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Abstract. Magnetic Resonance (MR) imaging provides excellent image
quality at a high cost and low frame rate. Ultrasound (US) provides
poor image quality at a low cost and high frame rate. We propose an
instance-based learning system to obtain the best of both worlds: high
quality MR images at high frame rates from a low cost single-element US
sensor. Concurrent US and MRI pairs are acquired during a relatively
brief offline learning phase involving the US transducer and MR scanner.
High frame rate, high quality MR imaging of respiratory organ motion is
then predicted from US measurements, even after stopping MRI acqui-
sition, using a probabilistic kernel regression framework. Experimental
results show predicted MR images to be highly representative of actual
MR images.

1 Introduction

Magnetic Resonance (MR) imaging has gained considerable traction in the last
two decades as a modality of choice for image-guided therapies [1,2], primarily
due to its excellent soft-tissue contrast and its non-invasive nature. However,
major challenges include relatively slow frame rates and limited physical pa-
tient access within the MR bore. Perhaps the most notable effort made toward
scanner design and providing patient access has been the (now discontinued)
double-doughnut 0.5 T SIGNA SP/i design [3], whereby the interventionist could
step in-between two physically-separate magnets and gain direct access to the
patient. Other interventional MR systems have also been developed and commer-
cialized but patient access, MR-compatibility of instruments and overall costs
have remained considerable hurdles. In contrast to MR imaging, ultrasound (US)
imaging provides fast frame rates and nearly-unhindered physical access to the
patient. US imaging systems are cheaper and faster than MR, yet produce im-
ages that are often found lacking in terms of contrast and overall quality. As
a consequence, several noteworthy efforts have been made to combine the two
complementary imaging modalities and a body of work has emerged on devel-
oping hybrid methods [4,5,6,7,8,9,10]. In [4,5], hybrid 2D US/MR systems were
proposed where orientation information extracted from US data was used to up-
date the image slice position of an SSFP sequence in real time, for prospective
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motion compensation in a motion phantom. A similar hybrid system was pre-
sented in [7], where a clinical US imaging system was integrated with 1.5T and
3T clinical MR scanners for simultaneous 4D MRI and US imaging.

The present work involves a small 8mm-diameter single-element MR-compat-
ible ultrasonic transducer applied to the skin of the abdomen and held in place
using a simple adhesive bandage (Figure 1). A regular flexible MR coil array can
readily be wrapped over this small US probe, at no detectable penalty in MR
image quality. The emitted US field is not focused, it is expected to penetrate
and reflect possibly several times within the abdomen. A-mode ultrasound raw
data signals (USrd) are acquired at a very high frame rate during regular MR
image acquisition, and these signals act as a unique signature for the internal
organ configuration, including respiratory state. This is in sharp contrast with
more traditional US imaging whereby the imaging probe would consist of an
array of transducer elements, hand-held over the anatomy of interest to capture
images. While the simple and convenient USrd sensor used here is insufficient to
produce spatially resolved US images, it provides a 1D trace rich in information
that can be correlated with simultaneously-acquired and spatially-resolved MR
images. It was previously shown that such a 1D USrd signal might be suitable as
a biometric navigator [8]. Here, we use a hybrid US-MR system to achieve two
goals within the realm of abdominal imaging under respiratory organ motion:
First, the temporal resolution of the MR image sequence is artificially boosted
by orders of magnitude using an algorithm that learns from a stream of simul-
taneous MR and US data, providing the interventionist with a real-time view
of abdominal organ motion. Second, after a learning phase the algorithm can
be applied to the US data alone, allowing high-rate image reconstructions even
when the patient is outside the scanner, thus offering a new take on the problem
of intra-procedural imaging. A distinguishing feature of the proposed approach
comes from the low cost of the US system and the simplicity of the generated
US signal.

2 Materials and Methods

2.1 Hardware Setup and Data Acquisition

An MR-compatible, single-element USrd sensor (Imasonics, 8-mm diameter, 5.8
MHz) was inserted into a specially-carved rubber disc (3.5 cm diameter, 1.4 cm
thickness), positioned onto the abdomen of the subject and held in place using
an adhesive bandage (Walgreens, bordered gauze 10.2×10.2 cm). MR images
were acquired using a 3T General Electric system (Signa HDxt Twin Speed,
40mT/m, 150T/m/s ) and a regular 8-element flexible cardiac array coil. Every
TR interval, the MR scanner generated a trigger pulse for a pulser/receiver
(Olympus 5072) to fire the USrd transducer. The resulting USrd data were
recorded on a server via a sampling card (NI PCI-5122, National Instruments).
The server also fetched the acquired MR raw data via a product raw-data server
connection. Both incoming data streams, MR and US, were time-stamped and
saved for processing. Figure 1 shows an overview of the experimental setup.
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Fig. 1. Overview of the hardware setup. Left: MR-compatible USrd sensor (top), placed
on the volunteer using adhesive bandage (bottom). Right: The system operates in two
modes. First, the subject is placed inside the MR scanner for combined MRI and
USrd acquisition (top). In this mode the system estimates MR images at high-speed
while still learning from incoming MR data. In scanner-less mode, only USrd data are
acquired but high-speed MR images are still synthesized based on the data from the
training phase. No MR scanner is required in this case.

