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Abstract. A method for real-time localization of devices in fluoroscopic
images is presented. Device pose is estimated using a Hough forest based
detection framework. The method was applied to two types of devices
used for transcatheter aortic valve replacement: a transesophageal echo
(TEE) probe and prosthetic valve (PV). Validation was performed on
clinical datasets, where both the TEE probe and PV were successfully
detected in 95.8% and 90.1% of images, respectively. TEE probe position
and orientation errors were 1.42 ± 0.79 mm and 2.59◦ ± 1.87◦, while PV
position and orientation errors were 1.04 ± 0.77 mm and 2.90◦ ± 2.37◦.
The Hough forest was implemented in CUDA C, and was able to generate
device location hypotheses in less than 50 ms for all experiments.

1 Introduction

Detection and pose estimation of devices in x-ray fluoroscopic (XRF) images is a
challenging but important task for enabling multimodal image fusion in cardiac
interventional procedures. For example, catheter detection and tracking can be
used to provide motion compensation of anatomical roadmaps used to help guide
electrophysiology procedures [1]. Another application which has recently gained
interest is transesophageal echo (TEE) to XRF registration [2]. TEE/XRF reg-
istration allows anatomical information from echo to be combined with device
imaging from XRF.

A procedure that may benefit from a smart integration of XRF and TEE
imaging is transcatheter aortic valve replacement (TAVR). For example, obtain-
ing the optimal 3D echo cut-planes for anatomical and device visualization is
non-trivial, even for experienced echocardiographers. Furthermore, once the op-
timal echo view is obtained, the device is not necessarily easy to visualize. By
registering the two modalities, a prosthetic valve (PV) can be detected in XRF,
and its position and orientation may be used to compute the optimal echo cut-
planes for visualization. The PV can then potentially be rendered within the 3D
echo volume (Fig. 1) as an alternate imaging tool for guiding PV deployment.

A key component of the clinical workflow is automatic localization of the
devices at the beginning of an image sequence. In this paper, we describe a
common framework for TEE and PV localization in XRF images. A Hough
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forest (HF) detector was trained that can detect multiple parts of each device,
allowing for estimation of in-plane pose parameters. The data was validated on
1077 clinical images of the TEE probe and 388 of the PV.

Previous Work. In [3], the TEE probe was detected using the probabilistic
boosting-tree approach with Haar wavelets and steerable features. Out-of-plane
rotations were estimated using an oriented gradient binary template library. Av-
erage detection time was 0.53 seconds. In [4], the work from [3] was extended by
focusing on a framework for adapting a classifier generated with in silico training
data to perform better on in-vivo test data. Impressive results for detection of
in-plane TEE pose parameters were obtained in terms of localization accuracy,
low false positive rate, and detection speed.

In [5], the PV was manually segmented and then automatically tracked us-
ing template matching. To eliminate the need for manual interaction during
computed-aided interventions, the method presented in this paper focuses on
automatic device localization using a HF framework. Previously, this framework
was used for anatomy localization in CT volumes [6]. To the best of our knowl-
edge, our work is the first to employ a real-time HF for device localization during
image guided interventions.

TEE Probe

PV

Automatically selected slice 
through 3D echo volume

Model of valve

Fig. 1. Potential workflow enabled by TEE/XRF registration and PV detection. In
the XRF image, the red line perpendicular to the PV corresponds to a plane through
the echo image. The green line matches the viewing plane of the echo image.

2 Methods

2.1 Algorithm

We employ the HF framework for object localization [7]. A key component of
our implementation is the simultaneous detection of multiple object parts, which
allows for estimation of device pose under varying orientations. In the following
section, a review of the HF object detection framework is presented in context
of our application.
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Hough Forest Detector. A HF is a specific type of random forest that is
designed for object detection. A random forest is a collection of decision trees
that perform classification and/or regression. A HF takes image patches as input,
and simultaneously performs both classification (is it part of an object?) and
regression (where is the object?). The term “Hough” comes from the idea that
each input image patch classified as part of the object votes for the object center.
Votes are added in an accumulator image (“Hough” image, Fig. 3), and peaks are
considered as object detection hypotheses. In our implementation, we designed
a HF that locates two ends of a device, referred to as the “tip” and “tail”
(Fig. 3).
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Fig. 2. A simple example of a decision tree trained on a single image of the TEE
probe. Left: Example simulated TEE probe image, with locations of background (red)
and device (green) training patches. Right: Example of a simple decision tree. Input
data traverses the nodes based on binary test results and arrives at leaf nodes. In this
example, all of the patches from the training image are shown in their destination leaf
nodes.

A decision tree is an acyclic directed graph where each node contains a single
input edge (except the root node) and two output edges (except the terminal
nodes). During testing, data is input into the root node, and rules based on
binary tests (aka features) determine which edge to travel down. For image
patches, these binary tests typically encode patch appearance. Eventually the
data will arrive at a terminal “leaf” node. The leaf node contains data, learned
during training, about how to classify (or regress) the input data.

