves extracting image features such as edges,
points or regions and then solving alignment cost functions which measure the
agreement with parametrized models of the tool [10]. Gradient based methods
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are often preferred but it is challenging to develop cost functions that do not
easily become trapped in local minima and fail to find the correct pose [15,1]. [9]
used gradient free optimization from color and texture features for articulated
instruments but the chosen cost can be complex to optimize resulting in slow and
often inaccurate solutions. Another alternative is to use Random Forests (RF)
to detect instrument parts [14] which gives promising results and low computa-
tional cost but is only shown as a 2D tracking method. Using robot kinematic
information from the joint encoders has been investigated but accumulation of
errors can result in significant error and bounded brute-force template-matching
has been employed to reduce the offset [3]. Region based methods for surgical
instruments were proposed in [1] where bag-of-pixel based object appearance
models were used to demonstrated pose estimation that is robust to viewpoint
and illumination changes [4]. However disregarding all spatial information within
the object boundary makes it challenging to recover the instrument roll axis and
the yaw axis which is usually strongly affected by the foreshortening visual cue.
Additional cues have been fused with region features to obtain more stable track-
ing but did not address the correspondence problem when dealing with multiple
point detections on the instrument tip [2].

In this paper, we present a novel image-driven pose estimation technique for
robotic instruments in minimally invasive surgery (MIS). This is achieved by
fusing large scale region based constraints with low level optical flow information.
The interior homogeneous-intensity regions of the instruments are described with
separate appearance models and this is used to formulate region based alignment
as a multi region problem rather than using a binary silhouette. The interior
instrument appearance is a strong regional cue on robotic instruments and helps
to solve the foreshortening problem by introducing a full visible boundary in the
image plane. We focus on estimating rigid 3D pose without the full articulation
of the robotic instruments. Quantitative validation is shown on calibrated ex
vivo data collected using the da Vinci® research kit (DVRK) and API [8] and
qualitative validation is demonstrated on challenging in vivo data.

2 Method

Our method works by fusing large-scale region features, which are based on the
output of multi-label probabilistic classification, with small-scale flow features.
The region features drive coarse pose estimation through the alignment of pre-
dicted regions generated from the projection of the instrument, given a particular
pose estimate, with the detected regions on the classification map. To improve
fine scale estimation, salient features on the instrument surface are tracked from
frame-to-frame using optical flow.

2.1 Multi-label Probabilistic Classification

We use RFs to provide probabilistic region classification an image, assigning
pixel to one of K object classes, where in a typical image there will be K − 1
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regions for an instrument and 1 region for the background (see Fig. 1a. When
applied to classification, each RF is an ensemble of decision trees which each
vote on a labelling for the input pixel. The vote of a single tree is decided by
directing an input sample x from a root node §parent to one of its two child
nodes §child according to a linear model y = wx where the left child is chosen if
y < Ti and to the right node if y ≥ Ti where Ti is a node specific threshold value.
This root to child splitting is applied recursively on the sample until it reaches
a terminating node, known as a leaf node where it is given a label according
to a probability distribution p(C|x) stored in that node. Each tree in the forest
applies a classification vote and then these votes are averaged across all the trees
to obtain the output of the forest.

Training our forest involved the manual segmentation of a single frame con-
taining instruments positioned in front of a tissue background into the specified
K classes however, in principal a large background library of possible tissue types
and foreground models would be learned offline to allow the system to operate in
different surgical setups without re-training. We use a simple color based feature
set of Hue, Saturation, Opponent 1 and Opponent 2 which were shown to have
good classification on MIS images [1].

(a) (b)

Fig. 1. (a) shows the feature distribution for each of the K = 3 classes with output
classification and (b) shows example renderings of a robotic instrument CAD model
from Intuitive Surgical Inc.

2.2 Multi-region Segmentation with Level Sets

Statistical region-based 3D pose estimation is formulated as a segmentation prob-
lem, where the pose parameters which enable the silhouette of the projection of
a geometric model to optimally divide an image into two regions are estimated.
For robotic instruments, modelling internal homogeneous regions separately can
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be used to create strong delineating contours, which can improve the estimated
pose over modelling the interior with a single distribution and using only the
silhouette. We therefore model an instrument’s appearance with K − 1 statisti-
cal models so, given a single background model, we describe the image with K
statistical models. Pose estimation then becomes a problem of finding the K− 1
contours which divide the image plane up into K regions such that the pixels
within the ith region agree maximally with the ith statistical model.

We describe the segmenting contours using level sets of signed distance func-
tions [7,4] as they avoid the problem of an explicitly parametrized curve while
elegantly applying implicit correspondences between the region-based data con-
tours and the model projection contours. Finding the contours which optimally
assign each of the K models to the image becomes a variational problem which
is described using the the following cost:

Eregion(Θ) = −
K∑

i

∑

x∈Ω

log
(
H(φi(x, Θ))PΩi

f + (1−H(φi(x, Θ)))PΩi

b

)
(1)

where φi(x, Θ) is the Euclidean distance between at the pixel x and the closest
point on the contour generated from the ith model projection at pose Θ. φ(.) is
set to the negative distance outside the contour and positive inside. We represent
pose as translation and rotation for which we use the quaternion representation.
H(.) is a smoothed Heaviside function which truncates the values of φ into a spa-
tial prior on the model assignment. Ωi are the pixels within the ith region of the
image Ω and PΩi

f,b are the learned distributions for the pixels inside (foreground)

and outside (background) the ith contour. Rather than performing one-against-
all for the background distribution, we instead use the expected neighbour class
of the pixel x as the chosen background distribution.