Table 1. Overview of acquired datasets. S means ’sagittal’ and C means ’coronal’

Id Mode Acquisition
length

TR fI fUS Number of
MR images

Number of
US traces

[s] [ms] [Hz] [Hz]

1.1 S 64 7 1.5 142.9 95 9120
2.1 S 198 7 1.5 142.9 295 28 320
3.1 S 116 10 0.8 100 91 11 520

4.1-4.2 S 109-122 8-10 0.8-1.3 100-125 95-155 12160-14880
5.1-5.6 S+C 50-111 18 1.7 55.6 86-192 2624-6144

Three human subjects were recruited and imaged following informed consent,
over the course of four distinct scanning sessions (i.e. one of the subjects vol-
unteered for two sessions). For the first three sessions a simpler MR protocol
involving a single sagittal (S) plane was employed, while for the last session a
more involved sagittal-coronal (S+C) two-plane protocol was employed instead
(75% partial-Fourier, two-fold parallel imaging scheme). Imaging parameters are
listed in Table 1 and in the following: Flip angle = 30◦, matrix size = 128×96
or 128×128 (S) / 192×192 (S+C), slice thickness = 5mm, FOV = 20 cm (S) /
38 cm (S+C).

2.2 Algorithm - Simpler Case: Single-Plane MR Acquisition

Typical US image reconstruction algorithms, based on a delay-and-sum beam-
forming operation, are designed to discard much of the received US signals as
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they may have failed the basic US spatial encoding process; in contrast, the
proposed algorithm utilizes raw US data without discarding any of them. While
there is nothing special about the MR or the USrd signals obtained here, inter-
esting behaviors appear as correlations are found between them, allowing USrd
signals to become a surrogate for MR data. Given enough data is acquired for
these correlations to be learned from, it becomes possible to boost the temporal
resolution of a sequence of MR images by orders of magnitude. The overall pro-
posed approach is made particularly interesting by the fact that the generation
of MR-like images can be continued even after the subject is taken out of the
MR scanner, solely based on the USrd signal.

The majority of temporal models are based on the Markovian dependency as-
sumption, i.e. the current state is dependent only on its immediate predecessor.
Temporal modeling, either short term Markovian or cyclical motion, faces the
difficulty of estimating motion in the presence of irregularities, such as irregu-
lar breathing, gasping or coughing. Instance-based learning (IBL), on the other
hand, operates by storing a potentially large number of training data samples in
memory, then performing inference on new data based directly on previously-seen
instances. This non-parametric approach is fundamentally different to training
a parametric model from data instances and has many advantages: It can be
adopted in situations where parametric models are unknown or difficult to spec-
ify accurately and it scales to the granularity of the data space. Furthermore,
it is known [11] that IBL is in probabilistic terms equivalent to averaging over
all the (possibly infinitely many) models of a fixed model family. Thus, IBL will
become increasingly relevant as data acquisition, storage and retrieval systems
increase in size and speed.

Let Ut represent the observed ultrasound vector at time t and let It be a
random variable representing the estimated MR image at time t. Let further
D = {I, U} be the collection of all previously acquired MR and US data I and
U , respectively. Our method seeks to estimate It from Ut, i.e. to estimate an
MR image for each USrd signal coming in at a frequency much beyond that of
the MR image acquisition process. For this purpose we propose computing the
expected value of It conditioned on Ut,

E
It
[It|Ut, D] =

∫
It p(It|Ut, D)dIt =

∫
It p(It, Ut|D)dIt

p(Ut|D)
. (1)

The second equality results from applying the Bayes rule, where p(It, Ut|D) is
the joint density of observed US trace Ut and MR image It, conditioned on
previously seen data D. We propose an instance-based method for computing
Equation (1), as follows. The joint density in the numerator is estimated using
Kernel Density Estimation (KDE)[12] of the form

p(a, b) ≈ 1

N

∑
i

ka(a− ai)kb(b− bi). (2)

Let {(Ii, Ui)} be a set of training instances, consisting of N concurrently ac-
quired MRI and US pairs (Ii, Ui). As a modeling choice, we define ka to be the
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Dirac delta function centered at Ii and kb to be a Gaussian centered around Ui

with isotropic covariance matrix Σ = c · I, where I is the identity matrix. The
numerator in Equation (1) then becomes

∫
It p(It, Ut|D)dIt ≈ 1

N

∫
It
∑
i

δ(It − Ii)N (Ut;Ui, Σ)dIt (3)

=
1

N

∑
i

Ii N (Ut;Ui, Σ). (4)

The normalizing factor p(Ut|D) in the denominator of Equation (1) is unimpor-
tant in maximum a-posteriori estimation, however it is required for computing
the expectation. It can be estimated in a similar manner to the numerator as
follows:

p(Ut|D) ≈ 1

N

∑
i

N (Ut;Ui, Σ). (5)

Combining Equations (4) and (5), the final computational form of the estimator
in Equation (1) becomes

E[It|Ut, D] ≈
∑

i Ii N (Ut;Ui, Σ)∑
iN (Ut;Ui, Σ)

. (6)

Note that the forms of the numerator and denominator in Equation (6) are
equivalent to Nadaraya-Watson Kernel Regression [13].