Each tree is trained by computing a set of binary tests on labeled training
data, which are used to establish splitting rules. The splitting rules are chosen
to maximize class discrimination at each node. In this work, binary pixel com-
parison tests are used due to their computational efficiency. Multi-channel image
patches are used as input data, where a channel can be the raw pixel intensities
or some operation computed on the intensities, e.g. gradient magnitude, blobness
filter, etc... For each multi-channel input training patch In, a set of K binary
tests are computed as follows:

Fk,n(pk, qk, rk, sk, τk, zk) = In(pk, qk, zk)− In(rk, sk, zk) < τk (1)
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Where (p, q) and (r, s) are patch pixel coordinates, τ is a threshold used for
detecting varying contrast, and z is the channel index. Image channels used in
this work were image intensity, the x-gradient and the y-gradient. Each channel

of each patch is normalized to have a range of 1 ( Iz(u, v) =
Iz(u,v)

max(Iz)−min(Iz)
) ,

Iz is the patch for channel z ).
Training begins by inputing a K×N training matrix with N training patches

and K tests into the root node (Fig. 2). For classification, a metric is computed
for each test k over all samples. In this work, the metric used for classification
is the information gain:

Gc
k = H(S)− |S1|

|S| H(S1)− |S0|
|S| H(S0) (2)

H(S) = −
∑

c∈C

p(c)log(p(c)) (3)

Where S is the entire set of training data, S0 is the set of training data where
Fk is false and S1 is the set of training data where Fk is true, and H(S) is the
Shannon entropy over all classes (device or background) in the set S.

Alternatively, for regression of continuous variables, the metric is:

Gr
k = |S|var(S) − |S1|var(S1)− |S0|var(S0) (4)

Where var(S) is the variance of continuous data describing the device orien-
tation or offset vectors within each set (non-device patches are ignored for this
calculation).

A random decision is made at each node on which attribute to base the
splitting rule on: class, offsets, or device orientation. If the offsets are chosen, a
random choice about which offsets to regress (“tip” or “tail”) is made. The test
that gives the maximum value of Gc

k or Gr
k is stored as the splitting rule for that

node, and the training data is passed onto the left or right child node according
to the splitting rule. The same process is completed until a maximum tree depth
D is reached or all of the samples in a node belong to the background class. The
terminal node is termed a “leaf” node, and it stores the classes labels and offsets
associated with all of the training data that arrived at that node. In order to
speed up run-time, offsets in each leaf node are partitioned into 16 clusters using
k-means and the cluster means replace the original offsets.

A key feature of HFs is the use of randomness during training, which helps
prevent over-fitting the classifier to the training data. This is accomplished by
only generating a small random subset of binary pixel tests for each tree, as
well as randomizing whether each node will build a splitting rule based on class,
offset vector, or device orientation. For example, in our implementation for the
TEE probe, 8192 out of over 1 million binary tests are available to each tree.

During testing, a new image patch centered on (up, vp) is fed into the root node
of each tree and traverses the tree according to the splitting rules established



Hough Forests for Real-Time, Automatic Device Localization 311

during training. When it arrives at a leaf node, each offset (uo, vo) in the leaf
node votes for the device parts in the Hough image accordingly:

IH(uH , vH) → IH(uH , vH) +
CL

|DL| (5)

Where (uH , vH) = (up, vp) + (uo, vo), CL is the proportion of device samples
in the leaf node, and |DL| is the number of offsets in the leaf node.

This process is then repeated at every patch and for every tree in the HF.
The final IH is blurred with a gaussian kernel and peaks are classified as tip and
tail detection hypotheses (Fig. 3).

HF input patches can be sampled densely at random locations or sparsely at
salient key-points. For our application, we found that device detection was faster
and more reliable using densely sampled patches at random locations.

Tip

Tail Tail

Tip
Tip Hough Image Tail Hough Imageo Tip/Tail Detections

TEE Probe

PV

Fig. 3. Left: TEE probe and PV, with tip and tail labeled. Right: TEE probe and
valve detection hypotheses with corresponding Hough images showing clearly defined
peaks at the tip and tail of the devices.

Hypothesis Scoring. A Hough image peak was considered a valid hypothesis
if it was > 0.8 ∗max(IH) following non-maximum suppression. At most, the top
10 peaks were retained as part hypotheses, but in practice usually only a few
peaks survived the first criteria. All L tail and M tip hypotheses are combined
to form L×M tip-tail pair hypotheses.

Next, unfeasible tail-tip pair hypotheses were removed. This was done by
creating tail-tip pair distance and orientation matrices, and removing pair hy-
potheses that fell outside of the ranges of distance and orientation seen in
the training datasets. Remaining tip-tail hypotheses are then given a score
Slm = IHtip (ul, vl) · IHtail

(um, vm). The tip-tail pair with the highest score is
selected as the detected device.

