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Abstract. Registration between transesophageal echocardiography
(TEE) and x-ray fluoroscopy (XRF) has recently been introduced as
a potentially useful tool for advanced image guidance of structural heart
interventions. Algorithms for registration at fluoroscopic imaging frame
rates (15-30 fps) have yet to be reported, despite the fact that probe
movement resulting from cardiorespiratory motion and physician ma-
nipulation can introduce non-trivial registration errors during untracked
image frames. In this work, we present a novel algorithm for GPU-
accelerated 2D/3D registration and apply it to the problem of TEE probe
tracking in XRF sequences. Implementation in CUDA C resulted in an ex-
tremely fast similarity computation of < 80 µs, which in turn enabled
registration frame rates ranging from 23.6-92.3 fps. The method was vali-
dated on simulated and clinical datasets and achieved target registration
errors comparable to previously reported methods but at much faster
registration speeds. Our results show, for the first time, the ability to ac-
curately register TEE and XRF coordinate systems at fluoroscopic frame
rates without the need for external hardware. The algorithm is generic
and can potentially be applied to other 2D/3D registration problems
where real-time performance is required.

1 Introduction

Image registration between transesophageal echocardiography (TEE) and x-ray
fluoroscopy (XRF) has generated interest in recent years [1] as a tool for enhanc-
ing image guidance during structural heart interventions. XRF is considered the
primary imaging modality for real-time visualization of devices, while TEE can
image soft-tissue structures in real-time. Combining these two modalities in a
single visualization framework has the potential to provide the best of both
worlds: simultaneous imaging of devices and cardiac anatomy.

Registration can be accomplished by estimating the 3D pose of the TEE
probe in the XRF imaging space using a variety of methods. 2D/3D registration
methods are capable of accurately estimating all pose parameters by iteratively
matching a 3D model of the probe to the XRF image. In [2,3], this was accom-
plished by generating a digitally reconstructed radiograph (DRR) and computing
a similarity metric between the DRR and the XRF image. DRR generation was
significantly accelerated using a GPU-based raycasting algorithm, but the over-
all registration frame rate was still on the order of 0.3 − 2.0 frames-per-second

c© Springer International Publishing Switzerland 2015
N. Navab et al. (Eds.): MICCAI 2015, Part I, LNCS 9349, pp. 290–297, 2015.
DOI: 10.1007/978-3-319-24553-9_36



Robust 5DOF Transesophageal Echo Probe Tracking at Fluoroscopic 291

(fps) for a single plane XRF system. During a cardiac procedure, the probe can
move around quickly due to cardiorespiratory motion or physician manipulation.
There is therefore a need for a registration method that performs at a typical
XRF imaging frame rate (e.g. 15 fps).

In [4], accurate, 20 fps registration was accomplished by attaching radio-
opaque fiducials to the TEE probe. Aside from the need for custom modifica-
tion, this solution was undesirable due to its potential to increase the risk of
esophageal injury. In [5], DRR generation was accelerated by modeling the TEE
probe as a mesh and using OpenGL based rendering. DRR computation was sig-
nificantly accelerated, but the overall similarity metric computation time (1 ms
per iteration) is still not fast enough to perform registration at imaging frame
rates based on results reported in this paper.

In this work, we report on a novel 2D/3D registration algorithm that can
operate at between 23.6 and 92.3 fps. Similar to the work presented in [6],
our algorithm efficiently computes an image similarity metric without explicitly
generating any DRRs. In simulated and clinical datasets, our method performed
similarly in terms of target registration error to standard methods combining ray-
casting with normalized cross-correlation (NCC) and gradient correlation (GCC)
similarity metrics, but operated at much higher frame rates.