Evaluating E[It|Ut, D] requires a computationally expensive sum over a po-
tentially large number of training samples. However with a suitably small c, the
sum is dominated by small number of ’nearest neighbors’ for Ut. A search can
performed to identify a set of k-nearest neighbors {Ui} of the current US obser-
vation Ut within the training data set. This search can be performed efficiently
with fast approximate search methods, e.g. k-d-trees. Equation (6) can then be
computed from elements within this subset. Note that with k = 1, the expec-
tation is equivalent maximum a-posteriori estimation, which in our experiments
leads to noisy estimates in the case of discrete data. Computing the expectation
with k > 1 leads to smoother estimates of It via considering a weighted average
of similar observations. Note also that a low posterior probability generally in-
dicates an outlier Ut that has not previously been observed, which can be used
to detect unexpected organ configurations.

2.3 Algorithm - Extension to Multiple-Plane MR Acquisition

An interesting extension to the algorithm is to work on MR sequences that
acquire multiple intersecting slices and to estimate a coherent volumetric image.
This means the probabilistic formulation must be adapted to take into account
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how well the matches of different planes agree. For the simplest case of two
alternating slice positions, the expectation now becomes

E
It,Jt

[[It, Jt]|Ut, D] =

∫ ∫
[It, Jt] p(It, Jt|Ut, D)dIt dJt, (7)

where [It, Jt] is a concatenation of the two images.
Let [It]L and [Jt]L be all pixels from It and Jt, respectively, that are located

at the intersection between the two planes. [It]L̄ and [Jt]L̄ represent all other
locations. The joint distribution p(It, Jt, Ut|D) can be factorized into condition-
ally independent regions of I and J given Ut, and a dependent region where they
intersect,

p(It, Jt|Ut, D) = p([It]L̄|Ut, D)p([Jt]L̄|Ut, D)p([It]L, [Jt]L|Ut, D). (8)

We model p([It]L, [Jt]L|Ut, D) with a GaussianN ([It]L; [Jt]L, ΣL) with empir-
ically-determined covariance matrix ΣL and arbitrarily choosing [It]L (or [Jt]L)
as the mean. Putting everything together and again applying KDE as done in
Equation (6) leads to

E
It,Jt

[[It, Jt]|Ut, D] ≈
∑

i

∑
j [Ii, Jj ] N (Ut;Ui, Σ)N (Ut;Uj , Σ)N ([It]L; [Jt]L, ΣL)∑
i

∑
j N (Ut;Ui, Σ)N (Ut;Uj , Σ)N ([It]L; [Jt]L, ΣL)

,

(9)

where Ui and Uj are the USrd signals corresponding to images Ii and Ji, respec-
tively. The generalization to an arbitrary number of image planes parallel to It
and Jt is straight forward by repeated application of the product rule in Equa-
tion (8). Allowing for arbitrary plane orientations involves higher-order terms
but follows the same principle.

3 Results and Discussion

Figure 2 shows examples of estimated images for times when an MR image
was also acquired. This allows to compare the estimates to their ground-truth
images. As the figure shows, estimates at both exhale and inhale are very similar
to the actual MR images acquired. In order to better visualize time, Figure 3
shows plots of a single line of pixels in superior-inferior direction over time (m-
mode) for dataset 6.1. At the beginning, neither the acquired images nor their
predictions reflect the temporally highly-resolved USrd signal. However, after
a short training period the estimated MR sequence runs at the same speed
as the ultrasound. Notably, after the MR acquisition is stopped, the algorithm
continues to give estimated MR frames that are very well in agreement with
the USrd signal. For datasets 1.1-4.2, the location of a clearly visible vessel was
manually selected in 10 MR images after one minute of learning. An average
error of 1.19 px (standard deviation 0.8 px) was determined, which shows that
the algorithm in fact estimates MR images that accurately represent respiratory
motion.
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Fig. 2. Comparison of acquired MR images and their estimates.
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Fig. 3. M-mode visualizations of dataset 6.1. The image on the right shows the position
of the m-mode line.

The proposed system could potentially be used to track lesions during image-
guided therapy. Compared to MR, it is extremely simple and cheap; even so, it
allowed temporal resolution to be improved by orders of magnitude compared to
MR alone. Limitations of the present study included the small number of human
subjects recruited so far, the fact they were healthy volunteers rather than pa-
tients, and the off-line nature of the currently-implemented reconstruction chain.
While all aspects of the processing did execute fast enough on an off-the-shelf
PC to be compatible with a real-time application, individual components have
not yet all been implemented and linked for truly real-time reconstruction and
display to occur. Future work further includes the development of problem de-
tectors to identify and gracefully handle all time periods when motion might
momentarily become too rapid and unpredictable, such as during violent cough-
ing or gasping.
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