2.2 Experiments

Computer Hardware and Software. All experiments were run on a Dell
Precision T7500 work station running Ubuntu Linux with a 3.47 GHz Intel Xeon



312 C.R. Hatt, M.A. Speidel, and A.N. Raval

processor and a NVIDIA Tesla K20 GPU. HF code was written in CUDA C.
Retrospective clinical dataset processing was approved by the local institutional
review board. The Philips X2-7t probe and the Edwards Sapien valve were used
in this study.

Training Datasets. For the TEE probe, the classifier was trained on simu-
lated XRF images. Similar to the method from [4], hybrid images were created
by blending anatomical background images from TAVR cases with digitally re-
constructed radiographs (DRRs) of the TEE probe. For the PV, 389 clinical
images from TAVR cases were manually annotated and used for training. In or-
der to increase the size of the training dataset for the PV detector, each training
image was randomly rotated and re-used as if it were a new image. The PV was
only trained and detected in the pre-deployment state.

Table 1. HF parameters for the TEE and PV. N = number of training samples. K =
number of tests per tree. T = number of trees. D = tree depth.

Patch size N K T D Image resolution Patches at run-time

TEE 17×17 65536 8192 32 10 1.0 mm 16384
PV 25×25 16384 8192 64 8 0.5 mm 16384

Validation. The TEE and PV detector were tested on 1077 and 388 clinical
XRF images, respectively. Ground truth data for the TEE images was obtained
by manually registering a model of the TEE probe to the image, followed by
2D/3D registration based refinement using the method from [2], which reported
sub-millimeter in-plane position accuracy. The PV ground truth was obtained
by manual annotation of the tip and tail in the test images.

For validation, we measured the rate of successful detections, the mean lo-
calization error for successful detections, and the orientation error for successful
detections. HF run-time was also reported, which was the amount of time it took
for the HF to process all patches for each tree and create the Hough images. A
detection was considered successful if the distance error was less than 5 mm and
the orientation error was < 10◦. Localization error was the Euclidean distance
between the true device center and the measured device center computed at the
detector (i.e. projection magnification was not considered.)

3 Results

Results are summarized in Table 2. The rate of successful detections was 95.8%
for the TEE probe and 90.1% for the PV. This was competitive with previously
reported results for the TEE probe [3,4], especially when considering that the HF
was trained on simulated images. For successful detections, both devices resulted
in localization errors less than 1.5 mm on average, and orientation errors less
than 3.0◦.
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Table 2. Detection results for the HF device detector.

# Test
images

Successful Detection
Rate (%)

Localization
Error (mm)

Orientation
Error (◦)

Run-time for
HF (ms)

TEE 1077 95.8 1.42 ± 0.79 2.59 ± 1.87 38.8 ± 5.00
PV 388 90.1 1.04 ± 0.77 2.90 ± 2.37 37.0 ± 2.29

4 Discussion

The presented method was able to accurately detect both the TEE probe and
the PV in over 90% of images. Most of the failed detections were due to occlusion
from x-ray contrast during aortagraphy. The success rate for the PV was higher
than expected, because a large percentage of the PV test images were recorded
during contrast infusion. Furthermore, the PVs in the training and testing images
varied greatly in size and appearance due to different patient sizes and valve
models. This indicates that the HF classifier is robust to appearance variation
and that greater detection performance may be possible using a classifier trained
on single specific valve size and model.

The real-time performance of the method is contingent on the full image
processing workflow. However, we expect that the bulk of processing is required
by the HF, which we have shown has a maximum run-time less than 50 ms. The
other steps, which comprise random patch location generation and extraction,
can be implemented very efficiently on the GPU using texture reads. We expect
that the full image processing workflow can be completed in less than 60 ms,
which is sufficient for typical fluoroscopic imaging frame rates (15 fps)

The main application of these methods is to enable XRF/Echo image fusion,
where the device will either be rendered in the echo image, or soft-tissue infor-
mation from echo will be projected onto the XRF image. It is expected that
these tools will minimize the need for use of x-ray contrast, which is not only
healthier for the patient, but also decreases the risk of device detection failure.
For the TEE probe, future work will focus on detection of the out-of-plane pose
parameters, which is often a necessary step for fully automatic initialization of
2D/3D registration. For the PV, future work will focus on not only detecting the
PV prior to deployment, but also during and after. This will allow a dynamic
model of the PV to be rendered in echo images, potentially resulting in new
image guidance tools for TAVR deployment.

5 Conclusion

A method for real-time, automatic detection of devices in fluoroscopic images is
presented. Based on the Hough forest object detection framework, the method
is fully automatic, and has the potential to operate at fluoroscopic frame rates.
The percentage of successful device detections was 95.8% for the TEE probe and
90.1% for the prosthetic valve, despite the presence of x-ray contrast in many of
the image frames. Future work will focus on detecting PV deformation during
and after valve deployment for enhanced multi-modal guidance of TAVR.
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