2 Methods

2.1 Algorithm

Image-based 2D/3D registration is accomplished by estimating the 3D location
and orientation (pose) of an object, generating a DRR based on this estimate,
and comparing the DRR to the XRF image using a computed image similarity
metric. Using non-linear optimization, this process is repeated until the similarity
converges to an optimal value. Since this is an iterative process, a key determi-
nant of overall registration time is the time needed to generate the DRR at each
step of the optimization. For our application, optimization typically requires
150-300 similarity computations, depending on how close the initial pose is to
the final solution. This means that both DRR generation and similarity compu-
tation need to be completed in roughly 300 μs on average for 15 fps registration.
DRRs are typically generated using raycasting techniques. These methods com-
pute line integrals, at each DRR pixel, along simulated x-rays passing through a
volume of interest. An alternative method is splatting, where a DRR is generated
by spatially transforming a 3D point-cloud model, projecting the transformed
points onto the detector plane, and summing up values at discrete detector pixel
positions. The point model is often generated from a CT scan. Mathematically,
the DRR can be expressed as:

D(ui) =
∑

j∈Si

−V (xj), Si = { j | �P · T · xj� = ui } (1)
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Here, Si refers to the set of points that project onto pixel i after the model
has been spatially transformed, xj is the 3D coordinate of the jth model point,
V (xj) is the intensity value associated with the jth model point, T is the spa-
tial transformation matrix describing 6DOF translation and rotation, and P
is the projection matrix modeling the imaging process. Fig. 1 demonstrates a
comparison of TEE probe DRRs generated using raycasting and splatting.

Fig. 1. Methods for gen-
erating probe DRRs.

When using only a CPU for computation, splatting
can be more computationally efficient than raycasting,
especially when the size of the point cloud is small com-
pared to the size of the data volume it was derived
from. However, splatting does not necessarily translate
well to the GPU, because every projected point must
perform an indirect write operation at a random pixel
(see Fig. 2, left, line 3). However, it can be shown that
the correlation similarity metric can be reformulated
so that all of the write operations are replaced with
extremely fast texture reads on the GPU.

Consider the correlation (CC) between an XRF im-
age I(u) and a DRR D(u):

CC =
∑

i

I(ui)D(ui) (2)

For a splat-generated DRR, we can substitute the D(u) term to obtain:

CC =
∑

i

I(ui)(
∑

j∈Si

−V (xj)) = −
∑

i

∑

j∈Si

I(P · T · xj)V (xj) (3)

Finally, this simplifies to a sum over all 3D points:

CC = −
∑

j

I(P · T · xj)V (xj) (4)

This expression simply states that the correlation is equal to the sum, over
all 3D points, of the point intensity times the value of the pixel that it projects
onto. Equation 4 shows that the DRR does not need to be explicitly generated
to compute the similarity, enabling more efficient computation (Fig. 2).

//Splat correlation w/ DRRs

1 for each point x

2 u = P*T*x

3 DRR[u]=DRR[u] + -V[x]

4 for each pixel u

5 cc+=DRR[u]*I[u]

// Direct method w/o DRRs

1 for each point x

2 u = P*T*x

3 cc+=I[u] * -V[x]

4

5

Fig. 2. Pseudo-code for computation of correlation for explicit DRR generation (left)
and the proposed method (right).
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Because this similarity is inspired by splatting and is directly computed from
the image, without the explicit generation of a DRR, we refer to it as “direct
splat correlation” (DSC).

2.2 Experiments

3D TEE Model A Philips X7-2t TEE probe was used in this study. The 3D
model of the TEE probe was generated from a cone beam CT image (Philips
FD20). A point cloud representation of the probe was created using the following
procedure:

1. Features in the probeCT thatwere visually classified as having high-intensities
were manually segmented.

2. 216 points were randomly generated within the segmented region. This was
the smallest number of points that fit the criteria for both computational
efficiency and accuracy.

3. Linear interpolation was used to assign an intensity value to each point.

Computer Hardware and Software. All experiments were run on a Dell Pre-
cision T7500 work station running Ubuntu Linux with a 3.47 GHz Intel Xeon
processor and a NVIDIA Tesla K20 GPU. VNL libraries were used for optimiza-
tion, and all similarity functions were implemented in CUDA C. Retrospective
clinical dataset processing was approved by the local institutional review board.