2.3 Optimization and Tracking

The level set segmentation provides accurate pose estimation but in the presence
of fast motion and noise errors can appear especially around the roll axis of
the instrument where the contour cues may not provide sufficient constraints.
However, low level interior features and optical flow in the image can provide
strong cues about the motion of the instrument from frame-to-frame. We use
simple gradient-based salient features [11] and assuming the first frame contains
the correct pose, backproject the tracked points onto the object model and do
frame-to-frame tracking using the Lucas-Kanade method [5]. The optimization
of this functional involves the joint minimization of the region based cost which
we perform over both frames, if available, and the flow based cost solving for a
single set of pose parameters to obtain stereo constraints.
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E(Θ) = min
Θ

∑

j

Ej
region(Θ) + λ

N∑

i

||y′
i − P (yi, Θ)||2 (2)

where y′
i is the position of the ith optical flow tracked point in the image frame

and P (yi, Θ) represents our estimate of where the point yi projects to from the
surface of our model. In essence this is 2D-3D registration. The sum over j is
over the left and right frames of the stereo pair where Ej

region refers to the energy
function from the left or right frame. λ is the usual weighting factor between
our two cost functions and is set experimentally. We use gradient descent to find
the minimum for each frame and combine with a Kalman filter for temporal
consistency. Initialization is assumed to be correct for the first frame and can be
achieved within a few seconds using a manual positioning of the instrument.

3 Results

Our algorithm is written in C++ and OpenGL using OpenCV1. Processing time
measured on a single core of a 1.9GHz processor for classification of a single stereo
frame using a RF is ≈ 0.83 seconds, for a gradient descent step on one stereo
frame is ≈ 0.3 seconds (typically 10-20 steps required) and processing time for
the flow tracking is ≈ 0.006 seconds per frame. The most computationally ex-
pensive component is the region based cost for which each pixel is computed
independently allowing for real time speeds when using a GPU implementation
[10]. Furthermore, RFs are suitable for GPU parallelisation and by only perform-
ing classification in regions where the derivatives are non-zero, we can greatly
reduce the number of pixels which require classification to around 0.5% of the
image. The source code and data from our method are available online2.

3.1 Quantitative Validation

Using the da Vinci® API it is possible to estimate the position and orientation
of each robotic instrument by reading the motor joint encoder values and then
using the Denavit Hartenberg (DH) chain to compute the relative orientations
of the instruments and the camera. The encoder values accumulate errors over
time resulting in joints being offset from the camera frame, which is why image-
based estimation is important even when encoder information is available. The
majority of this error can be calibrated out with a fixed offset to obtain a ground
truth pose in the camera frame with high accuracy. We constructed an ex vivo
sequence of 1000 frames with a lamb liver tissue and computed the pose of the
instruments in each frame using our method and also computed a ground truth
pose using the robot forward kinematics. To assess our method, we compare

1 http://opencv.org
2 http://www.surgicalvision.cs.ucl.ac.uk/code

http://opencv.org
http://www.surgicalvision.cs.ucl.ac.uk/code
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Fig. 2. (a) RMS error in measuring translation from the camera center to the origin
of the model coordinates (near the head) from our algorithm and from the comparison
method when compared to the ground truth estimates using ex vivo data. (b) Similar
to (a) but showing angular distance between axis and angular error when using the
angle-axis representation of the instrument pose.
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Fig. 3. Error distribution for data in Fig. 2. Red line shows median error while the top
and bottom of the box show the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers are plotted individually.

it with a our previous silhouette based tracking technique [2] which does not use
interior contours or the low level flow features.

We report errors for rotation using the angle-axis representation, computing
angular distance between the axes and also the difference between the angular
rotation around those axes, and translation between the camera and instrument
coordinate system, where we average the error at each frame across both instru-
ments. Trajectory errors are shown in Fig. 2 and error distributions are show in a
box plot in Fig. 3. Translational error is broken down into each axis in numerical
form in Table 1.
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Table 1. The mean error ± std deviation of each translational degree of freedom and
the rotational angle/axis of the robotic instruments for the ex vivo data. Top row is
our method and bottom is the comparison method.

x (mm) y (mm) z (mm) axis (rads) angle (rads)

This work 0.70 ± 0.31 0.50 ± 0.27 4.09 ± 1.82 0.08 ± 0.04 0.04 ± 0.03
[2] 1.09 ± 0.65 0.59 ± 0.29 7.48 ± 2.32 0.18 ± 0.10 0.13 ± 0.08

3.2 Qualitative Validation

We show qualitative validation for both ex vivo and in vivo sequences in Fig. 4
where the overlap between the projected model and the underlying image demon-
strates the accuracy of our method.

(a) (b)

(c) (d)

Fig. 4. Qualitative validation on a challenging ex vivo (a) and in vivo (b-d) sequence
showing an example left camera image, the same frame with instruments overlaid at the
current pose estimate and a 3D plot of the instruments in front of the stereo camera pair.

4 Conclusion and Discussion

The results from Fig. 2 and Table 1 demonstrate the significant quantitative
improvements in our algorithm in comparison to the state-of-the-art method [2],
in particularly with respect to the rotational parameters, which is the result
of using frame-to-frame low level flow features to estimate the instrument roll.
Results in the x and y direction are very stable with errors below ≤ 0.7 mm with
increased error in the z direction. This is typically the largest source of error as,
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even when using stereo constraints larger differences in 3D position only reveal
themselves as small inaccuracies in the 2D data/model alignment. Additionally
we observe that the errors increase over the duration of the experiment which is
common in model based tracking as errors from previous frames gradually cause
the correct estimate to drift away from the true solution. Future improvements
to our method will involve solving our cost function for all degrees of freedom of
the articulated robotic instrument rather than using SE(3).

Acknowledgements. The authors would like to acknowledge Simon Di-Maio
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