Simulations. The first set of experiments tested the accuracy and speed of the
algorithm in silico compared to standard methods for XRF/TEE registration
reported in [2,3]. Simulation images (Isim) were a hybrid of real background
anatomy (Ixrf ) and synthetic DRRs (Idrr).

Synthetic DRRs were rendered using the splatting method with a point cloud
large enough to generate high qualityDRRs (221 points).The backgroundanatomy
was obtained using images from transcatheter aortic valve implantation (TAVI)
procedures and the hybrid image was formulated as:

Isim = Ixrf · e−αIdrr (5)

The parameter α controlled the probe to background contrast and was ran-
domly varied to generate a contrast ratio ranging from 0.45 to 0.85 for each
experiment. Fig. 3 shows a few examples of the simulated images.

For each experiment, the TEE probe was placed at a random location and
orientation within the XRF C-arm image space. Based on our observations from
an image database of TAVI cases, the TEE probe rarely has Euler angle rotations
outside the range of -75◦ to 75◦ about its primary axis (y-axis), -30◦ to 30◦ about
the x-axis of the image detector, and -45◦ to 45◦ about the source-detector axis
(z-axis). Once an initial pose was created, a random mis-registration was applied,
which the experiments attempted to recover. The random mis-registration was
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Fig. 3. Examples of simulated images

chosen from a zero mean uniform distribution over ranges of 3.0 mm, 3.0 mm,
5.0 mm, 30◦, 30◦, 6◦ for the parameters tx, ty, tz, θx, θy, θz , respectively.

Once the simulated image and mis-registration was generated, 3 different al-
gorithms and 2 optimizers were tested. The first algorithm was the proposed
algorithm (DSC), and the second and third were normalized cross-correlation
and gradient correlation using raycasted DRRs (rcNCC, rcGCC, see [7] for de-
tails). The two optimizers tested were the Nelder-Mead (nm) and Powell (pwl)
methods, both of which work well for low-dimensional optimization problems
that do not have analytical cost function gradients.

Fig. 4. Virtual targets
used to compute pTRE
before and after registra-
tion

The simulation experiments assumed a single x-
ray projection, which typically results in inaccurate
estimates of tz. Therefore, we focused on optimiza-
tion of the other five parameters, which resulted in a
faster, more accurate optimization problem. Further-
more, when projecting echo data onto the XRF image,
the errors in the estimation of tz have little effect on
target projection errors (for the same reason that tz
is difficult to estimate in the first place). Therefore,
our accuracy metric was projection target registration
error (pTRE), which was the root-mean-square error
between known target points in XRF and estimated
target points from echo following registration and projection to the XRF image:

pTRE =

√√√√ 1

N

∑

n

(∥∥∥∥
1

mn
(p

(xrf)
n − P · T · p(echo)n )

∥∥∥∥
2

)2

(6)

where mn is the projective magnification of point T · p(echo)n .
pTRE, % of successful registrations, and frame rate were reported for each

experiment. We chose to define a successful registration as a pTRE < 5.0 mm
based on results from [3] where pTRE of 2.9 mm was the average error, but
in reality this measure is application dependent. pTRE is only computed for
successful registrations, to avoid large registration errors skewing the statistics.
5000 experiments were performed.

For all experiments, virtual target points were used to compute pTRE. The
virtual target points were randomly generated from within the center of a virtual
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ultrasound volume emanating from the TEE probe, at a mean distance of 50
mm from the probe face (Fig. 4). Errors from the probe model to echo volume
calibration (echoTprobe) were not considered in the analysis.

Clinical Datasets. Validation was also performed on real images from TAVI
procedures. 39 image sequences from 19 cases (3635 frames) were identified as
containing significant probe movement due to physician manipulation or car-
diorespiratory motion. Due to a lack of ground truth, a surrogate ground truth
was created for each sequence using the following procedure:

1. Manual registration was performed for the first frame of each sequence.
2. The initial manual registration was refined using the rcGCC-pwl method.
3. rcGCC-pwl was used to define the ground truth registration at each con-

secutive frame. Each sequence was then visually checked, frame-by-frame,
for errors. The probe could not be tracked in four sequences and they were
removed from the analysis.

For the clinical datasets, we examined the tracking accuracy and robustness
under real clinical conditions where both image streaming and registration de-
lays must be considered. Assuming 15 fps image streaming, the registration lag
was calculated as nlag = ceil(15× tregistration) frames. Each skipped frame was
only allowed to use the most recently finished registration result for its pTRE
calculation, and every registration (Tn) was initialized with the most recently
processed registration result (Tn−nlag

). Note that slower registration times re-
sulted in increased pTRE due to not only more skipped frames but also less
accurate frame-to-frame initialization.

3 Results

Simulations Results for the simulation studies are shown in Fig. 5. In terms
of pTRE, the rcNCC and rcGCC both slightly outperformed the DSC method,
with the rcGCC-pwl combination having roughly half the error of the DSC-nm
method. However, the mean and standard deviation of all methods fell within
the range of clinical acceptability (< 2.0mm). Furthermore, the DSC-nm combi-
nation outperformed the other methods in terms of success rate, indicating that,
although the other methods are slightly more accurate, the DSC-nm method is
more robust. The average frame rate for DSC was 33.0 ± 9.4 fps (mean ± std).
This is over an order of magnitude faster than the other methods, which were
3.0 ± 1.2 and 2.2 ± 0.9 fps for rcNCC-nm and rcGCC-nm, respectively.

Clinical Datasets Fig. 6 shows results for all clinical sequences. It can be seen
that the lowest average pTRE was found using the rcGCC method, but the
meaning of this result is unclear due to the fact that rcGCC was used as a proxy
measure for the ground truth. Frame-rate increased compared to simulations,
averaging 73.1 ± 19.2 fps for DSC-nm, 8.9 ± 2.2 fps for rcNCC-nm, and 5.9
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Fig. 5. Simulations. Left: Average pTRE for successful registrations. Comparisons be-
tween methods were all statistically significant (p < 0.001). Middle: Percentage of
successfully registered frames (pTRE<5.0 mm). Right: Average frame rate.

± 1.5 fps for rcGCC-nm. This was due to the fact that the difference in pose
parameters between frames was generally smaller for the clinical datasets and
therefore roughly half of the similarity function computations were needed for
convergence.

Fig. 6. Clinical datasets. Left: Average pTRE for successful registrations. Comparisons
between methods were all statistically significant (p < 0.001). Middle: Percentage of
successfully registered frames (pTRE<5.0 mm). Right: Average frame rate.

4 Discussion

The presented DSC method is an order of magnitude faster than the rcNCC and
rcGCC methods, and is the only method that is able to reliably track the TEE
probe without skipping frames. The frame rate increase comes at the cost of an
increase in pTRE, which may be due to the lack of normalization by the DRR
standard deviation used for the NCC and GCC metric computations. However,
results indicate that the increase in error is still clinically acceptable. Results
from the simulations and clinical datasets both show that the DSC method
results in fewer failed registrations, indicating that the DSC metric may have
a wider basin of convergence than the other similarity functions and therefore
is more robust to poor initialization. In the future we will explore a hybrid
registration approach combining the DSC and rcGCC methods, using DSC to
obtain a fast, robust initial result and then refining the registration with rcGCC
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for better accuracy. Validation in bi-plane XRF is another topic for future work.
We believe that the DSC method has the potential to work well as a real-time
5DOF/6DOF device tracking algorithm. In particular, the algorithm may be
well suited for tracking relatively small, high contrast objects such as a recently
proposed fiducial embedded intracardiac echo catheter [8]. Future work will focus
on integration with echo image processing for real-time multimodal visualization
during cardiac interventions.

5 Conclusion

A method for fast 2D/3D registration of devices in XRF images is presented.
Average registration frame rates were 33.0 ± 9.4 fps and 73.1 ± 19.2 fps for
simulated and clinical datasets, respectively. Results also indicate that the pro-
posed method converges to a clinically acceptable target registration error more
often than prior methods. Future work will focus on clinical implementation and
application of the algorithm to other devices.
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